VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network
Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides e...
Uloženo v:
| Vydáno v: | Briefings in bioinformatics Ročník 26; číslo 1 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
22.11.2024
Oxford Publishing Limited (England) |
| Témata: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication. |
|---|---|
| AbstractList | Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication.Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication. Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication. Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication. |
| Author | Wu, Zhenao Ren, Jixiang Zhao, Zhongqian Wang, Tao Zhang, Hongfei Wang, Guohua Zhang, Xiang Zhang, Tianjiao |
| Author_xml | – sequence: 1 givenname: Tianjiao orcidid: 0000-0001-9807-8620 surname: Zhang fullname: Zhang, Tianjiao email: tianjiaozhang@nefu.edu.cn – sequence: 2 givenname: Xiang orcidid: 0009-0000-2663-3672 surname: Zhang fullname: Zhang, Xiang email: 2765063780@qq.com – sequence: 3 givenname: Zhenao surname: Wu fullname: Wu, Zhenao email: 2022112562@nefu.edu.cn – sequence: 4 givenname: Jixiang orcidid: 0009-0008-3584-6125 surname: Ren fullname: Ren, Jixiang email: 1241126773@qq.com – sequence: 5 givenname: Zhongqian surname: Zhao fullname: Zhao, Zhongqian email: 2023112598@nefu.edu.cn – sequence: 6 givenname: Hongfei surname: Zhang fullname: Zhang, Hongfei email: 2023112592@nefu.edu.cn – sequence: 7 givenname: Guohua surname: Wang fullname: Wang, Guohua email: ghwang@nefu.edu.cn – sequence: 8 givenname: Tao orcidid: 0000-0002-5728-6463 surname: Wang fullname: Wang, Tao email: ghwang@nefu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39581873$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rFTEUxYNU7B9duZcBQQQZm-RmMjNupDxrWyi4KW5D_k2b50wyJjMVd34Hv6GfxMx7r2KLuLqB_M7h3HsO0Z4P3iL0nOC3BLdwrJw6VkpaTtpH6ICwui4Zrtje8uZ1WTEO--gwpTXGFNcNeYL2oa0a0tRwgNafz05Oy9Xq4l1xK6OTkwte9sV1lONNIecpWK-DsbFUMllT6ODTFGe9YEXoCvhQpDGLskTbvv_14-cyMjYMs3d6Y1d4O30L8ctT9LiTfbLPdvMIXX08vVqdl5efzi5WJ5elZoxMpVGW4ZYo20BNO9NQbgy0mnbcgq4Us7XSkoCkjHMqqcGKgpJdpTtigBE4Qu-3tuOsBmu09VOUvRijG2T8LoJ04v6PdzfiOtwKQqqGE8qyw-udQwxfZ5smMbi07CW9DXMSQIBy3GCAjL58gK7DHPMFNxRUlABeIr34O9KfLHc1ZIBsAR1DStF2Qrtpc7yc0PWCYLFULXLVYld11rx5oLmz_Tf9akuHefwv-BtCZ7s2 |
| CitedBy_id | crossref_primary_10_1093_bib_bbaf301 crossref_primary_10_3389_fphar_2025_1608832 crossref_primary_10_1038_s41598_025_86455_4 crossref_primary_10_3390_biom15030342 crossref_primary_10_1007_s11432_024_4466_3 crossref_primary_10_1093_bib_bbaf086 |
| Cites_doi | 10.1016/j.csbj.2022.08.043 10.1016/j.cell.2018.01.015 10.1038/nbt.4260 10.1038/s41467-021-21246-9 10.1093/bib/bbae198 10.1126/sciadv.abf1356 10.1038/s41556-018-0105-4 10.1007/s13238-020-00727-5 10.1038/nrm3904 10.1126/science.aau5324 10.1126/science.aad0501 10.1093/nar/gkaa183 10.1186/s13059-022-02692-0 10.1038/s41467-021-21365-3 10.1016/j.celrep.2018.10.045 10.1038/s41576-020-00292-x 10.1093/bib/bbad469 10.3390/ijms25115976 10.3390/biom14040436 10.1093/nar/gkab638 10.1093/nar/gkad352 10.1002/advs.202206939 10.1093/bioinformatics/btad596 10.1016/j.stem.2018.08.007 10.1093/bib/bbaa269 10.1038/s41467-020-18873-z 10.1038/s41587-020-0442-2 10.1038/s41592-019-0667-5 10.7150/thno.95908 10.1038/s41596-020-0292-x 10.1186/s13059-017-1218-y 10.1186/s13059-022-02783-y 10.1101/507871 10.1016/j.gde.2007.12.006 10.1038/s41592-022-01459-6 10.3389/fphys.2019.01170 10.1038/s41586-018-0394-6 10.1038/s41593-020-0621-y 10.1002/advs.202206852 10.1038/s42256-023-00734-1 10.1038/s41467-023-43105-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. Published by Oxford University Press. 2025 The Author(s) 2024. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2025 – notice: The Author(s) 2024. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1093/bib/bbae619 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | PMC11586124 39581873 10_1093_bib_bbae619 10.1093/bib/bbae619 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation for Distinguished Young Scholars of China grantid: 62225109 – fundername: National Natural Science Foundation of China grantid: 62172087 – fundername: ; grantid: 62225109 – fundername: ; grantid: 62172087 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c441t-dbe4091be8372fd826dd39c2f6e3c5b4e7bca13a24662a2d0b23baf5cf1d3413 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363811900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 17:06:33 EDT 2025 Fri Sep 05 09:49:04 EDT 2025 Sun Nov 30 04:04:51 EST 2025 Mon Jul 21 05:55:23 EDT 2025 Sat Nov 29 04:20:24 EST 2025 Tue Nov 18 21:04:22 EST 2025 Wed Apr 02 07:03:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | cell–cell communication variational graph autoencoder scRNA-seq ST-seq |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-dbe4091be8372fd826dd39c2f6e3c5b4e7bca13a24662a2d0b23baf5cf1d3413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5728-6463 0000-0001-9807-8620 0009-0008-3584-6125 0009-0000-2663-3672 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbae619 |
| PMID | 39581873 |
| PQID | 3133521301 |
| PQPubID | 26846 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586124 proquest_miscellaneous_3132608033 proquest_journals_3133521301 pubmed_primary_39581873 crossref_citationtrail_10_1093_bib_bbae619 crossref_primary_10_1093_bib_bbae619 oup_primary_10_1093_bib_bbae619 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov-22 |
| PublicationDateYYYYMMDD | 2024-11-22 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2024 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Giladi (2024112502582271600_ref18) 2020; 38 Chen (2024112502582271600_ref37) 2023; 10 Yuan (2024112502582271600_ref13) 2017; 18 Zhou (2024112502582271600_ref15) 2018; 172 Moffitt (2024112502582271600_ref35) 2018; 362 Park (2024112502582271600_ref24) 2023; 10 Zhang (2024112502582271600_ref6) 2024; 25 Cabello-Aguilar (2024112502582271600_ref9) 2020; 48 Zhang (2024112502582271600_ref20) 2024; 14 Bich (2024112502582271600_ref2) 2019; 10 Zhang (2024112502582271600_ref23) 2021; 49 Cao (2024112502582271600_ref25) 11; 14 Wang (2024112502582271600_ref27) 2023; 5 Shao (2024112502582271600_ref3) 2020; 11 Wang (2024112502582271600_ref10) Hou (2024112502582271600_ref32) 2020; 11 Browaeys (2024112502582271600_ref21) 2020; 17 Kleino (2024112502582271600_ref26) 2022; 20 Jin (2024112502582271600_ref12) 2021; 12 Villemin (2024112502582271600_ref38); 51 Armingol (2024112502582271600_ref4) 2021; 22 Li (2024112502582271600_ref30) 2022; 23 Efremova (2024112502582271600_ref11) 2020; 15 Nagy (2024112502582271600_ref40) 2020; 23 Lutz (2024112502582271600_ref41) 2021; 12 Plasschaert (2024112502582271600_ref16) 2018; 560 Zhang (2024112502582271600_ref19) 2024; 25 Zhang (2024112502582271600_ref7) 2024; 25 Hu (2024112502582271600_ref22) 2021; 7 Zeira (2024112502582271600_ref29) 2022; 19 Zhu (2024112502582271600_ref34) 2018; 36 Hu (2024112502582271600_ref8) 2008; 18 Gao (2024112502582271600_ref14) 2018; 20 Liu (2024112502582271600_ref5) 2022; 23 Shao (2024112502582271600_ref31) 2021; 22 Yang (2024112502582271600_ref33) 2023; 39 Xia (2024112502582271600_ref28) 2023; 14 Wang (2024112502582271600_ref36) 2018; 23 Tirosh (2024112502582271600_ref39) 2016; 352 Bonnans (2024112502582271600_ref1) 2014; 15 Suo (2024112502582271600_ref17) 2018; 25 |
| References_xml | – volume: 20 start-page: 4870 year: 2022 ident: 2024112502582271600_ref26 article-title: Computational solutions for spatial transcriptomics publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.08.043 – volume: 172 start-page: 744 year: 2018 ident: 2024112502582271600_ref15 article-title: Circuit design features of a stable two-cell system publication-title: Cell doi: 10.1016/j.cell.2018.01.015 – volume: 36 start-page: 1183 year: 2018 ident: 2024112502582271600_ref34 article-title: Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data publication-title: Nat Biotechnol doi: 10.1038/nbt.4260 – volume: 12 start-page: 1088 year: 2021 ident: 2024112502582271600_ref12 article-title: Inference and analysis of cell-cell communication using CellChat publication-title: Nat Commun doi: 10.1038/s41467-021-21246-9 – volume: 25 year: 2024 ident: 2024112502582271600_ref19 article-title: CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data publication-title: Brief Bioinform doi: 10.1093/bib/bbae198 – volume: 7 start-page: eabf1356 year: 2021 ident: 2024112502582271600_ref22 article-title: CytoTalk: de novo construction of signal transduction networks using single-cell transcriptomic data publication-title: Sci Adv doi: 10.1126/sciadv.abf1356 – volume: 20 start-page: 721 year: 2018 ident: 2024112502582271600_ref14 article-title: Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0105-4 – volume: 11 start-page: 866 year: 2020 ident: 2024112502582271600_ref3 article-title: New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data publication-title: Protein Cell doi: 10.1007/s13238-020-00727-5 – volume: 15 start-page: 786 year: 2014 ident: 2024112502582271600_ref1 article-title: Remodelling the extracellular matrix in development and disease publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3904 – volume: 362 year: 2018 ident: 2024112502582271600_ref35 article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science doi: 10.1126/science.aau5324 – volume: 352 start-page: 189 year: 2016 ident: 2024112502582271600_ref39 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aad0501 – volume: 48 start-page: e55 year: 2020 ident: 2024112502582271600_ref9 article-title: SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa183 – volume: 23 start-page: 124 year: 2022 ident: 2024112502582271600_ref30 article-title: Novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc publication-title: Genome Biol doi: 10.1186/s13059-022-02692-0 – volume: 12 year: 2021 ident: 2024112502582271600_ref41 article-title: Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation publication-title: Nat Commun doi: 10.1038/s41467-021-21365-3 – volume: 25 start-page: 1436 year: 2018 ident: 2024112502582271600_ref17 article-title: Revealing the critical regulators of cell identity in the mouse cell atlas publication-title: Cell Rep doi: 10.1016/j.celrep.2018.10.045 – volume: 22 start-page: 71 year: 2021 ident: 2024112502582271600_ref4 article-title: Deciphering cell–cell interactions and communication from gene expression publication-title: Nat Rev Genet doi: 10.1038/s41576-020-00292-x – volume: 25 year: 2024 ident: 2024112502582271600_ref7 article-title: GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data publication-title: Brief Bioinform doi: 10.1093/bib/bbad469 – volume: 25 year: 2024 ident: 2024112502582271600_ref6 article-title: scZAG: integrating ZINB-based autoencoder with adaptive data augmentation graph contrastive learning for scRNA-seq clustering publication-title: Int J Mol Sci doi: 10.3390/ijms25115976 – volume: 14 year: 2024 ident: 2024112502582271600_ref20 article-title: GTADC: a graph-based method for inferring cell spatial distribution in cancer tissues publication-title: Biomolecules doi: 10.3390/biom14040436 – volume: 49 start-page: 8520 year: 2021 ident: 2024112502582271600_ref23 article-title: CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab638 – volume: 51 ident: 2024112502582271600_ref38 article-title: Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR publication-title: Nucleic Acids Research doi: 10.1093/nar/gkad352 – volume: 10 start-page: e2206939 year: 2023 ident: 2024112502582271600_ref24 article-title: Spatial transcriptomics: technical aspects of recent developments and their applications in neuroscience and cancer research publication-title: Adv Scie (Weinheim, Baden-Wurttemberg, Germany) doi: 10.1002/advs.202206939 – volume: 39 year: 2023 ident: 2024112502582271600_ref33 article-title: DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad596 – volume: 23 start-page: 599 year: 2018 ident: 2024112502582271600_ref36 article-title: Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.08.007 – volume: 22 start-page: bbaa269 year: 2021 ident: 2024112502582271600_ref31 article-title: CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice publication-title: Brief Bioinform doi: 10.1093/bib/bbaa269 – volume: 11 start-page: 5011 year: 2020 ident: 2024112502582271600_ref32 article-title: Predicting cell-cell communication networks using NATMI publication-title: Nat Commun doi: 10.1038/s41467-020-18873-z – volume: 38 start-page: 629 year: 2020 ident: 2024112502582271600_ref18 article-title: Dissecting cellular crosstalk by sequencing physically interacting cells publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0442-2 – volume: 17 start-page: 159 year: 2020 ident: 2024112502582271600_ref21 article-title: NicheNet: modeling intercellular communication by linking ligands to target genes publication-title: Nat Methods doi: 10.1038/s41592-019-0667-5 – volume: 14 start-page: 2946 year: 11 ident: 2024112502582271600_ref25 article-title: Spatial transcriptomics: a powerful tool in disease understanding and drug discovery publication-title: Theranostics doi: 10.7150/thno.95908 – volume: 15 start-page: 1484 year: 2020 ident: 2024112502582271600_ref11 article-title: CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes publication-title: Nat Protoc doi: 10.1038/s41596-020-0292-x – volume: 18 start-page: 84 year: 2017 ident: 2024112502582271600_ref13 article-title: Challenges and emerging directions in single-cell analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1218-y – volume: 23 start-page: 218 year: 2022 ident: 2024112502582271600_ref5 article-title: Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information publication-title: Genome Biol doi: 10.1186/s13059-022-02783-y – ident: 2024112502582271600_ref10 article-title: iTALK: an R package to characterize and illustrate intercellular communication doi: 10.1101/507871 – volume: 18 start-page: 27 year: 2008 ident: 2024112502582271600_ref8 article-title: Microenvironmental regulation of cancer development[J] publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2007.12.006 – volume: 19 start-page: 567 year: 2022 ident: 2024112502582271600_ref29 article-title: Alignment and integration of spatial transcriptomics data publication-title: Nat Methods doi: 10.1038/s41592-022-01459-6 – volume: 10 start-page: 1170 year: 2019 ident: 2024112502582271600_ref2 article-title: Understanding multicellularity: the functional organization of the intercellular space publication-title: Front Physiol doi: 10.3389/fphys.2019.01170 – volume: 560 start-page: 377 year: 2018 ident: 2024112502582271600_ref16 article-title: A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte publication-title: Nature doi: 10.1038/s41586-018-0394-6 – volume: 23 start-page: 771 year: 2020 ident: 2024112502582271600_ref40 article-title: Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons publication-title: Nat Neurosci doi: 10.1038/s41593-020-0621-y – volume: 10 start-page: 2206852 year: 2023 ident: 2024112502582271600_ref37 article-title: Deciphering the molecular characteristics of human idiopathic nonobstructive azoospermia from the perspective of germ cells publication-title: Adv Sci doi: 10.1002/advs.202206852 – volume: 5 start-page: 1200 year: 2023 ident: 2024112502582271600_ref27 article-title: Construction of a 3D whole organism spatial atlas by joint modelling of multiple layers with deep neural networks publication-title: Nat Mach Intell doi: 10.1038/s42256-023-00734-1 – volume: 14 start-page: 7236 year: 2023 ident: 2024112502582271600_ref28 article-title: Spatial-linked alignment tool (SLAT) for aligning heterogenous layers publication-title: Nat Commun doi: 10.1038/s41467-023-43105-5 |
| SSID | ssj0020781 |
| Score | 2.4539106 |
| Snippet | Abstract
Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling... Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune... Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Cell Communication Cell differentiation Cell interactions Communication Communication networks Computational Biology - methods Deep Learning Gene Expression Profiling - methods Gene sequencing Graph neural networks Humans Immune response Problem Solving Protocol Reliability Single-Cell Analysis - methods Spatial data Tissues Transcriptome Transcriptomics |
| Title | VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39581873 https://www.proquest.com/docview/3133521301 https://www.proquest.com/docview/3132608033 https://pubmed.ncbi.nlm.nih.gov/PMC11586124 |
| Volume | 26 |
| WOSCitedRecordID | wos001363811900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5cUdiL79XxMUbwJASnk_TLm4yvBVEPg8ytyRNHpFucUfDmf_Af-kusdLe9MyKufelDKnRTlaS-Sqq-AOwKhU-qUholGgMUZxiVPHCUiSSItFBWlFx61-fxxUXS76dXdYLs8Isj_JTvq4HaV0raqGT3DMLEX1TQu-w3cZXnq6mKiGLq2d3rMrxPfSccz0Qx2xim_JwaOeZrTuZ_-pcLMFejSXJYmX8Rpmy-BLPV_ZLPy3B7fXp4TLvdvwfkCWPiet-PlCTVRD6OCs9iaewD9b7MEF38o5MlhSP8iAx9wjV28fv7by-v_oViYzUlJK_yyFegd3Lc657R-nIFqhEBjahBMyBWUBYjVOYMRhnG8FQzF1muQyVsrLQMuGQiiphkpqMYV9KF2gXGe74_MJ0XuV0DYqxxzHKDq4MUgda4fIoOx0hJhR0XKtOCvQ_FZ7omHvf3X9xl1QE4z1B3Wa27Fuw2wvcV38bXYttowe8lNj-sm9XTcpjxwJeYodsOWrDTNOOE8uqTuS0eSxmM8ZIO5y1YrQZD8x2ehghwYmxJJoZJI-DJuidb8sFNSdqNyDtBNCnW__vnG_CbIXLyBY-MbcI0Gt5uwYx-Gg2GD234FfeTdrl10C6nwTtWFgaB |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VGAE-CCI%3A+variational+graph+autoencoder-based+construction+of+3D+spatial+cell%E2%80%93cell+communication+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Tianjiao&rft.au=Zhang%2C+Xiang&rft.au=Wu%2C+Zhenao&rft.au=Ren%2C+Jixiang&rft.date=2024-11-22&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbae619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbae619 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |