Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance

The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 13; S. 3647
Hauptverfasser: Scheurer, Sebastian, Tedesco, Salvatore, O’Flynn, Brendan, Brown, Kenneth N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 29.06.2020
MDPI AG
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms’ subject-dependent and subject-independent performances across eight datasets using three different personalisation–generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs—the best-performing EPSM type—by 16.4% in terms of the subject-independent performance.
AbstractList The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms’ subject-dependent and subject-independent performances across eight datasets using three different personalisation–generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs—the best-performing EPSM type—by 16.4% in terms of the subject-independent performance.
The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms' subject-dependent and subject-independent performances across eight datasets using three different personalisation-generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs-the best-performing EPSM type-by 16.4% in terms of the subject-independent performance.The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms' subject-dependent and subject-independent performances across eight datasets using three different personalisation-generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs-the best-performing EPSM type-by 16.4% in terms of the subject-independent performance.
Author O’Flynn, Brendan
Tedesco, Salvatore
Brown, Kenneth N.
Scheurer, Sebastian
AuthorAffiliation 1 Insight Centre for Data Analytics, School of Computer Science and Information Technology, University College Cork, T12 XF62 Cork, Ireland; brendan.oflynn@tyndall.ie
3 CONNECT Centre for Future Networks and Communications, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
2 Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; salvatore.tedesco@tyndall.ie
AuthorAffiliation_xml – name: 3 CONNECT Centre for Future Networks and Communications, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
– name: 1 Insight Centre for Data Analytics, School of Computer Science and Information Technology, University College Cork, T12 XF62 Cork, Ireland; brendan.oflynn@tyndall.ie
– name: 2 Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; salvatore.tedesco@tyndall.ie
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-2163-2168
  surname: Scheurer
  fullname: Scheurer, Sebastian
– sequence: 2
  givenname: Salvatore
  orcidid: 0000-0002-7752-2240
  surname: Tedesco
  fullname: Tedesco, Salvatore
– sequence: 3
  givenname: Brendan
  orcidid: 0000-0002-5522-2597
  surname: O’Flynn
  fullname: O’Flynn, Brendan
– sequence: 4
  givenname: Kenneth N.
  surname: Brown
  fullname: Brown, Kenneth N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32610614$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAUhS1URB-w4A-gLGER6tck8QapmtJ2pCIQhbXlXN8MHiV2sJNKlfjxeJh21JaNbfmc-x35-h6TAx88EvKW0Y9CKHqaOGVCVLJ-QY6Y5LJsOKcHj86H5DilDaVcCNG8IoeCV4xWTB6RP8swjCY6vy6-YUzBlzcjguscFMbbYuUtjpgXPxVfgsU-FcEXN3O7QZjK87323Hs1D8YXZzC5WzfdFd8Rwtq7yeXiHNOFmGXA1-RlZ_qEb-73E_Lz4vOP5VV5_fVytTy7LkFKNpWA2HEqKt4aoWzdsQVysFDDwqJquepsjaCAYStaidC0tQIjJeVSWUbbVpyQ1Y5rg9noMbrBxDsdjNP_LkJcaxMnBz1qMKKzVddaECp3r1ZsYRvT2E5UAI3csj7tWOPcDmghvzaa_gn0qeLdL70Ot7oWtRSsyoD394AYfs-YJj24BNj3xmOYk-aSqZoqJXi2vnuctQ95-L5sON0ZIIaUInYa3GS2bc7RrteM6u2A6P2A5IoPzyoeoP97_wJqtb5O
CitedBy_id crossref_primary_10_3390_app11167660
crossref_primary_10_3390_app13031512
crossref_primary_10_3390_s24113697
crossref_primary_10_3390_s22083094
Cites_doi 10.1007/978-3-540-24646-6_1
10.25080/Majora-92bf1922-00a
10.1145/2499621
10.1145/3361684.3361689
10.1109/PERCOM.2016.7456521
10.1109/HealthCom.2018.8531148
10.1109/ICMLA.2015.48
10.1109/SMC.2015.263
10.1109/TITB.2005.856864
10.1016/j.patrec.2012.12.014
10.1109/MCSE.2011.37
10.3390/s140610146
10.18637/jss.v067.i01
10.1109/IJCNN.2019.8852299
10.1017/CBO9780511790942
10.3390/s16010115
10.1109/ISWC.2012.13
10.1016/j.asoc.2015.01.025
10.1109/HealthCom.2016.7749439
10.1109/TPAMI.2015.2389824
10.1016/j.patrec.2018.02.010
10.1109/BSN.2017.7935994
10.3390/s140610691
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20133647
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ca3fd6fbdc394247915d8a8df36cc84b
PMC7374316
32610614
10_3390_s20133647
Genre Journal Article
GrantInformation_xml – fundername: Enterprise Ireland
  grantid: IR20140024
– fundername: Science Foundation Ireland
  grantid: 12/RC/2289-P2
– fundername: European Regional Development Fund
  grantid: 13/RC/2077-CONNECT
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-ceef20362ba39d7f15e2cdc7c5de9b29fd7ec9c1eb3b4ec8b79ca440249d10bb3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:35 EDT 2025
Tue Nov 04 01:59:25 EST 2025
Fri Sep 05 09:10:36 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Sat Nov 29 07:12:49 EST 2025
Tue Nov 18 22:24:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords inertial sensors
boosting
machine learning
human activity recognition
bagging
ensemble methods
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ceef20362ba39d7f15e2cdc7c5de9b29fd7ec9c1eb3b4ec8b79ca440249d10bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This paper is an extended version of our paper published in Scheurer, S.; Tedesco, S.; Brown, K.N.; O’Flynn, B. Subject-dependent and-independent human activity recognition with person-specific and-independent models. In Proceedings of the 6th international Workshop on Sensor-based Activity Recognition and Interaction, Rostock, Germany, 16–17 September 2019; pp. 1–7.
ORCID 0000-0002-5522-2597
0000-0002-2163-2168
0000-0002-7752-2240
OpenAccessLink https://doaj.org/article/ca3fd6fbdc394247915d8a8df36cc84b
PMID 32610614
PQID 2419709932
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ca3fd6fbdc394247915d8a8df36cc84b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374316
proquest_miscellaneous_2419709932
pubmed_primary_32610614
crossref_citationtrail_10_3390_s20133647
crossref_primary_10_3390_s20133647
PublicationCentury 2000
PublicationDate 20200629
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 6
  year: 2020
  text: 20200629
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_14
ref_13
ref_34
ref_11
ref_10
ref_32
ref_31
ref_30
Pedregosa (ref_28) 2011; 12
ref_19
Colbert (ref_26) 2011; 13
ref_18
ref_17
ref_16
Catal (ref_12) 2015; 37
ref_25
ref_24
ref_23
ref_22
He (ref_15) 2015; 37
ref_21
ref_20
ref_1
ref_3
ref_27
Wang (ref_2) 2019; 119
ref_9
Karantonis (ref_33) 2006; 10
ref_8
ref_5
Tange (ref_29) 2011; 36
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_21
  doi: 10.1007/978-3-540-24646-6_1
– ident: ref_27
  doi: 10.25080/Majora-92bf1922-00a
– ident: ref_30
– ident: ref_23
  doi: 10.1145/2499621
– ident: ref_32
– ident: ref_1
  doi: 10.1145/3361684.3361689
– ident: ref_16
  doi: 10.1109/PERCOM.2016.7456521
– ident: ref_11
– ident: ref_19
  doi: 10.1109/HealthCom.2018.8531148
– ident: ref_5
  doi: 10.1109/ICMLA.2015.48
– ident: ref_13
  doi: 10.1109/SMC.2015.263
– volume: 10
  start-page: 156
  year: 2006
  ident: ref_33
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.856864
– ident: ref_3
  doi: 10.1016/j.patrec.2012.12.014
– volume: 13
  start-page: 22
  year: 2011
  ident: ref_26
  article-title: The NumPy Array: A Structure for Efficient Numerical Computation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– ident: ref_8
  doi: 10.3390/s140610146
– ident: ref_31
  doi: 10.18637/jss.v067.i01
– ident: ref_14
  doi: 10.1109/IJCNN.2019.8852299
– ident: ref_25
– ident: ref_4
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_28
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 42
  year: 2011
  ident: ref_29
  article-title: GNU Parallel—The Command-Line Power Tool
  publication-title: Login Usenix Mag.
– ident: ref_34
  doi: 10.1017/CBO9780511790942
– ident: ref_6
  doi: 10.3390/s16010115
– ident: ref_9
  doi: 10.1109/ISWC.2012.13
– ident: ref_10
– volume: 37
  start-page: 1018
  year: 2015
  ident: ref_12
  article-title: On the Use of Ensemble of Classifiers for Accelerometer-Based Activity Recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.025
– ident: ref_20
  doi: 10.1109/HealthCom.2016.7749439
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_15
  article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  publication-title: Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 119
  start-page: 3
  year: 2019
  ident: ref_2
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref_24
  doi: 10.1109/BSN.2017.7935994
– ident: ref_17
– ident: ref_22
– ident: ref_18
  doi: 10.3390/s140610691
SSID ssj0023338
Score 2.3427765
Snippet The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3647
SubjectTerms Algorithms
bagging
boosting
ensemble methods
Human Activities
human activity recognition
Humans
inertial sensors
Machine Learning
Title Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance
URI https://www.ncbi.nlm.nih.gov/pubmed/32610614
https://www.proquest.com/docview/2419709932
https://pubmed.ncbi.nlm.nih.gov/PMC7374316
https://doaj.org/article/ca3fd6fbdc394247915d8a8df36cc84b
Volume 20
WOSCitedRecordID wos000553180100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4QAHxDehsDKIAxermziJ42M_tqKHrqIKpOUU2WMbVqqyqLvtqeK3M3ay6W5VqRcuOdgTxfKM7Te28x7AlzEWlbZa8NJZx3PUnptcFrwqDQb-c1sIH8Um5HRazWaq3pD6CnfCOnrgruP2UAtvS28sCpVnuVRpYStdWS9KxCo3YfYdS7VOpvpUS1Dm1fEICUrq95a0zInAlL61-kSS_ruQ5e0LkhsrzvFzeNZDRbbfNfEFPHDtS3i6QSD4Cq4POxnB9herI3TmUU_ez5Hp1rKTQeN2xYLo2fmSLVpGc0XYfOFHQ91t27izz_axU5ZgZ-tLRvRyffOjwWv4cTz5fviN93oKHAn0rDithz6cO2ZGC2WlTwuXoUWJhXXKZMpb6VBhSvm1yR1WRirUeR5IBW06Nka8gZ120bp3wLQmD2epQwrE3MtSZ5UXjsY_4TOrPCbwdd3PDfZk40Hz4ryhpCO4pBlcksDnwfRPx7Bxl9FBcNZgEEixYwGFStOHSnNfqCTwae3qhgZROBnRrVtcLhuCMUoSVhZZAm871w-fInwb0-YE5FZQbLVlu6ad_45E3VIEfFa-_x-N34UnWUj1xyXP1AfYWV1cuo_wGK9W8-XFCB7KmYzPagSPDibT-mwURwQ9T_9OqKw-Oa1__gPc_hgi
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Person-Specific+and+Independent+Models+on+Subject-Dependent+and+Independent+Human+Activity+Recognition+Performance&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Scheurer%2C+Sebastian&rft.au=Tedesco%2C+Salvatore&rft.au=O%27Flynn%2C+Brendan&rft.au=Brown%2C+Kenneth+N&rft.date=2020-06-29&rft.eissn=1424-8220&rft.volume=20&rft.issue=13&rft_id=info:doi/10.3390%2Fs20133647&rft_id=info%3Apmid%2F32610614&rft.externalDocID=32610614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon