Multilevel Semiparametric Latent Variable Modeling in R with "galamm"

We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heterosced...

Full description

Saved in:
Bibliographic Details
Published in:Multivariate behavioral research Vol. 59; no. 5; pp. 1098 - 1105
Main Author: Sørensen, Øystein
Format: Journal Article
Language:English
Published: United States Routledge 02.09.2024
Taylor & Francis Ltd
Subjects:
ISSN:0027-3171, 1532-7906, 1532-7906
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
AbstractList We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of models with an arbitrary number of crossed or nested random effects, smoothing splines, mixed response types, factor structures, heteroscedastic residuals, and data missing at random. Implementation using sparse matrix methods and automatic differentiation ensures computational efficiency. We here briefly present the implemented methodology, give an overview of the package and an example demonstrating its use.
Author Sørensen, Øystein
Author_xml – sequence: 1
  givenname: Øystein
  surname: Sørensen
  fullname: Sørensen, Øystein
  organization: Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39141406$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFnwCKyoZNhms7ThyxAVXlIU2FxGtr3Tg3xZVjD45D1X9PhpnZdAG6i7v5zrmPc8ZOQgzE2HMOaw4aXgOIRvKGrwWIai2kVlLWj9iKKynKpoX6hK12TLmDTtnZNN0CQK2q9gk7lS2veAX1il1dzz47T7_JF19pdFtMOFJOzhYbzBRy8QOTw85TcR178i7cFC4UX4o7l38WFzfocRwvnrLHA_qJnh36Ofv-_urb5cdy8_nDp8t3m9JWFc-l7ZBwaBGW0gLqVmmwFuuq6dumByu0BKyUJdlTq1DqQfO6JrKdxc72KM_Zq73vNsVfM03ZjG6y5D0GivNkJLRCN6ICtaAvH6C3cU5h2c5IDq1SoLVeqBcHau5G6s02uRHTvTk-aAHe7AGb4jQlGox1GbOLISd03nAwuzjMMQ6zi8Mc4ljU6oH6OOB_urd7nQtDTCPexeR7k_HexzQkDNb9veJfFn8AvlyfSg
CitedBy_id crossref_primary_10_3758_s13428_025_02625_2
crossref_primary_10_5964_meth_15773
Cites_doi 10.1007/s11336-014-9435-8
10.1007/s11336-023-09910-z
10.1007/s11336-007-9010-7
10.1080/00273171.2018.1516541
10.1214/aoms/1177697089
10.1201/9781315370279
10.1007/BF02295939
10.18637/jss.v048.i02
10.1037/1082-989X.10.3.259
10.1207/s15327906mbr3804_5
10.32614/RJ-2011-002
10.18637/jss.v067.i01
10.7717/peerj.6876
10.18637/jss.v078.i02
10.1207/s15328007sem1204_1
10.1017/CBO9780511490026
10.1137/0916069
10.1093/biomet/ass048
10.1111/j.2041-210X.2012.00190.x
10.1007/BF02294746
10.1111/j.1467-9868.2010.00749.x
10.1111/1467-9868.00374
10.1214/ss/1038425655
10.1177/25152459231207787
10.18637/jss.v039.i12
10.1007/BF02294374
ContentType Journal Article
Copyright 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024
2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024
– notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/00273171.2024.2385336
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1532-7906
EndPage 1105
ExternalDocumentID 39141406
10_1080_00273171_2024_2385336
2385336
Genre Research Article
Journal Article
GroupedDBID --Z
-~X
.7I
.QK
0BK
0R~
0YH
123
4.4
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABPPZ
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACIWK
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EMOBN
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
MS~
NA5
NW-
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TWZ
UT5
UT9
VAE
WH7
YNT
YQT
ZL0
~01
~S~
AAYXX
CITATION
.GJ
07M
53G
AANPH
ABRLO
ABVXC
ABWZE
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AEXSR
AFFNX
AIXGP
ALEEW
ALLRG
C5A
CAG
CBZAQ
CGR
CKOZC
COF
CUY
CVF
C~T
DGXZK
ECM
EFRLQ
EGDCR
EIF
EJD
FXNIP
HVGLF
H~9
JLMOS
L7Y
LPU
NEJ
NPM
OHT
P-O
QZZOY
RBICI
ROL
UA1
UAP
VXZ
XOL
ZCG
ZXP
7X8
ID FETCH-LOGICAL-c441t-cbaeaf9a0a0a82069580cca647d97d0c2830a45ce3de95a38f8166eecbcabcda3
IEDL.DBID 0YH
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0027-3171
1532-7906
IngestDate Wed Jul 30 11:04:56 EDT 2025
Wed Aug 13 09:32:47 EDT 2025
Wed Feb 19 02:09:31 EST 2025
Sat Nov 29 06:40:31 EST 2025
Tue Nov 18 21:54:09 EST 2025
Mon Oct 20 23:45:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords R
mixed models
item response theory
structural equation modeling
Generalized additive models
mixed response
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-cbaeaf9a0a0a82069580cca647d97d0c2830a45ce3de95a38f8166eecbcabcda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2385336
PMID 39141406
PQID 3109550888
PQPubID 47318
PageCount 8
ParticipantIDs proquest_miscellaneous_3092872405
crossref_primary_10_1080_00273171_2024_2385336
proquest_journals_3109550888
pubmed_primary_39141406
crossref_citationtrail_10_1080_00273171_2024_2385336
informaworld_taylorfrancis_310_1080_00273171_2024_2385336
PublicationCentury 2000
PublicationDate 2024-09-02
PublicationDateYYYYMMDD 2024-09-02
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mahwah
PublicationTitle Multivariate behavioral research
PublicationTitleAlternate Multivariate Behav Res
PublicationYear 2024
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
R Core Team (e_1_3_2_19_1) 2024
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_15_1
  doi: 10.1007/s11336-014-9435-8
– ident: e_1_3_2_24_1
  doi: 10.1007/s11336-023-09910-z
– ident: e_1_3_2_9_1
  doi: 10.1007/s11336-007-9010-7
– ident: e_1_3_2_10_1
– ident: e_1_3_2_21_1
  doi: 10.1080/00273171.2018.1516541
– ident: e_1_3_2_11_1
  doi: 10.1214/aoms/1177697089
– ident: e_1_3_2_30_1
  doi: 10.1201/9781315370279
– ident: e_1_3_2_20_1
  doi: 10.1007/BF02295939
– ident: e_1_3_2_22_1
  doi: 10.18637/jss.v048.i02
– ident: e_1_3_2_13_1
  doi: 10.1037/1082-989X.10.3.259
– ident: e_1_3_2_7_1
  doi: 10.1207/s15327906mbr3804_5
– ident: e_1_3_2_26_1
  doi: 10.32614/RJ-2011-002
– ident: e_1_3_2_2_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_3_2_17_1
  doi: 10.7717/peerj.6876
– ident: e_1_3_2_18_1
  doi: 10.18637/jss.v078.i02
– ident: e_1_3_2_3_1
  doi: 10.1207/s15328007sem1204_1
– ident: e_1_3_2_5_1
  doi: 10.1017/CBO9780511490026
– ident: e_1_3_2_6_1
  doi: 10.1137/0916069
– ident: e_1_3_2_29_1
  doi: 10.1093/biomet/ass048
– ident: e_1_3_2_25_1
  doi: 10.1111/j.2041-210X.2012.00190.x
– ident: e_1_3_2_12_1
– ident: e_1_3_2_14_1
  doi: 10.1007/BF02294746
– ident: e_1_3_2_28_1
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: e_1_3_2_27_1
  doi: 10.1111/1467-9868.00374
– ident: e_1_3_2_8_1
  doi: 10.1214/ss/1038425655
– ident: e_1_3_2_23_1
  doi: 10.1177/25152459231207787
– ident: e_1_3_2_4_1
  doi: 10.18637/jss.v039.i12
– ident: e_1_3_2_16_1
  doi: 10.1007/BF02294374
– volume-title: R: A language and environment for statistical computing
  year: 2024
  ident: e_1_3_2_19_1
SSID ssj0006549
Score 2.4045126
Snippet We present the R package galamm , whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation...
We present the R package galamm, whose goal is to provide common ground between structural equation modeling and mixed effect models. It supports estimation of...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1098
SubjectTerms Algorithms
Computer Simulation - statistics & numerical data
Data Interpretation, Statistical
Generalized additive models
Humans
item response theory
Latent Class Analysis
Matrix methods
mixed models
mixed response
Modelling
Models, Statistical
Multilevel Analysis - methods
Software
Sparse matrices
structural equation modeling
Title Multilevel Semiparametric Latent Variable Modeling in R with "galamm"
URI https://www.tandfonline.com/doi/abs/10.1080/00273171.2024.2385336
https://www.ncbi.nlm.nih.gov/pubmed/39141406
https://www.proquest.com/docview/3109550888
https://www.proquest.com/docview/3092872405
Volume 59
WOSCitedRecordID wos001290747400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 0027-3171
  databaseCode: TFW
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEB26HXLpvqQbaujVqS2vOpbS0EMppWt6MrIkQyBxSuMW-vedkR3THEIOLQaBsWXkGY30Rhq9ATjPo0T7KncdlWjhBJortDntOlzn1GeiwJOBTTYR390l_b64r6MJJ3VYJfnQeUUUYcdqMm6ZTaYRcReWg8WLybvjQRfnHIQs0TKscnRNyP9y326awTgKawTMaTku9qaHeOZ9ZmZ6miEvnQ9B7VTU2_iHn9iE9RqHssuq42zBkim2odUMh987cG3P5g4pqIg9mtGASMJHlH9LsVsEqEXJXtDPppNXjBKq0bF2NijYA6OlXdbBmUeORp1deO5dP13dOHXSBUchMiodlUkjcyFdvIjbXYSJi1qOglgLVKIiwjAZhMr42ohQ-klOO4_GqEzJTGnp78FKMS7MATChM8Fj7XGFqCwy-OFMuj4P88RQT_DaEExlnaqakZwSYwxTryEurYSUkpDSWkht6DbV3itKjkUVxG9FpqVdC8mrxCWpv6Du8VTraW3dtooICdkmbThrHqNd0maLLMz4E99xBTqjiJfCNuxXvaVprS-8AB3b6PAPDTuCFt3acDd-DCvlx6c5gTX1VQ4mH6fWCLCM-wmWT73XHzf5Aig
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgILEL78d4BsS1o-82R4SYQIwdYDxuVZqk0qStQ6ND4t9jp10FB7QDqMc0URvb8eck_gxwnoWx8mRmWzJW3PKVK9HmlG25KiOdCX1H-KbYRNTrxa-v_HsuDF2rpBg6K4kizFpNxk2b0bMrcReGhMWJKLxz_TY6HcQs4SIsBehriT-_33mpV-MwqCCwS_txkTPL4vltmB_-6Qd76e8Y1Piiztp__MU6rFZIlF2WqrMBCzrfhGa9IH5uwbXJzh3StSL2qEcDogkfUQUuyboIUfOCPWOkTblXjEqqUWI7G-TsgdHmLjtD3yNGo7NteOpc969urKrsgiURGxWWTIUWGRc2PsTuzoPYRjmHfqQ4ilESZZjwA6k9pXkgvDijs0etZSpFKpXwdqCRj3O9B4yrlLuRclyJuCzUOHAqbM8NsliTLjgt8GeTnciKk5xKYwwTp6YuLScpoUlKqklqQbvu9laScszrwL9LMinMbkhWli5JvDl9D2diTyr7Nl14QNg2bsFp3YyWScctItfjKb5jcwxHETEFLdgt1aX-Wo87Poa24f4fPuwEVm76992ke9u7O4AmNZnLb-4hNIrJVB_BsvwoBu-TY2MRX-ukBFg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdmL78f6jOK12nebo6iLoizi-1bSPGBhty7aFfz3zqTdogfxoPSYJrSTmcw3yeQbgEMTpyqQxnVkqrgTKl-izSnX8ZUhnYlDT4S22ETS66XPz_ymziZ8q9MqKYY2FVGEXavJuEfKTDLiji0Hi5dQdOeHR-hzELLE0zCD0DkmJb_vPjWLcRzVCNin7bjEm1zi-WmYb-7pG3npzxDUuqLuwj_8xCLM1ziUnVSKswRTuliGdrMcfqzAub2bO6CkInanh30iCR9S_S3JrhGgFiV7xDibbl4xKqhG19pZv2C3jLZ22QF6HjEcHqzCQ_f8_vTCqYsuOBKRUenIXGhhuHDxIW53HqUuznIcJorjJEoiDBNhJHWgNI9EkBo6edRa5lLkUolgDVrFS6E3gHGVcz9Rni8RlcUaB86FG_iRSTVpgteBcCLrTNaM5FQYY5B5DXFpJaSMhJTVQurAUdNtVFFy_NaBf53IrLR7IaYqXJIFv_Tdnsx6Vlu37cIjQrZpB_abZrRLOmwRhX4Z4zsux2AU8VLUgfVKW5qvDbgXYmAbb_7hw_Zg7uasm11f9q62oE0tNvPN34ZW-TrWOzAr38v-2-uutYdPy6oDCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Semiparametric+Latent+Variable+Modeling+in+R+with+%22galamm%22&rft.jtitle=Multivariate+behavioral+research&rft.au=S%C3%B8rensen%2C+%C3%98ystein&rft.date=2024-09-02&rft.eissn=1532-7906&rft.volume=59&rft.issue=5&rft.spage=1098&rft_id=info:doi/10.1080%2F00273171.2024.2385336&rft_id=info%3Apmid%2F39141406&rft.externalDocID=39141406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon