On the a posteriori estimates for inverse operators of linear parabolic equations with applications to the numerical enclosure of solutions for nonlinear problems

We consider the guaranteed a posteriori estimates for the inverse parabolic operators with homogeneous initial-boundary conditions. Our estimation technique uses a full-discrete numerical scheme, which is based on the Galerkin method with an interpolation in time by using the fundamental solution fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 126; číslo 4; s. 679 - 701
Hlavní autoři: Kinoshita, Takehiko, Kimura, Takuma, Nakao, Mitsuhiro T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2014
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the guaranteed a posteriori estimates for the inverse parabolic operators with homogeneous initial-boundary conditions. Our estimation technique uses a full-discrete numerical scheme, which is based on the Galerkin method with an interpolation in time by using the fundamental solution for semidiscretization in space. In our technique, the constructive a priori error estimates for a full discretization of solutions for the heat equation play an essential role. Combining these estimates with an argument for the discretized inverse operator and a contraction property of the Newton-type formulation, we derive an a posteriori estimate of the norm for the infinite-dimensional operator. In numerical examples, we show that the proposed method should be more efficient than the existing method. Moreover, as an application, we give some prototype results for numerical verification of solutions of nonlinear parabolic problems, which confirm the actual usefulness of our technique.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-013-0575-z