A Novel PARAFAC Model for Processing the Nested Vector-Sensor Array
In this paper, a novel parallel factor (PARAFAC) model for processing the nested vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices of the measurements of these sub...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 18; číslo 11; s. 3708 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI
31.10.2018
MDPI AG |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a novel parallel factor (PARAFAC) model for processing the nested vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices of the measurements of these subarrays and the cross-correlation matrices among them, it is then demonstrated that these subarrays can be transformed into virtual scalar-sensor uniform linear arrays (ULAs). When the measurement matrices of these scalar-sensor ULAs are combined to form a third-order tensor, a novel PARAFAC model is obtained, which corresponds to a longer vector-sensor ULA and includes all of the measurements of the difference co-array constructed from the original nested vector-sensor array. Analyses show that the proposed PARAFAC model can fully use all of the measurements of the difference co-array, instead of its partial measurements as the reported models do in literature. It implies that all of the measurements of the difference co-array can be fully exploited to do the 2-D direction of arrival (DOA) and polarization parameter estimation effectively by a PARAFAC decomposition method so that both the better estimation performance and slightly improved identifiability are achieved. Simulation results confirm the efficiency of the proposed model. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s18113708 |