MetaAll: integrative bioinformatics workflow for analysing clinical metagenomic data

Abstract Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Briefings in bioinformatics Ročník 25; číslo 6
Hlavní autoři: Bosilj, Martin, Suljič, Alen, Zakotnik, Samo, Slunečko, Jan, Kogoj, Rok, Korva, Misa
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 23.09.2024
Oxford Publishing Limited (England)
Témata:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets—MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
AbstractList Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets-MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets-MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets—MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Abstract Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets—MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Author Slunečko, Jan
Korva, Misa
Suljič, Alen
Bosilj, Martin
Kogoj, Rok
Zakotnik, Samo
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0002-4663-9622
  surname: Bosilj
  fullname: Bosilj, Martin
  email: martin.bosilj@mf.uni-lj.si
– sequence: 2
  givenname: Alen
  orcidid: 0000-0002-4596-7931
  surname: Suljič
  fullname: Suljič, Alen
  email: alen.suljic@mf.uni-lj.si
– sequence: 3
  givenname: Samo
  surname: Zakotnik
  fullname: Zakotnik, Samo
  email: samo.zakotnik@mf.uni-lj.si
– sequence: 4
  givenname: Jan
  surname: Slunečko
  fullname: Slunečko, Jan
  email: jan.slunecko@mf.uni-lj.si
– sequence: 5
  givenname: Rok
  surname: Kogoj
  fullname: Kogoj, Rok
  email: rok.kogoj@mf.uni-lj.si
– sequence: 6
  givenname: Misa
  orcidid: 0000-0003-1501-1004
  surname: Korva
  fullname: Korva, Misa
  email: misa.korva@mf.uni-lj.si
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39550223$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNUbPvqyr0MCCLI2HzMJDPdSCmtFipu2nW4k7nzTM0kz2Smpf-9Gd6zaMGu8vW7596cc0j2fPBIyBtGPzHaiuPOdsddB1i36gU5YJVSZUXram_ZS1XWlRT75DClW0o5VQ17RfZFW9eUc3FArr_hBKfOnRTWT7iOMNk7LDobrB9CHPPRpOI-xJ-DC_dFvirAg3tI1q8L46y3BlwxZo01-jBaU_QwwRF5OYBL-Hq3rsjNxfn12dfy6vuXy7PTq9JUFZvKTklhAHDoeYUDIEgUyCsOVA0CRU9lA40RtJcNM5IpkEBFYzgVWHUtSrEin7e6m7kbsTfopwhOb6IdIT7oAFb_--LtD70Od5qxWjaNUlnhw04hhl8zpkmPNhl0DjyGOWnBeMs5renS7N0T9DbMMZuxUIK2slkcXZG3f4_0OMsfxzPwcQuYGFKKODwijOolT53z1Ls8M82e0MZOOZSw_Me6_9S839aEefOs-G-YD7OJ
CitedBy_id crossref_primary_10_3390_ijms26020655
crossref_primary_10_1016_j_jbi_2025_104841
Cites_doi 10.1101/gr.213959.116
10.3390/genes11080946
10.1186/s13059-019-1891-0
10.3389/fcimb.2022.1021320
10.1038/s41592-022-01431-4
10.1038/s41467-023-41099-8
10.1016/j.cell.2019.07.010
10.12688/f1000research.29032.2
10.5423/PPJ.OA.06.2022.0084
10.1016/j.jmoldx.2021.06.007
10.1007/s13337-012-0075-2
10.3390/v12101164
10.3390/v14112448
10.3390/pathogens10040461
10.1186/s13059-018-1568-0
10.3390/genes10090655
10.1002/rmv.532
10.1016/j.jcv.2021.104908
10.1093/bioinformatics/btz715
10.1128/JCM.01123-18
10.1007/978-981-15-0702-1_1
10.1093/bioinformatics/btab705
10.1038/s41586-020-2012-7
10.1093/bioinformatics/btad293
10.1016/j.jaut.2018.10.005
10.1080/22221751.2020.1725399
10.1371/journal.pone.0218318
10.1016/j.jare.2021.09.012
10.3389/fmicb.2016.00484
10.1016/j.ygeno.2022.110414
10.1101/gr.171934.113
10.1016/j.jcv.2020.104594
10.4161/21597081.2014.979664
10.1186/s40168-017-0317-z
10.1371/journal.pone.0177459
10.1016/j.virol.2017.06.019
10.1111/crj.13538
10.3390/cimb43020061
10.1038/nmeth.1923
10.1093/bioinformatics/btaa490
10.1093/cid/ciy693
10.1016/j.jinf.2019.08.012
10.1186/s13073-021-00991-y
10.1186/s12864-019-6289-6
10.1186/s12859-022-05103-0
10.1093/nar/gkv002
10.3389/fmicb.2015.00224
10.1101/2022.07.07.499093
10.1101/2023.10.20.563221
10.1186/s12859-019-2684-x
10.1101/gr.210641.116
10.3389/fmicb.2017.01069
10.1038/s41592-020-00971-x
10.1093/bioinformatics/btw354
10.1093/bioinformatics/btn322
10.1093/cid/ciaa035
10.1186/s42523-022-00207-7
10.1186/1471-2105-12-385
10.1101/2024.02.19.580813
10.1016/j.jviromet.2013.12.018
10.1038/s41598-019-52881-4
10.1038/s41598-022-13269-z
10.1093/bioinformatics/btp324
10.1016/j.diagmicrobio.2015.06.017
10.3389/fmed.2022.952636
10.1016/j.jcv.2021.104812
10.1038/s41591-020-1105-z
10.1186/s13073-015-0220-9
10.1093/nar/gkab1112
10.1002/imt2.72
10.1038/s41596-022-00738-y
10.1002/cpz1.59
10.1186/gm485
10.3389/fcimb.2023.1224794
10.1371/journal.ppat.1004437
10.1007/978-3-319-78723-7_39
10.1093/gigascience/giab008
10.1186/s12864-022-08985-9
10.1093/cid/cix596
10.1007/s00203-020-02105-5
10.1093/bioinformatics/btv697
10.1186/s12859-024-05634-8
10.1093/bioinformatics/bty149
10.1016/j.diagmicrobio.2019.02.016
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbae597
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC11568877
39550223
10_1093_bib_bbae597
10.1093/bib/bbae597
Genre Journal Article
GrantInformation_xml – fundername: Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana and Slovenian Research and Innovation Agency
  grantid: J3-50101
– fundername: ;
  grantid: J3–50101; J3–2515; P3–0083
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c441t-b763caaefd24efaea6e3e242a07f3e3d068a8c30d681c617a6a038c203e4b9e63
IEDL.DBID TOX
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356275900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 17:06:39 EDT 2025
Sun Sep 28 09:01:54 EDT 2025
Fri Oct 03 03:50:17 EDT 2025
Wed Feb 19 02:04:26 EST 2025
Sat Nov 29 04:20:24 EST 2025
Tue Nov 18 21:05:58 EST 2025
Wed Apr 02 07:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords long reads
short PE reads
clinical metagenomics
pathogen detection
bioinformatics workflow
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-b763caaefd24efaea6e3e242a07f3e3d068a8c30d681c617a6a038c203e4b9e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4663-9622
0000-0003-1501-1004
0000-0002-4596-7931
OpenAccessLink https://dx.doi.org/10.1093/bib/bbae597
PMID 39550223
PQID 3130968022
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11568877
proquest_miscellaneous_3129220506
proquest_journals_3130968022
pubmed_primary_39550223
crossref_primary_10_1093_bib_bbae597
crossref_citationtrail_10_1093_bib_bbae597
oup_primary_10_1093_bib_bbae597
PublicationCentury 2000
PublicationDate 2024-Sep-23
PublicationDateYYYYMMDD 2024-09-23
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sep-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Sun (2024111623231074900_ref77) 2023; 14
Smith (2024111623231074900_ref63) 2022; 4
Gu (2024111623231074900_ref6) 2021; 27
Bonenfant (2024111623231074900_ref49) 2022
Kim (2024111623231074900_ref83) 2016; 26
Kurtzer (2024111623231074900_ref43) 2017; 12
Carbo (2024111623231074900_ref4) 2020; 131
Mölder (2024111623231074900_ref42) 2021; 10
Wylie (2024111623231074900_ref24) 2018; 56
Naccache (2024111623231074900_ref81) 2014; 24
Miao (2024111623231074900_ref8) 2018; 67
Zhang (2024111623231074900_ref27) 2022; 12
Chrisman (2024111623231074900_ref68) 2022; 12
Wood (2024111623231074900_ref84) 2019; 20
Langmead (2024111623231074900_ref47) 2012; 9
Raju (2024111623231074900_ref16) 2022; 114
Antipov (2024111623231074900_ref80) 2020; 36
Meyer (2024111623231074900_ref59) 2022; 19
Andrews (2024111623231074900_ref44) 2010
Hogan (2024111623231074900_ref79) 2021; 72
Li (2024111623231074900_ref50) 2021; 37
Li (2024111623231074900_ref58) 2009; 25
Chaitanya (2024111623231074900_ref14) 2019
Bidzhieva (2024111623231074900_ref20) 2014; 199
Deng (2024111623231074900_ref82) 2015; 43
Xia (2024111623231074900_ref37) 2023; 2
Lee (2024111623231074900_ref29) 2022; 38
Junier (2024111623231074900_ref31) 2019; 10
Rodríguez-Brazzarola (2024111623231074900_ref38) 2018; 10813
Diao (2024111623231074900_ref10) 2022; 38
Delwart (2024111623231074900_ref17) 2007; 17
Slavov (2024111623231074900_ref19) 2022; 14
Strong (2024111623231074900_ref71) 2014; 10
Sayers (2024111623231074900_ref54) 2022; 50
Zolfo (2024111623231074900_ref85) 2024
Zhou (2024111623231074900_ref5) 2020; 579
Zhang (2024111623231074900_ref9) 2019; 79
Lamprecht (2024111623231074900_ref76) 2019; 97
Hilton (2024111623231074900_ref25) 2016; 7
Mohsin (2024111623231074900_ref15) 2021; 203
Portik (2024111623231074900_ref64) 2022; 23
Morgulis (2024111623231074900_ref55) 2008; 24
Chrzastek (2024111623231074900_ref60) 2017; 509
John (2024111623231074900_ref2) 2021; 43
Kim (2024111623231074900_ref41) 2023; 39
Alawi (2024111623231074900_ref36) 2019; 9
Liang (2024111623231074900_ref72) 2023; 13
2024111623231074900_ref66
Nurk (2024111623231074900_ref53) 2017; 27
Chen (2024111623231074900_ref73) 2022; 16
Marić (2024111623231074900_ref62) 2024; 25
Forbes (2024111623231074900_ref7) 2017; 8
Sangiovanni (2024111623231074900_ref69) 2019; 20
De Coster (2024111623231074900_ref48) 2018; 34
Morsli (2024111623231074900_ref75) 2021; 10
Ye (2024111623231074900_ref1) 2019; 178
Mikheenko (2024111623231074900_ref56) 2016; 32
Chen (2024111623231074900_ref74) 2020; 9
Hall (2024111623231074900_ref21) 2015; 6
Tamames (2024111623231074900_ref39) 2019; 20
Bushnell (2024111623231074900_ref46) 2014
Guo (2024111623231074900_ref13) 2022; 9
Kolmogorov (2024111623231074900_ref57) 2020; 17
Lewandowska (2024111623231074900_ref23) 2017; 5
Breitwieser (2024111623231074900_ref52) 2016
Dutilh (2024111623231074900_ref22) 2014; 4
Breitwieser (2024111623231074900_ref32)
Alavandi (2024111623231074900_ref18) 2012; 23
Tran (2024111623231074900_ref65) 2020; 11
Vries (2024111623231074900_ref3) 2021; 138
Greninger (2024111623231074900_ref28) 2015; 7
Lu (2024111623231074900_ref35) 2022; 17
Rosenboom (2024111623231074900_ref67) 2022; 23
Miller (2024111623231074900_ref34) 2013; 5
Moore (2024111623231074900_ref61) 2020; 12
Lewandowska (2024111623231074900_ref86) 2015; 83
Ewels (2024111623231074900_ref45) 2016; 32
Charalampous (2024111623231074900_ref87) 2021; 13
Ramesh (2024111623231074900_ref11) 2019; 14
Ondov (2024111623231074900_ref51) 2011; 12
Ashokan (2024111623231074900_ref70) 2019; 94
Vries (2024111623231074900_ref30) 2021; 141
Somasekar (2024111623231074900_ref26) 2017; 65
Bağcı (2024111623231074900_ref33) 2021; 1
Li (2024111623231074900_ref78) 2023; 13
Zhou (2024111623231074900_ref12) 2021; 23
Danecek (2024111623231074900_ref40) 2021; 10
References_xml – volume: 27
  start-page: 824
  year: 2017
  ident: 2024111623231074900_ref53
  article-title: metaSPAdes: A new versatile metagenomic assembler
  publication-title: Genome Res
  doi: 10.1101/gr.213959.116
– volume: 11
  start-page: 946
  year: 2020
  ident: 2024111623231074900_ref65
  article-title: Assembling reads improves taxonomic classification of species
  publication-title: Genes (Basel)
  doi: 10.3390/genes11080946
– volume: 20
  start-page: 257
  year: 2019
  ident: 2024111623231074900_ref84
  article-title: Improved metagenomic analysis with kraken 2
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1891-0
– volume: 12
  start-page: 1021320
  year: 2022
  ident: 2024111623231074900_ref27
  article-title: Clinical value of metagenomic next-generation sequencing by Illumina and nanopore for the detection of pathogens in bronchoalveolar lavage fluid in suspected community-acquired pneumonia patients
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2022.1021320
– volume: 19
  start-page: 429
  year: 2022
  ident: 2024111623231074900_ref59
  article-title: Critical assessment of metagenome interpretation: The second round of challenges
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01431-4
– volume: 14
  start-page: 5321
  year: 2023
  ident: 2024111623231074900_ref77
  article-title: Removal of false positives in metagenomics-based taxonomy profiling via targeting type IIB restriction sites
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41099-8
– volume: 178
  start-page: 779
  year: 2019
  ident: 2024111623231074900_ref1
  article-title: Benchmarking metagenomics tools for taxonomic classification
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.010
– volume: 10
  start-page: 33
  year: 2021
  ident: 2024111623231074900_ref42
  article-title: Sustainable data analysis with Snakemake
  publication-title: F1000Res
  doi: 10.12688/f1000research.29032.2
– volume: 38
  start-page: 503
  year: 2022
  ident: 2024111623231074900_ref29
  article-title: Nanopore metagenomics sequencing for rapid diagnosis and characterization of lily viruses
  publication-title: Plant Pathol J
  doi: 10.5423/PPJ.OA.06.2022.0084
– volume: 23
  start-page: 1259
  year: 2021
  ident: 2024111623231074900_ref12
  article-title: Clinical impact of metagenomic next-generation sequencing of bronchoalveolar lavage in the diagnosis and Management of Pneumonia: A multicenter prospective observational study
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2021.06.007
– volume: 23
  start-page: 88
  year: 2012
  ident: 2024111623231074900_ref18
  article-title: Viral metagenomics: A tool for virus discovery and diversity in aquaculture
  publication-title: Indian J Virol
  doi: 10.1007/s13337-012-0075-2
– volume: 12
  start-page: 1164
  year: 2020
  ident: 2024111623231074900_ref61
  article-title: Amplicon-based detection and sequencing of SARS-CoV-2 in nasopharyngeal swabs from patients with COVID-19 and identification of deletions in the viral genome that encode proteins involved in interferon antagonism
  publication-title: Viruses
  doi: 10.3390/v12101164
– volume: 13
  start-page: 1170687
  year: 2023
  ident: 2024111623231074900_ref78
  article-title: The clinical application of metagenomic next-generation sequencing in sepsis of immunocompromised patients. Frontiers in cellular and infection
  publication-title: Microbiology
– volume: 14
  start-page: 2448
  year: 2022
  ident: 2024111623231074900_ref19
  article-title: Viral metagenomics for identification of emerging viruses in transfusion medicine
  publication-title: Viruses
  doi: 10.3390/v14112448
– volume: 10
  start-page: 461
  year: 2021
  ident: 2024111623231074900_ref75
  article-title: Haemophilus influenzae meningitis direct diagnosis by metagenomic next-generation sequencing: A case report
  publication-title: Pathogens
  doi: 10.3390/pathogens10040461
– volume-title: KrakenUniq: Confident and Fast Metagenomics Classification Using Unique k-Mer Counts
  ident: 2024111623231074900_ref32
  doi: 10.1186/s13059-018-1568-0
– volume: 10
  start-page: 655
  year: 2019
  ident: 2024111623231074900_ref31
  article-title: Viral metagenomics in the clinical realm: Lessons learned from a Swiss-wide ring trial
  publication-title: Genes
  doi: 10.3390/genes10090655
– volume: 17
  start-page: 115
  year: 2007
  ident: 2024111623231074900_ref17
  article-title: Viral metagenomics
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.532
– volume: 141
  start-page: 104908
  year: 2021
  ident: 2024111623231074900_ref30
  article-title: Benchmark of thirteen bioinformatic pipelines for metagenomic virus diagnostics using datasets from clinical samples
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2021.104908
– volume-title: Bioinformatics
  year: 2016
  ident: 2024111623231074900_ref52
  article-title: Pavian: interactive analysis of metagenomics data for microbiomics and pathogen identification
  doi: 10.1093/bioinformatics/btz715
– volume: 56
  start-page: e01123-18
  year: 2018
  ident: 2024111623231074900_ref24
  article-title: Detection of viruses in clinical samples by use of metagenomic sequencing and targeted sequence capture
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01123-18
– start-page: 1
  volume-title: Structure and Organization of Virus Genomes. Genome and Genomics: From Archaea to Eukaryotes
  year: 2019
  ident: 2024111623231074900_ref14
  doi: 10.1007/978-981-15-0702-1_1
– volume: 37
  start-page: 4572
  year: 2021
  ident: 2024111623231074900_ref50
  article-title: New strategies to improve minimap2 alignment accuracy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab705
– volume: 579
  start-page: 270
  year: 2020
  ident: 2024111623231074900_ref5
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 39
  start-page: btad293
  year: 2023
  ident: 2024111623231074900_ref41
  article-title: VirPipe: An easy-to-use and customizable pipeline for detecting viral genomes from nanopore sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad293
– volume: 97
  start-page: 29
  year: 2019
  ident: 2024111623231074900_ref76
  article-title: Changes in the composition of the upper respiratory tract microbial community in granulomatosis with polyangiitis
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2018.10.005
– volume: 9
  start-page: 313
  year: 2020
  ident: 2024111623231074900_ref74
  article-title: RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak
  publication-title: Emerging Microbes & Infections
  doi: 10.1080/22221751.2020.1725399
– volume: 14
  start-page: e0218318
  year: 2019
  ident: 2024111623231074900_ref11
  article-title: Metagenomic next-generation sequencing of samples from pediatric febrile illness in Tororo, Uganda
  publication-title: PloS One
  doi: 10.1371/journal.pone.0218318
– volume: 38
  start-page: 201
  year: 2022
  ident: 2024111623231074900_ref10
  article-title: Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2021.09.012
– volume: 7
  start-page: 484
  year: 2016
  ident: 2024111623231074900_ref25
  article-title: Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00484
– volume: 114
  start-page: 110414
  year: 2022
  ident: 2024111623231074900_ref16
  article-title: VirusTaxo: Taxonomic classification of viruses from the genome sequence using k-mer enrichment
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2022.110414
– volume: 24
  start-page: 1180
  year: 2014
  ident: 2024111623231074900_ref81
  article-title: A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples
  publication-title: Genome Res
  doi: 10.1101/gr.171934.113
– volume: 131
  start-page: 104594
  year: 2020
  ident: 2024111623231074900_ref4
  article-title: Coronavirus discovery by metagenomic sequencing: A tool for pandemic preparedness
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2020.104594
– volume: 4
  start-page: e979664
  year: 2014
  ident: 2024111623231074900_ref22
  article-title: Metagenomic ventures into outer sequence space
  publication-title: Bacteriophage
  doi: 10.4161/21597081.2014.979664
– volume: 5
  start-page: 94
  year: 2017
  ident: 2024111623231074900_ref23
  article-title: Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0317-z
– volume: 12
  start-page: e0177459
  year: 2017
  ident: 2024111623231074900_ref43
  article-title: Singularity: Scientific containers for mobility of compute
  publication-title: PloS One
  doi: 10.1371/journal.pone.0177459
– volume: 509
  start-page: 159
  year: 2017
  ident: 2024111623231074900_ref60
  article-title: Use of sequence-independent, single-primer-amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses
  publication-title: Virology
  doi: 10.1016/j.virol.2017.06.019
– volume: 16
  start-page: 646
  year: 2022
  ident: 2024111623231074900_ref73
  article-title: Advantages and challenges of metagenomic sequencing for the diagnosis of pulmonary infectious diseases
  publication-title: Clin Respir J
  doi: 10.1111/crj.13538
– volume: 43
  start-page: 845
  year: 2021
  ident: 2024111623231074900_ref2
  article-title: Next-generation sequencing (NGS) in COVID-19: A tool for SARS-CoV-2 diagnosis, monitoring new strains and phylodynamic modeling in molecular epidemiology
  publication-title: Curr Issues Mol Biol
  doi: 10.3390/cimb43020061
– volume: 9
  start-page: 357
  year: 2012
  ident: 2024111623231074900_ref47
  article-title: Fast gapped-read alignment with bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 36
  start-page: 4126
  year: 2020
  ident: 2024111623231074900_ref80
  article-title: MetaviralSPAdes: Assembly of viruses from metagenomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa490
– volume: 67
  start-page: S231
  year: 2018
  ident: 2024111623231074900_ref8
  article-title: Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciy693
– volume: 79
  start-page: 419
  year: 2019
  ident: 2024111623231074900_ref9
  article-title: Incremental value of metagenomic next generation sequencing for the diagnosis of suspected focal infection in adults
  publication-title: J Infect
  doi: 10.1016/j.jinf.2019.08.012
– volume: 13
  start-page: 182
  year: 2021
  ident: 2024111623231074900_ref87
  article-title: Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units
  publication-title: Genome Med
  doi: 10.1186/s13073-021-00991-y
– volume: 20
  start-page: 960
  year: 2019
  ident: 2024111623231074900_ref39
  article-title: Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6289-6
– volume: 23
  start-page: 541
  year: 2022
  ident: 2024111623231074900_ref64
  article-title: Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05103-0
– volume: 43
  start-page: e46
  year: 2015
  ident: 2024111623231074900_ref82
  article-title: An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv002
– volume: 6
  start-page: 224
  year: 2015
  ident: 2024111623231074900_ref21
  article-title: Beyond research: A primer for considerations on using viral metagenomics in the field and clinic
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.00224
– volume-title: Porechop_ABI: Discovering Unknown Adapters in ONT Sequencing Reads for Downstream Trimming
  year: 2022
  ident: 2024111623231074900_ref49
  doi: 10.1101/2022.07.07.499093
– ident: 2024111623231074900_ref66
  article-title: nf-core/taxprofiler: highly parallelised and flexible pipeline for metagenomic taxonomic classification and profiling
  doi: 10.1101/2023.10.20.563221
– volume-title: BBMap: A Fast, Accurate, Splice-Aware Aligner
  year: 2014
  ident: 2024111623231074900_ref46
– volume: 20
  start-page: 168
  year: 2019
  ident: 2024111623231074900_ref69
  article-title: From trash to treasure: Detecting unexpected contamination in unmapped NGS data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2684-x
– volume: 26
  start-page: 1721
  year: 2016
  ident: 2024111623231074900_ref83
  article-title: Centrifuge: Rapid and sensitive classification of metagenomic sequences
  publication-title: Genome Res
  doi: 10.1101/gr.210641.116
– volume: 8
  start-page: 1069
  year: 2017
  ident: 2024111623231074900_ref7
  article-title: Metagenomics: The next culture-independent game changer
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01069
– volume: 17
  start-page: 1103
  year: 2020
  ident: 2024111623231074900_ref57
  article-title: metaFlye: Scalable long-read metagenome assembly using repeat graphs
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-00971-x
– volume: 32
  start-page: 3047
  year: 2016
  ident: 2024111623231074900_ref45
  article-title: MultiQC: Summarize analysis results for multiple tools and samples in a single report
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw354
– volume: 24
  start-page: 1757
  year: 2008
  ident: 2024111623231074900_ref55
  article-title: Database indexing for production MegaBLAST searches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn322
– volume: 72
  start-page: 239
  year: 2021
  ident: 2024111623231074900_ref79
  article-title: Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: A multicenter retrospective cohort study
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa035
– volume: 4
  start-page: 57
  year: 2022
  ident: 2024111623231074900_ref63
  article-title: Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome
  publication-title: Animal Microbiome
  doi: 10.1186/s42523-022-00207-7
– volume-title: FastQC: A Quality Control Tool for High Throughput Sequence Data
  year: 2010
  ident: 2024111623231074900_ref44
– volume: 12
  start-page: 385
  year: 2011
  ident: 2024111623231074900_ref51
  article-title: Interactive metagenomic visualization in a web browser
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-385
– year: 2024
  ident: 2024111623231074900_ref85
  article-title: Discovering and exploring the hidden diversity of human gut viruses using highly enriched virome samples
  doi: 10.1101/2024.02.19.580813
– volume: 199
  start-page: 68
  year: 2014
  ident: 2024111623231074900_ref20
  article-title: Deep sequencing approach for genetic stability evaluation of influenza a viruses
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2013.12.018
– volume: 9
  start-page: 16841
  year: 2019
  ident: 2024111623231074900_ref36
  article-title: DAMIAN: An open source bioinformatics tool for fast, systematic and cohort based analysis of microorganisms in diagnostic samples
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52881-4
– volume: 12
  start-page: 9863
  year: 2022
  ident: 2024111623231074900_ref68
  article-title: The human “contaminome”: Bacterial, viral, and computational contamination in whole genome sequences from 1000 families
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-13269-z
– volume: 25
  start-page: 1754
  year: 2009
  ident: 2024111623231074900_ref58
  article-title: Fast and accurate short read alignment with burrows-wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 83
  start-page: 133
  year: 2015
  ident: 2024111623231074900_ref86
  article-title: Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2015.06.017
– volume: 9
  start-page: 952636
  year: 2022
  ident: 2024111623231074900_ref13
  article-title: Clinical evaluation of metagenomic next-generation sequencing for detecting pathogens in bronchoalveolar lavage fluid collected from children with community-acquired pneumonia
  publication-title: Front Med
  doi: 10.3389/fmed.2022.952636
– volume: 138
  start-page: 104812
  year: 2021
  ident: 2024111623231074900_ref3
  article-title: Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: Bioinformatic analysis and reporting
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2021.104812
– volume: 27
  start-page: 115
  year: 2021
  ident: 2024111623231074900_ref6
  article-title: Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1105-z
– volume: 7
  start-page: 99
  year: 2015
  ident: 2024111623231074900_ref28
  article-title: Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis
  publication-title: Genome Med
  doi: 10.1186/s13073-015-0220-9
– volume: 50
  start-page: D20
  year: 2022
  ident: 2024111623231074900_ref54
  article-title: Database resources of the national center for biotechnology information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1112
– volume: 2
  start-page: e72
  year: 2023
  ident: 2024111623231074900_ref37
  article-title: Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data
  publication-title: iMeta
  doi: 10.1002/imt2.72
– volume: 17
  start-page: 2815
  year: 2022
  ident: 2024111623231074900_ref35
  article-title: Metagenome analysis using the kraken software suite
  publication-title: Nat Protoc
  doi: 10.1038/s41596-022-00738-y
– volume: 1
  start-page: e59
  year: 2021
  ident: 2024111623231074900_ref33
  article-title: DIAMOND+MEGAN: Fast and easy taxonomic and functional analysis of short and long microbiome sequences
  publication-title: Current Protocols
  doi: 10.1002/cpz1.59
– volume: 5
  start-page: 81
  year: 2013
  ident: 2024111623231074900_ref34
  article-title: Metagenomics for pathogen detection in public health
  publication-title: Genome Med
  doi: 10.1186/gm485
– volume: 13
  start-page: 1224794
  year: 2023
  ident: 2024111623231074900_ref72
  article-title: Coinfection of SARS-CoV-2 and influenza a (H3N2) detected in bronchoalveolar lavage fluid of a patient with long COVID using metagenomic next−generation sequencing: A case report
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2023.1224794
– volume: 10
  start-page: e1004437
  year: 2014
  ident: 2024111623231074900_ref71
  article-title: Microbial contamination in next generation sequencing: Implications for sequence-based analysis of clinical samples
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004437
– volume: 10813
  start-page: 450
  year: 2018
  ident: 2024111623231074900_ref38
  article-title: Analyzing the differences between reads and contigs when performing a taxonomic assignment comparison in metagenomics
  publication-title: Bioinformatics and Biomedical Engineering
  doi: 10.1007/978-3-319-78723-7_39
– volume: 10
  start-page: giab008
  year: 2021
  ident: 2024111623231074900_ref40
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– volume: 23
  start-page: 748
  year: 2022
  ident: 2024111623231074900_ref67
  article-title: Wochenende—modular and flexible alignment-based shotgun metagenome analysis
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08985-9
– volume: 65
  start-page: 1477
  year: 2017
  ident: 2024111623231074900_ref26
  article-title: Viral surveillance in serum samples from patients with acute liver failure by metagenomic next-generation sequencing
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix596
– volume: 203
  start-page: 865
  year: 2021
  ident: 2024111623231074900_ref15
  article-title: Potential role of viral metagenomics as a surveillance tool for the early detection of emerging novel pathogens
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-020-02105-5
– volume: 32
  start-page: 1088
  year: 2016
  ident: 2024111623231074900_ref56
  article-title: MetaQUAST: Evaluation of metagenome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv697
– volume: 25
  start-page: 15
  year: 2024
  ident: 2024111623231074900_ref62
  article-title: Comparative analysis of metagenomic classifiers for long-read sequencing datasets
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-024-05634-8
– volume: 34
  start-page: 2666
  year: 2018
  ident: 2024111623231074900_ref48
  article-title: NanoPack: Visualizing and processing long-read sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty149
– volume: 94
  start-page: 331
  year: 2019
  ident: 2024111623231074900_ref70
  article-title: Case report: Identification of intra-laboratory blood culture contamination with Staphylococcus aureus by whole genome sequencing
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2019.02.016
SSID ssj0020781
Score 2.4275637
Snippet Abstract Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics...
Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Bioinformatics
Computational Biology - methods
COVID-19 - diagnosis
COVID-19 - virology
Datasets
Humans
Influenza A
Klebsiella
Metagenome
Metagenomics
Metagenomics - methods
Pathogens
Problem Solving Protocol
Rhinovirus
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Software
Viral diseases
Workflow
Title MetaAll: integrative bioinformatics workflow for analysing clinical metagenomic data
URI https://www.ncbi.nlm.nih.gov/pubmed/39550223
https://www.proquest.com/docview/3130968022
https://www.proquest.com/docview/3129220506
https://pubmed.ncbi.nlm.nih.gov/PMC11568877
Volume 25
WOSCitedRecordID wos001356275900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BBRIXWN7ZZYuROCFFpHbi2NzQahEXHoci9RbZzgQilRTRFsS_33GTRhQh2Gs8TiyPPfM5nvkG4FgnibKFoZOqi_0BBZNQS44h8jgnDyt4ZKNZsYn0-loNBvq2CZAdf3KFr8WpLe2ptQYJ-pKp7SXKFyro3wzac5Xnq6mTiNLQs7s3aXgf-i44noVktneY8mNo5Dtfc7Hxv6P8AesNmmTntfo3YQmrLVit60u-bUP_CifmfDg8Y3NWCLJtzJajhi7VUzQzH5lVDEevjB4xU3OUVPdsnjLJHukdnsn1sXTMx5PuwN3F3_6fy7ApoxA6wjqT0JIJccZgkfMYC4NGoiBVcBOlhUCRR1IZ5USUS9VzBGiMNJFQjkcCY6tRil3oVKMK94EpndjY5Tr1SKZnnUpRJblzhMIkIS8M4GQ-x5lrOMZ9qYthVt91i4ymKWumKYDjVvipptb4XOyQlPW1xMFckVmzA8eZIOespU8kDuCobaa94y9ETIWjqZfh2icaRzKAvVrv7XcErWLqLAJQCyuiFfC83IstVfkw4-cmkC3Jdqc_vx35L1jjBJJ8_AkXB9CZPE_xN6y4l0k5fu7CcjpQ3dlfgu5sxf8DFwz9sg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaAll%3A+integrative+bioinformatics+workflow+for+analysing+clinical+metagenomic+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Bosilj%2C+Martin&rft.au=Sulji%C4%8D%2C+Alen&rft.au=Zakotnik%2C+Samo&rft.au=Slune%C4%8Dko%2C+Jan&rft.date=2024-09-23&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=25&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbae597&rft.externalDocID=PMC11568877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon