Multilevel Semiparametric Latent Variable Modeling in R with "galamm"
We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heterosced...
Saved in:
| Published in: | Multivariate behavioral research Vol. 59; no. 5; pp. 1098 - 1105 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Routledge
02.09.2024
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0027-3171, 1532-7906, 1532-7906 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present the
R
package
galamm
, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use. |
|---|---|
| AbstractList | We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use. We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use. We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use. |
| Author | Sørensen, Øystein |
| Author_xml | – sequence: 1 givenname: Øystein surname: Sørensen fullname: Sørensen, Øystein organization: Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39141406$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URKeFnwCKyoZNhms7ThyxAVXlIU2FxGtr3Tg3xZVjD45D1X9PhpnZdAG6i7v5zrmPc8ZOQgzE2HMOaw4aXgOIRvKGrwWIai2kVlLWj9iKKynKpoX6hK12TLmDTtnZNN0CQK2q9gk7lS2veAX1il1dzz47T7_JF19pdFtMOFJOzhYbzBRy8QOTw85TcR178i7cFC4UX4o7l38WFzfocRwvnrLHA_qJnh36Ofv-_urb5cdy8_nDp8t3m9JWFc-l7ZBwaBGW0gLqVmmwFuuq6dumByu0BKyUJdlTq1DqQfO6JrKdxc72KM_Zq73vNsVfM03ZjG6y5D0GivNkJLRCN6ICtaAvH6C3cU5h2c5IDq1SoLVeqBcHau5G6s02uRHTvTk-aAHe7AGb4jQlGox1GbOLISd03nAwuzjMMQ6zi8Mc4ljU6oH6OOB_urd7nQtDTCPexeR7k_HexzQkDNb9veJfFn8AvlyfSg |
| CitedBy_id | crossref_primary_10_3758_s13428_025_02625_2 crossref_primary_10_5964_meth_15773 |
| Cites_doi | 10.1007/s11336-014-9435-8 10.1007/s11336-023-09910-z 10.1007/s11336-007-9010-7 10.1080/00273171.2018.1516541 10.1214/aoms/1177697089 10.1201/9781315370279 10.1007/BF02295939 10.18637/jss.v048.i02 10.1037/1082-989X.10.3.259 10.1207/s15327906mbr3804_5 10.32614/RJ-2011-002 10.18637/jss.v067.i01 10.7717/peerj.6876 10.18637/jss.v078.i02 10.1207/s15328007sem1204_1 10.1017/CBO9780511490026 10.1137/0916069 10.1093/biomet/ass048 10.1111/j.2041-210X.2012.00190.x 10.1007/BF02294746 10.1111/j.1467-9868.2010.00749.x 10.1111/1467-9868.00374 10.1214/ss/1038425655 10.1177/25152459231207787 10.18637/jss.v039.i12 10.1007/BF02294374 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024 – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1080/00273171.2024.2385336 |
| DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1532-7906 |
| EndPage | 1105 |
| ExternalDocumentID | 39141406 10_1080_00273171_2024_2385336 2385336 |
| Genre | Research Article Journal Article |
| GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 0YH 123 4.4 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAYXX CITATION .GJ 07M 53G AANPH ABRLO ABVXC ABWZE ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AEXSR AFFNX AIXGP ALEEW ALLRG C5A CAG CBZAQ CGR CKOZC COF CUY CVF C~T DGXZK ECM EFRLQ EGDCR EIF EJD FXNIP HVGLF H~9 JLMOS L7Y LPU NEJ NPM OHT P-O QZZOY RBICI ROL UA1 UAP VXZ XOL ZCG ZXP 7X8 |
| ID | FETCH-LOGICAL-c441t-cbaeaf9a0a0a82069580cca647d97d0c2830a45ce3de95a38f8166eecbcabcda3 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-3171 1532-7906 |
| IngestDate | Wed Jul 30 11:04:56 EDT 2025 Wed Aug 13 09:32:47 EDT 2025 Wed Feb 19 02:09:31 EST 2025 Sat Nov 29 06:40:31 EST 2025 Tue Nov 18 21:54:09 EST 2025 Mon Oct 20 23:45:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | R mixed models item response theory structural equation modeling Generalized additive models mixed response |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-cbaeaf9a0a0a82069580cca647d97d0c2830a45ce3de95a38f8166eecbcabcda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2385336 |
| PMID | 39141406 |
| PQID | 3109550888 |
| PQPubID | 47318 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_3092872405 crossref_primary_10_1080_00273171_2024_2385336 proquest_journals_3109550888 pubmed_primary_39141406 crossref_citationtrail_10_1080_00273171_2024_2385336 informaworld_taylorfrancis_310_1080_00273171_2024_2385336 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-02 |
| PublicationDateYYYYMMDD | 2024-09-02 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Mahwah |
| PublicationTitle | Multivariate behavioral research |
| PublicationTitleAlternate | Multivariate Behav Res |
| PublicationYear | 2024 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 R Core Team (e_1_3_2_19_1) 2024 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 |
| References_xml | – ident: e_1_3_2_15_1 doi: 10.1007/s11336-014-9435-8 – ident: e_1_3_2_24_1 doi: 10.1007/s11336-023-09910-z – ident: e_1_3_2_9_1 doi: 10.1007/s11336-007-9010-7 – ident: e_1_3_2_10_1 – ident: e_1_3_2_21_1 doi: 10.1080/00273171.2018.1516541 – ident: e_1_3_2_11_1 doi: 10.1214/aoms/1177697089 – ident: e_1_3_2_30_1 doi: 10.1201/9781315370279 – ident: e_1_3_2_20_1 doi: 10.1007/BF02295939 – ident: e_1_3_2_22_1 doi: 10.18637/jss.v048.i02 – ident: e_1_3_2_13_1 doi: 10.1037/1082-989X.10.3.259 – ident: e_1_3_2_7_1 doi: 10.1207/s15327906mbr3804_5 – ident: e_1_3_2_26_1 doi: 10.32614/RJ-2011-002 – ident: e_1_3_2_2_1 doi: 10.18637/jss.v067.i01 – ident: e_1_3_2_17_1 doi: 10.7717/peerj.6876 – ident: e_1_3_2_18_1 doi: 10.18637/jss.v078.i02 – ident: e_1_3_2_3_1 doi: 10.1207/s15328007sem1204_1 – ident: e_1_3_2_5_1 doi: 10.1017/CBO9780511490026 – ident: e_1_3_2_6_1 doi: 10.1137/0916069 – ident: e_1_3_2_29_1 doi: 10.1093/biomet/ass048 – ident: e_1_3_2_25_1 doi: 10.1111/j.2041-210X.2012.00190.x – ident: e_1_3_2_12_1 – ident: e_1_3_2_14_1 doi: 10.1007/BF02294746 – ident: e_1_3_2_28_1 doi: 10.1111/j.1467-9868.2010.00749.x – ident: e_1_3_2_27_1 doi: 10.1111/1467-9868.00374 – ident: e_1_3_2_8_1 doi: 10.1214/ss/1038425655 – ident: e_1_3_2_23_1 doi: 10.1177/25152459231207787 – ident: e_1_3_2_4_1 doi: 10.18637/jss.v039.i12 – ident: e_1_3_2_16_1 doi: 10.1007/BF02294374 – volume-title: R: A language and environment for statistical computing year: 2024 ident: e_1_3_2_19_1 |
| SSID | ssj0006549 |
| Score | 2.4045126 |
| Snippet | We present the
R
package
galamm
, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation... We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1098 |
| SubjectTerms | Algorithms Computer Simulation - statistics & numerical data Data Interpretation, Statistical Generalized additive models Humans item response theory Latent Class Analysis Matrix methods mixed models mixed response Modelling Models, Statistical Multilevel Analysis - methods Software Sparse matrices structural equation modeling |
| Title | Multilevel Semiparametric Latent Variable Modeling in R with "galamm" |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2385336 https://www.ncbi.nlm.nih.gov/pubmed/39141406 https://www.proquest.com/docview/3109550888 https://www.proquest.com/docview/3092872405 |
| Volume | 59 |
| WOSCitedRecordID | wos001290747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 0027-3171 databaseCode: TFW dateStart: 19660101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEB26HXLpvqQbaujVqS2vOpbS0EMppWt6MrIkQyBxSuMW-vedkR3THEIOLQaBsWXkGY30Rhq9ATjPo0T7KncdlWjhBJortDntOlzn1GeiwJOBTTYR390l_b64r6MJJ3VYJfnQeUUUYcdqMm6ZTaYRcReWg8WLybvjQRfnHIQs0TKscnRNyP9y326awTgKawTMaTku9qaHeOZ9ZmZ6miEvnQ9B7VTU2_iHn9iE9RqHssuq42zBkim2odUMh987cG3P5g4pqIg9mtGASMJHlH9LsVsEqEXJXtDPppNXjBKq0bF2NijYA6OlXdbBmUeORp1deO5dP13dOHXSBUchMiodlUkjcyFdvIjbXYSJi1qOglgLVKIiwjAZhMr42ohQ-klOO4_GqEzJTGnp78FKMS7MATChM8Fj7XGFqCwy-OFMuj4P88RQT_DaEExlnaqakZwSYwxTryEurYSUkpDSWkht6DbV3itKjkUVxG9FpqVdC8mrxCWpv6Du8VTraW3dtooICdkmbThrHqNd0maLLMz4E99xBTqjiJfCNuxXvaVprS-8AB3b6PAPDTuCFt3acDd-DCvlx6c5gTX1VQ4mH6fWCLCM-wmWT73XHzf5Aig |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgILEL78d4BsS1o-82R4SYQIwdYDxuVZqk0qStQ6ND4t9jp10FB7QDqMc0URvb8eck_gxwnoWx8mRmWzJW3PKVK9HmlG25KiOdCX1H-KbYRNTrxa-v_HsuDF2rpBg6K4kizFpNxk2b0bMrcReGhMWJKLxz_TY6HcQs4SIsBehriT-_33mpV-MwqCCwS_txkTPL4vltmB_-6Qd76e8Y1Piiztp__MU6rFZIlF2WqrMBCzrfhGa9IH5uwbXJzh3StSL2qEcDogkfUQUuyboIUfOCPWOkTblXjEqqUWI7G-TsgdHmLjtD3yNGo7NteOpc969urKrsgiURGxWWTIUWGRc2PsTuzoPYRjmHfqQ4ilESZZjwA6k9pXkgvDijs0etZSpFKpXwdqCRj3O9B4yrlLuRclyJuCzUOHAqbM8NsliTLjgt8GeTnciKk5xKYwwTp6YuLScpoUlKqklqQbvu9laScszrwL9LMinMbkhWli5JvDl9D2diTyr7Nl14QNg2bsFp3YyWScctItfjKb5jcwxHETEFLdgt1aX-Wo87Poa24f4fPuwEVm76992ke9u7O4AmNZnLb-4hNIrJVB_BsvwoBu-TY2MRX-ukBFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdmL78f6jOK12nebo6iLoizi-1bSPGBhty7aFfz3zqTdogfxoPSYJrSTmcw3yeQbgEMTpyqQxnVkqrgTKl-izSnX8ZUhnYlDT4S22ETS66XPz_ymziZ8q9MqKYY2FVGEXavJuEfKTDLiji0Hi5dQdOeHR-hzELLE0zCD0DkmJb_vPjWLcRzVCNin7bjEm1zi-WmYb-7pG3npzxDUuqLuwj_8xCLM1ziUnVSKswRTuliGdrMcfqzAub2bO6CkInanh30iCR9S_S3JrhGgFiV7xDibbl4xKqhG19pZv2C3jLZ22QF6HjEcHqzCQ_f8_vTCqYsuOBKRUenIXGhhuHDxIW53HqUuznIcJorjJEoiDBNhJHWgNI9EkBo6edRa5lLkUolgDVrFS6E3gHGVcz9Rni8RlcUaB86FG_iRSTVpgteBcCLrTNaM5FQYY5B5DXFpJaSMhJTVQurAUdNtVFFy_NaBf53IrLR7IaYqXJIFv_Tdnsx6Vlu37cIjQrZpB_abZrRLOmwRhX4Z4zsux2AU8VLUgfVKW5qvDbgXYmAbb_7hw_Zg7uasm11f9q62oE0tNvPN34ZW-TrWOzAr38v-2-uutYdPy6oDCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Semiparametric+Latent+Variable+Modeling+in+R+with+%22galamm%22&rft.jtitle=Multivariate+behavioral+research&rft.au=S%C3%B8rensen%2C+%C3%98ystein&rft.date=2024-09-02&rft.eissn=1532-7906&rft.volume=59&rft.issue=5&rft.spage=1098&rft_id=info:doi/10.1080%2F00273171.2024.2385336&rft_id=info%3Apmid%2F39141406&rft.externalDocID=39141406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |