VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network

Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Briefings in bioinformatics Ročník 26; číslo 1
Hlavní autoři: Zhang, Tianjiao, Zhang, Xiang, Wu, Zhenao, Ren, Jixiang, Zhao, Zhongqian, Zhang, Hongfei, Wang, Guohua, Wang, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 22.11.2024
Oxford Publishing Limited (England)
Témata:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication.
AbstractList Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication.Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication.
Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication.
Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections, neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell–cell communication.
Author Wu, Zhenao
Ren, Jixiang
Zhao, Zhongqian
Wang, Tao
Zhang, Hongfei
Wang, Guohua
Zhang, Xiang
Zhang, Tianjiao
Author_xml – sequence: 1
  givenname: Tianjiao
  orcidid: 0000-0001-9807-8620
  surname: Zhang
  fullname: Zhang, Tianjiao
  email: tianjiaozhang@nefu.edu.cn
– sequence: 2
  givenname: Xiang
  orcidid: 0009-0000-2663-3672
  surname: Zhang
  fullname: Zhang, Xiang
  email: 2765063780@qq.com
– sequence: 3
  givenname: Zhenao
  surname: Wu
  fullname: Wu, Zhenao
  email: 2022112562@nefu.edu.cn
– sequence: 4
  givenname: Jixiang
  orcidid: 0009-0008-3584-6125
  surname: Ren
  fullname: Ren, Jixiang
  email: 1241126773@qq.com
– sequence: 5
  givenname: Zhongqian
  surname: Zhao
  fullname: Zhao, Zhongqian
  email: 2023112598@nefu.edu.cn
– sequence: 6
  givenname: Hongfei
  surname: Zhang
  fullname: Zhang, Hongfei
  email: 2023112592@nefu.edu.cn
– sequence: 7
  givenname: Guohua
  surname: Wang
  fullname: Wang, Guohua
  email: ghwang@nefu.edu.cn
– sequence: 8
  givenname: Tao
  orcidid: 0000-0002-5728-6463
  surname: Wang
  fullname: Wang, Tao
  email: ghwang@nefu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39581873$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYNU7B9duZcBQQQZm-RmMjNupDxrWyi4KW5D_k2b50wyJjMVd34Hv6GfxMx7r2KLuLqB_M7h3HsO0Z4P3iL0nOC3BLdwrJw6VkpaTtpH6ICwui4Zrtje8uZ1WTEO--gwpTXGFNcNeYL2oa0a0tRwgNafz05Oy9Xq4l1xK6OTkwte9sV1lONNIecpWK-DsbFUMllT6ODTFGe9YEXoCvhQpDGLskTbvv_14-cyMjYMs3d6Y1d4O30L8ctT9LiTfbLPdvMIXX08vVqdl5efzi5WJ5elZoxMpVGW4ZYo20BNO9NQbgy0mnbcgq4Us7XSkoCkjHMqqcGKgpJdpTtigBE4Qu-3tuOsBmu09VOUvRijG2T8LoJ04v6PdzfiOtwKQqqGE8qyw-udQwxfZ5smMbi07CW9DXMSQIBy3GCAjL58gK7DHPMFNxRUlABeIr34O9KfLHc1ZIBsAR1DStF2Qrtpc7yc0PWCYLFULXLVYld11rx5oLmz_Tf9akuHefwv-BtCZ7s2
CitedBy_id crossref_primary_10_1093_bib_bbaf301
crossref_primary_10_3389_fphar_2025_1608832
crossref_primary_10_1038_s41598_025_86455_4
crossref_primary_10_3390_biom15030342
crossref_primary_10_1007_s11432_024_4466_3
crossref_primary_10_1093_bib_bbaf086
Cites_doi 10.1016/j.csbj.2022.08.043
10.1016/j.cell.2018.01.015
10.1038/nbt.4260
10.1038/s41467-021-21246-9
10.1093/bib/bbae198
10.1126/sciadv.abf1356
10.1038/s41556-018-0105-4
10.1007/s13238-020-00727-5
10.1038/nrm3904
10.1126/science.aau5324
10.1126/science.aad0501
10.1093/nar/gkaa183
10.1186/s13059-022-02692-0
10.1038/s41467-021-21365-3
10.1016/j.celrep.2018.10.045
10.1038/s41576-020-00292-x
10.1093/bib/bbad469
10.3390/ijms25115976
10.3390/biom14040436
10.1093/nar/gkab638
10.1093/nar/gkad352
10.1002/advs.202206939
10.1093/bioinformatics/btad596
10.1016/j.stem.2018.08.007
10.1093/bib/bbaa269
10.1038/s41467-020-18873-z
10.1038/s41587-020-0442-2
10.1038/s41592-019-0667-5
10.7150/thno.95908
10.1038/s41596-020-0292-x
10.1186/s13059-017-1218-y
10.1186/s13059-022-02783-y
10.1101/507871
10.1016/j.gde.2007.12.006
10.1038/s41592-022-01459-6
10.3389/fphys.2019.01170
10.1038/s41586-018-0394-6
10.1038/s41593-020-0621-y
10.1002/advs.202206852
10.1038/s42256-023-00734-1
10.1038/s41467-023-43105-5
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2025
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2025
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbae619
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC11586124
39581873
10_1093_bib_bbae619
10.1093/bib/bbae619
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation for Distinguished Young Scholars of China
  grantid: 62225109
– fundername: National Natural Science Foundation of China
  grantid: 62172087
– fundername: ;
  grantid: 62225109
– fundername: ;
  grantid: 62172087
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c441t-dbe4091be8372fd826dd39c2f6e3c5b4e7bca13a24662a2d0b23baf5cf1d3413
IEDL.DBID TOX
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363811900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 17:06:33 EDT 2025
Fri Sep 05 09:49:04 EDT 2025
Sun Nov 30 04:04:51 EST 2025
Mon Jul 21 05:55:23 EDT 2025
Sat Nov 29 04:20:24 EST 2025
Tue Nov 18 21:04:22 EST 2025
Wed Apr 02 07:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cell–cell communication
variational graph autoencoder
scRNA-seq
ST-seq
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-dbe4091be8372fd826dd39c2f6e3c5b4e7bca13a24662a2d0b23baf5cf1d3413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5728-6463
0000-0001-9807-8620
0009-0008-3584-6125
0009-0000-2663-3672
OpenAccessLink https://dx.doi.org/10.1093/bib/bbae619
PMID 39581873
PQID 3133521301
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586124
proquest_miscellaneous_3132608033
proquest_journals_3133521301
pubmed_primary_39581873
crossref_citationtrail_10_1093_bib_bbae619
crossref_primary_10_1093_bib_bbae619
oup_primary_10_1093_bib_bbae619
PublicationCentury 2000
PublicationDate 2024-Nov-22
PublicationDateYYYYMMDD 2024-11-22
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Giladi (2024112502582271600_ref18) 2020; 38
Chen (2024112502582271600_ref37) 2023; 10
Yuan (2024112502582271600_ref13) 2017; 18
Zhou (2024112502582271600_ref15) 2018; 172
Moffitt (2024112502582271600_ref35) 2018; 362
Park (2024112502582271600_ref24) 2023; 10
Zhang (2024112502582271600_ref6) 2024; 25
Cabello-Aguilar (2024112502582271600_ref9) 2020; 48
Zhang (2024112502582271600_ref20) 2024; 14
Bich (2024112502582271600_ref2) 2019; 10
Zhang (2024112502582271600_ref23) 2021; 49
Cao (2024112502582271600_ref25) 11; 14
Wang (2024112502582271600_ref27) 2023; 5
Shao (2024112502582271600_ref3) 2020; 11
Wang (2024112502582271600_ref10)
Hou (2024112502582271600_ref32) 2020; 11
Browaeys (2024112502582271600_ref21) 2020; 17
Kleino (2024112502582271600_ref26) 2022; 20
Jin (2024112502582271600_ref12) 2021; 12
Villemin (2024112502582271600_ref38); 51
Armingol (2024112502582271600_ref4) 2021; 22
Li (2024112502582271600_ref30) 2022; 23
Efremova (2024112502582271600_ref11) 2020; 15
Nagy (2024112502582271600_ref40) 2020; 23
Lutz (2024112502582271600_ref41) 2021; 12
Plasschaert (2024112502582271600_ref16) 2018; 560
Zhang (2024112502582271600_ref19) 2024; 25
Zhang (2024112502582271600_ref7) 2024; 25
Hu (2024112502582271600_ref22) 2021; 7
Zeira (2024112502582271600_ref29) 2022; 19
Zhu (2024112502582271600_ref34) 2018; 36
Hu (2024112502582271600_ref8) 2008; 18
Gao (2024112502582271600_ref14) 2018; 20
Liu (2024112502582271600_ref5) 2022; 23
Shao (2024112502582271600_ref31) 2021; 22
Yang (2024112502582271600_ref33) 2023; 39
Xia (2024112502582271600_ref28) 2023; 14
Wang (2024112502582271600_ref36) 2018; 23
Tirosh (2024112502582271600_ref39) 2016; 352
Bonnans (2024112502582271600_ref1) 2014; 15
Suo (2024112502582271600_ref17) 2018; 25
References_xml – volume: 20
  start-page: 4870
  year: 2022
  ident: 2024112502582271600_ref26
  article-title: Computational solutions for spatial transcriptomics
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2022.08.043
– volume: 172
  start-page: 744
  year: 2018
  ident: 2024112502582271600_ref15
  article-title: Circuit design features of a stable two-cell system
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.015
– volume: 36
  start-page: 1183
  year: 2018
  ident: 2024112502582271600_ref34
  article-title: Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4260
– volume: 12
  start-page: 1088
  year: 2021
  ident: 2024112502582271600_ref12
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21246-9
– volume: 25
  year: 2024
  ident: 2024112502582271600_ref19
  article-title: CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbae198
– volume: 7
  start-page: eabf1356
  year: 2021
  ident: 2024112502582271600_ref22
  article-title: CytoTalk: de novo construction of signal transduction networks using single-cell transcriptomic data
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf1356
– volume: 20
  start-page: 721
  year: 2018
  ident: 2024112502582271600_ref14
  article-title: Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0105-4
– volume: 11
  start-page: 866
  year: 2020
  ident: 2024112502582271600_ref3
  article-title: New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00727-5
– volume: 15
  start-page: 786
  year: 2014
  ident: 2024112502582271600_ref1
  article-title: Remodelling the extracellular matrix in development and disease
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3904
– volume: 362
  year: 2018
  ident: 2024112502582271600_ref35
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 352
  start-page: 189
  year: 2016
  ident: 2024112502582271600_ref39
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aad0501
– volume: 48
  start-page: e55
  year: 2020
  ident: 2024112502582271600_ref9
  article-title: SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa183
– volume: 23
  start-page: 124
  year: 2022
  ident: 2024112502582271600_ref30
  article-title: Novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02692-0
– volume: 12
  year: 2021
  ident: 2024112502582271600_ref41
  article-title: Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21365-3
– volume: 25
  start-page: 1436
  year: 2018
  ident: 2024112502582271600_ref17
  article-title: Revealing the critical regulators of cell identity in the mouse cell atlas
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.10.045
– volume: 22
  start-page: 71
  year: 2021
  ident: 2024112502582271600_ref4
  article-title: Deciphering cell–cell interactions and communication from gene expression
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-00292-x
– volume: 25
  year: 2024
  ident: 2024112502582271600_ref7
  article-title: GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad469
– volume: 25
  year: 2024
  ident: 2024112502582271600_ref6
  article-title: scZAG: integrating ZINB-based autoencoder with adaptive data augmentation graph contrastive learning for scRNA-seq clustering
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms25115976
– volume: 14
  year: 2024
  ident: 2024112502582271600_ref20
  article-title: GTADC: a graph-based method for inferring cell spatial distribution in cancer tissues
  publication-title: Biomolecules
  doi: 10.3390/biom14040436
– volume: 49
  start-page: 8520
  year: 2021
  ident: 2024112502582271600_ref23
  article-title: CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab638
– volume: 51
  ident: 2024112502582271600_ref38
  article-title: Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkad352
– volume: 10
  start-page: e2206939
  year: 2023
  ident: 2024112502582271600_ref24
  article-title: Spatial transcriptomics: technical aspects of recent developments and their applications in neuroscience and cancer research
  publication-title: Adv Scie (Weinheim, Baden-Wurttemberg, Germany)
  doi: 10.1002/advs.202206939
– volume: 39
  year: 2023
  ident: 2024112502582271600_ref33
  article-title: DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad596
– volume: 23
  start-page: 599
  year: 2018
  ident: 2024112502582271600_ref36
  article-title: Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.08.007
– volume: 22
  start-page: bbaa269
  year: 2021
  ident: 2024112502582271600_ref31
  article-title: CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa269
– volume: 11
  start-page: 5011
  year: 2020
  ident: 2024112502582271600_ref32
  article-title: Predicting cell-cell communication networks using NATMI
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18873-z
– volume: 38
  start-page: 629
  year: 2020
  ident: 2024112502582271600_ref18
  article-title: Dissecting cellular crosstalk by sequencing physically interacting cells
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0442-2
– volume: 17
  start-page: 159
  year: 2020
  ident: 2024112502582271600_ref21
  article-title: NicheNet: modeling intercellular communication by linking ligands to target genes
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 14
  start-page: 2946
  year: 11
  ident: 2024112502582271600_ref25
  article-title: Spatial transcriptomics: a powerful tool in disease understanding and drug discovery
  publication-title: Theranostics
  doi: 10.7150/thno.95908
– volume: 15
  start-page: 1484
  year: 2020
  ident: 2024112502582271600_ref11
  article-title: CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-0292-x
– volume: 18
  start-page: 84
  year: 2017
  ident: 2024112502582271600_ref13
  article-title: Challenges and emerging directions in single-cell analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1218-y
– volume: 23
  start-page: 218
  year: 2022
  ident: 2024112502582271600_ref5
  article-title: Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02783-y
– ident: 2024112502582271600_ref10
  article-title: iTALK: an R package to characterize and illustrate intercellular communication
  doi: 10.1101/507871
– volume: 18
  start-page: 27
  year: 2008
  ident: 2024112502582271600_ref8
  article-title: Microenvironmental regulation of cancer development[J]
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2007.12.006
– volume: 19
  start-page: 567
  year: 2022
  ident: 2024112502582271600_ref29
  article-title: Alignment and integration of spatial transcriptomics data
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01459-6
– volume: 10
  start-page: 1170
  year: 2019
  ident: 2024112502582271600_ref2
  article-title: Understanding multicellularity: the functional organization of the intercellular space
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.01170
– volume: 560
  start-page: 377
  year: 2018
  ident: 2024112502582271600_ref16
  article-title: A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte
  publication-title: Nature
  doi: 10.1038/s41586-018-0394-6
– volume: 23
  start-page: 771
  year: 2020
  ident: 2024112502582271600_ref40
  article-title: Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-020-0621-y
– volume: 10
  start-page: 2206852
  year: 2023
  ident: 2024112502582271600_ref37
  article-title: Deciphering the molecular characteristics of human idiopathic nonobstructive azoospermia from the perspective of germ cells
  publication-title: Adv Sci
  doi: 10.1002/advs.202206852
– volume: 5
  start-page: 1200
  year: 2023
  ident: 2024112502582271600_ref27
  article-title: Construction of a 3D whole organism spatial atlas by joint modelling of multiple layers with deep neural networks
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-023-00734-1
– volume: 14
  start-page: 7236
  year: 2023
  ident: 2024112502582271600_ref28
  article-title: Spatial-linked alignment tool (SLAT) for aligning heterogenous layers
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-43105-5
SSID ssj0020781
Score 2.4539106
Snippet Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling...
Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune...
Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Cell Communication
Cell differentiation
Cell interactions
Communication
Communication networks
Computational Biology - methods
Deep Learning
Gene Expression Profiling - methods
Gene sequencing
Graph neural networks
Humans
Immune response
Problem Solving Protocol
Reliability
Single-Cell Analysis - methods
Spatial data
Tissues
Transcriptome
Transcriptomics
Title VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network
URI https://www.ncbi.nlm.nih.gov/pubmed/39581873
https://www.proquest.com/docview/3133521301
https://www.proquest.com/docview/3132608033
https://pubmed.ncbi.nlm.nih.gov/PMC11586124
Volume 26
WOSCitedRecordID wos001363811900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5cUdiL79XxMUbwJASnk_TLm4yvBVEPg8ytyRNHpFucUfDmf_Af-kusdLe9MyKufelDKnRTlaS-Sqq-AOwKhU-qUholGgMUZxiVPHCUiSSItFBWlFx61-fxxUXS76dXdYLs8Isj_JTvq4HaV0raqGT3DMLEX1TQu-w3cZXnq6mKiGLq2d3rMrxPfSccz0Qx2xim_JwaOeZrTuZ_-pcLMFejSXJYmX8Rpmy-BLPV_ZLPy3B7fXp4TLvdvwfkCWPiet-PlCTVRD6OCs9iaewD9b7MEF38o5MlhSP8iAx9wjV28fv7by-v_oViYzUlJK_yyFegd3Lc657R-nIFqhEBjahBMyBWUBYjVOYMRhnG8FQzF1muQyVsrLQMuGQiiphkpqMYV9KF2gXGe74_MJ0XuV0DYqxxzHKDq4MUgda4fIoOx0hJhR0XKtOCvQ_FZ7omHvf3X9xl1QE4z1B3Wa27Fuw2wvcV38bXYttowe8lNj-sm9XTcpjxwJeYodsOWrDTNOOE8uqTuS0eSxmM8ZIO5y1YrQZD8x2ehghwYmxJJoZJI-DJuidb8sFNSdqNyDtBNCnW__vnG_CbIXLyBY-MbcI0Gt5uwYx-Gg2GD234FfeTdrl10C6nwTtWFgaB
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VGAE-CCI%3A+variational+graph+autoencoder-based+construction+of+3D+spatial+cell%E2%80%93cell+communication+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Tianjiao&rft.au=Zhang%2C+Xiang&rft.au=Wu%2C+Zhenao&rft.au=Ren%2C+Jixiang&rft.date=2024-11-22&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbae619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbae619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon