ABP1–TMK auxin perception for global phosphorylation and auxin canalization
The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, rem...
Uloženo v:
| Vydáno v: | Nature (London) Ročník 609; číslo 7927; s. 575 - 581 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
15.09.2022
Nature Publishing Group |
| Témata: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear
1
–
3
. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades
1
,
4
. Here we show that a fraction of
Arabidopsis thaliana
ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H
+
-ATPase and accelerated cytoplasmic streaming.
abp1
and
tmk
mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in
abp1
mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.
Auxin-binding protein 1 (ABP1) is an auxin receptor that, in complex with transmembrane kinase 1 (TMK1), has a key role in the auxin-induced global phosphorylation of proteins and downstream responses such as vascular regeneration. |
|---|---|
| AbstractList | The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear . Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades . Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H -ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear 1 – 3 . Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades 1 , 4 . Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H + -ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. Auxin-binding protein 1 (ABP1) is an auxin receptor that, in complex with transmembrane kinase 1 (TMK1), has a key role in the auxin-induced global phosphorylation of proteins and downstream responses such as vascular regeneration. The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abpl and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abpl mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. |
| Author | Monzer, Aline Mazur, Ewa Živanović, Branka D. Kaufmann, Walter A. Johnson, Alexander Gallei, Michelle Teplova, Anastasia Verstraeten, Inge Giannini, Caterina Rodriguez, Lesia Tan, Shutang Gelová, Zuzana Kinoshita, Toshinori Narasimhan, Madhumitha Hrtyan, Mónika Friml, Jiří Weijers, Dolf Roosjen, Mark Randuch, Marek Kuhn, Andre Zou, Minxia Rýdza, Nikola Fiedler, Lukáš Grones, Peter Takahashi, Koji Rakusová, Hana |
| Author_xml | – sequence: 1 givenname: Jiří orcidid: 0000-0002-8302-7596 surname: Friml fullname: Friml, Jiří email: jiri.friml@ista.ac.at organization: Institute of Science and Technology Austria (ISTA) – sequence: 2 givenname: Michelle surname: Gallei fullname: Gallei, Michelle organization: Institute of Science and Technology Austria (ISTA) – sequence: 3 givenname: Zuzana orcidid: 0000-0003-4783-1752 surname: Gelová fullname: Gelová, Zuzana organization: Institute of Science and Technology Austria (ISTA) – sequence: 4 givenname: Alexander orcidid: 0000-0002-2739-8843 surname: Johnson fullname: Johnson, Alexander organization: Institute of Science and Technology Austria (ISTA) – sequence: 5 givenname: Ewa orcidid: 0000-0003-0252-1427 surname: Mazur fullname: Mazur, Ewa organization: Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice – sequence: 6 givenname: Aline surname: Monzer fullname: Monzer, Aline organization: Institute of Science and Technology Austria (ISTA) – sequence: 7 givenname: Lesia surname: Rodriguez fullname: Rodriguez, Lesia organization: Institute of Science and Technology Austria (ISTA) – sequence: 8 givenname: Mark surname: Roosjen fullname: Roosjen, Mark organization: Laboratory of Biochemistry, Wageningen University – sequence: 9 givenname: Inge surname: Verstraeten fullname: Verstraeten, Inge organization: Institute of Science and Technology Austria (ISTA) – sequence: 10 givenname: Branka D. orcidid: 0000-0002-2300-7964 surname: Živanović fullname: Živanović, Branka D. organization: Institute for Multidisciplinary Research, University of Belgrade – sequence: 11 givenname: Minxia surname: Zou fullname: Zou, Minxia organization: Institute of Science and Technology Austria (ISTA) – sequence: 12 givenname: Lukáš orcidid: 0000-0002-2454-4665 surname: Fiedler fullname: Fiedler, Lukáš organization: Institute of Science and Technology Austria (ISTA) – sequence: 13 givenname: Caterina surname: Giannini fullname: Giannini, Caterina organization: Institute of Science and Technology Austria (ISTA) – sequence: 14 givenname: Peter surname: Grones fullname: Grones, Peter organization: Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University – sequence: 15 givenname: Mónika surname: Hrtyan fullname: Hrtyan, Mónika organization: Institute of Science and Technology Austria (ISTA) – sequence: 16 givenname: Walter A. surname: Kaufmann fullname: Kaufmann, Walter A. organization: Institute of Science and Technology Austria (ISTA) – sequence: 17 givenname: Andre orcidid: 0000-0003-2144-8413 surname: Kuhn fullname: Kuhn, Andre organization: Laboratory of Biochemistry, Wageningen University – sequence: 18 givenname: Madhumitha orcidid: 0000-0002-8600-0671 surname: Narasimhan fullname: Narasimhan, Madhumitha organization: Institute of Science and Technology Austria (ISTA) – sequence: 19 givenname: Marek orcidid: 0000-0002-8108-0158 surname: Randuch fullname: Randuch, Marek organization: Institute of Science and Technology Austria (ISTA) – sequence: 20 givenname: Nikola surname: Rýdza fullname: Rýdza, Nikola organization: Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University – sequence: 21 givenname: Koji orcidid: 0000-0001-5438-7624 surname: Takahashi fullname: Takahashi, Koji organization: Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University – sequence: 22 givenname: Shutang surname: Tan fullname: Tan, Shutang organization: Institute of Science and Technology Austria (ISTA) – sequence: 23 givenname: Anastasia surname: Teplova fullname: Teplova, Anastasia organization: Institute of Science and Technology Austria (ISTA) – sequence: 24 givenname: Toshinori orcidid: 0000-0001-7621-1259 surname: Kinoshita fullname: Kinoshita, Toshinori organization: Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University – sequence: 25 givenname: Dolf orcidid: 0000-0003-4378-141X surname: Weijers fullname: Weijers, Dolf organization: Laboratory of Biochemistry, Wageningen University – sequence: 26 givenname: Hana surname: Rakusová fullname: Rakusová, Hana organization: Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36071161$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtOwzAQhi0EouVxARYoEhs2AY_txO4SEC9RBAtYW05il1RpHOxEKqy4AzfkJJi0FVIXXViWPN83mvG_h7ZrW2uEjgCfAabi3DNIRBpjQmKcgODxfAsNgfE0Zqng22iIMRExFjQdoD3vpxgHjLNdNKAp5gApDNHjxeUz_Hx9vzw-RKqbl3XUaJfrpi1tHRnrokllM1VFzZv14biPSvUlVRdLPle1qsrP_vkA7RhVeX24vPfR6831y9VdPH66vb-6GMc5Y9DGGeEqyTSjGIwATkRiWM54AkCMJpkxSmdFIpQZMZ0qrSngQlDO8oKaTFFD99Hpom_j7HunfStnpc91Vala285LErYTjBIuAnqyhk5t58LIPZWwEbAUB-p4SXXZTBeyceVMuQ-5-qgAiAWQO-u900bmZdvv3DpVVhKw_MtELjKRIRPZZyLnQSVr6qr7RokuJB_geqLd_9gbrF8hcp-x |
| CitedBy_id | crossref_primary_10_1111_ppl_70221 crossref_primary_10_3390_ijms241713445 crossref_primary_10_1007_s11032_023_01361_9 crossref_primary_10_1016_j_jgg_2023_07_002 crossref_primary_10_1093_pcp_pcac163 crossref_primary_10_1093_jxb_erad420 crossref_primary_10_3389_fgene_2024_1394091 crossref_primary_10_1007_s44154_024_00183_9 crossref_primary_10_48130_ph_0025_0018 crossref_primary_10_1111_tpj_16403 crossref_primary_10_3389_fpls_2023_1187634 crossref_primary_10_3390_ijms241411408 crossref_primary_10_1371_journal_pbio_3002344 crossref_primary_10_1038_s41580_023_00691_y crossref_primary_10_1038_s44383_025_00002_8 crossref_primary_10_1093_plcell_koae125 crossref_primary_10_1111_nph_18783 crossref_primary_10_1002_cmdc_202300590 crossref_primary_10_1016_j_celrep_2025_116056 crossref_primary_10_1038_s41467_024_46765_z crossref_primary_10_1111_ppl_70229 crossref_primary_10_1016_j_cub_2025_03_017 crossref_primary_10_1371_journal_pgen_1011121 crossref_primary_10_1016_j_pbi_2023_102443 crossref_primary_10_1038_s41477_022_01276_x crossref_primary_10_1038_s41586_023_06197_z crossref_primary_10_1093_jxb_erad447 crossref_primary_10_1016_j_xplc_2025_101390 crossref_primary_10_1016_j_tplants_2024_07_004 crossref_primary_10_1093_jxb_eraf071 crossref_primary_10_1016_j_cell_2025_04_028 crossref_primary_10_3390_plants12203610 crossref_primary_10_1093_plphys_kiaf319 crossref_primary_10_1016_j_hpj_2025_06_011 crossref_primary_10_1093_pcp_pcae014 crossref_primary_10_1093_jxb_erae246 crossref_primary_10_1111_ppl_70294 crossref_primary_10_1016_j_cell_2023_11_021 crossref_primary_10_1111_nph_19292 crossref_primary_10_1038_s41467_024_54240_y crossref_primary_10_1016_j_tplants_2024_07_008 crossref_primary_10_3390_f14040823 crossref_primary_10_59717_j_xinn_life_2024_100061 crossref_primary_10_3390_ijms241411828 crossref_primary_10_1007_s11427_023_2498_0 crossref_primary_10_7554_eLife_85193 crossref_primary_10_1002_ps_7294 crossref_primary_10_1111_nph_70019 crossref_primary_10_1093_jxb_erad340 crossref_primary_10_1093_jxb_eraf086 crossref_primary_10_1007_s10725_023_01083_0 crossref_primary_10_1073_pnas_2313216121 crossref_primary_10_1016_j_cell_2023_10_021 crossref_primary_10_1038_s41477_022_01267_y crossref_primary_10_1080_15592324_2025_2530541 crossref_primary_10_3390_ijms24043090 crossref_primary_10_1038_s41477_024_01621_2 crossref_primary_10_52396_JUSTC_2024_0148 crossref_primary_10_1038_s41580_025_00851_2 crossref_primary_10_1038_s42003_024_06747_9 crossref_primary_10_3390_plants14020208 crossref_primary_10_1016_j_cell_2023_10_017 crossref_primary_10_1093_jxb_erad174 crossref_primary_10_1016_j_jgg_2024_06_019 crossref_primary_10_1073_pnas_2408186121 crossref_primary_10_3390_cells11203250 crossref_primary_10_3390_plants11233301 crossref_primary_10_1007_s00344_023_11031_x crossref_primary_10_1038_s41422_023_00921_0 crossref_primary_10_1111_pce_15176 crossref_primary_10_1242_jcs_261712 crossref_primary_10_1111_jipb_13446 crossref_primary_10_1038_s41467_025_55872_4 crossref_primary_10_1111_jipb_13841 crossref_primary_10_1016_j_tcsw_2025_100142 crossref_primary_10_1111_jipb_13441 crossref_primary_10_1016_j_ijbiomac_2023_123671 crossref_primary_10_1093_pcp_pcae047 crossref_primary_10_1093_plcell_koad200 crossref_primary_10_1002_advs_202402442 crossref_primary_10_1073_pnas_2412493121 crossref_primary_10_1016_j_plaphy_2025_110338 crossref_primary_10_1016_j_molp_2024_02_012 crossref_primary_10_1038_d41586_022_02339_x crossref_primary_10_3390_ijms26073257 crossref_primary_10_3390_plants12020331 crossref_primary_10_1016_j_nanoen_2024_110130 crossref_primary_10_1007_s00468_024_02590_x crossref_primary_10_1007_s00604_024_06717_2 crossref_primary_10_1038_s41586_025_08669_w crossref_primary_10_1007_s00344_024_11328_5 crossref_primary_10_1111_tpj_70034 crossref_primary_10_1016_j_cub_2024_01_024 crossref_primary_10_1093_plcell_koac367 crossref_primary_10_1093_plphys_kiad288 crossref_primary_10_1093_plphys_kiad321 crossref_primary_10_1016_j_cub_2025_03_037 crossref_primary_10_3389_fpls_2022_1061141 crossref_primary_10_1016_j_microc_2025_115446 crossref_primary_10_1093_plphys_kiae090 crossref_primary_10_1016_j_celrep_2024_114918 crossref_primary_10_1016_j_scienta_2024_113367 crossref_primary_10_1111_nph_19891 crossref_primary_10_15252_embj_2022113018 crossref_primary_10_1016_j_celrep_2024_114597 crossref_primary_10_1016_j_envexpbot_2023_105354 crossref_primary_10_1016_j_cell_2025_07_027 crossref_primary_10_1093_pcp_pcad007 crossref_primary_10_1111_nph_18602 crossref_primary_10_3390_cells12121613 |
| Cites_doi | 10.1016/j.pbi.2015.06.017 10.1016/S0092-8674(03)00924-3 10.1038/nmeth.1322 10.1007/BF00380716 10.1007/BF00386394 10.1016/j.tplants.2021.11.006 10.1016/j.plantsci.2020.110750 10.1093/plphys/kiab134 10.1105/tpc.114.134874 10.1074/jbc.270.45.26962 10.1101/cshperspect.a039917 10.1016/j.plantsci.2020.110414 10.1101/cshperspect.a039859 10.1081/JBC-100108575 10.1101/gad.390806 10.1111/nph.16446 10.1101/cshperspect.a039883 10.1126/science.aba3178 10.1038/nature02085 10.1093/nar/gkv1145 10.3389/fpls.2018.01953 10.1073/pnas.1500365112 10.1007/s00344-011-9203-2 10.1038/nplants.2015.183 10.1093/abbs/gmp036 10.1016/j.pep.2009.01.002 10.1093/jxb/erv177 10.1126/science.aar5839 10.1101/cshperspect.a039909 10.1242/dev.131870 10.1038/nmeth.3901 10.1016/j.bbapap.2005.06.005 10.1371/journal.pone.0060990 10.1016/j.pbi.2022.102174 10.1038/s41586-021-03976-4 10.1038/s41477-018-0190-1 10.1101/2021.04.13.439603 10.1038/s41586-021-04037-6 10.1126/science.1245125 10.1016/j.cell.2013.06.006 10.7554/eLife.51787 10.1002/pro.2253 10.1093/emboj/cdf291 10.1038/nature25184 10.1016/j.cub.2019.11.058 10.1089/adt.2011.0380 10.12688/f1000research.7143.1 10.1104/pp.17.00733 10.21769/BioProtoc.2044 10.1101/cshperspect.a039891 10.1093/jxb/ert085 10.1038/s41477-021-00969-z 10.1016/j.pbi.2019.10.003 10.1038/s41467-018-03582-5 10.1016/j.cell.2010.09.027 10.1038/s41586-019-1069-7 10.1038/srep33754 10.1038/msb.2010.103 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Sep 15, 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Sep 15, 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/s41586-022-05187-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 581 |
| ExternalDocumentID | 36071161 10_1038_s41586_022_05187_x |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 29988 – fundername: Wellcome Trust grantid: 083367 – fundername: European Research Council grantid: 742985 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AARCD AASDW AAYEP ABDQB ABFSG ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUFD ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACSTC ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AEZWR AFANA AFBBN AFFHD AFFNX AFHIU AFKRA AFKWF AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AGSTI AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TUS TWZ U5U UKHRP UKR UMD UQL VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YFH YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~7V ~88 ~KM AAYXX CITATION .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYZH ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI ALIPV APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c441t-b27a5be4301f817285f4c475112fe2bffaebd58af94e6aee310d8374cd3fba3f3 |
| IEDL.DBID | M2M |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851357500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Fri Sep 05 08:25:13 EDT 2025 Tue Oct 07 07:19:34 EDT 2025 Mon Jul 21 06:07:56 EDT 2025 Sat Nov 29 03:49:06 EST 2025 Tue Nov 18 22:01:32 EST 2025 Mon Nov 10 01:23:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7927 |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-b27a5be4301f817285f4c475112fe2bffaebd58af94e6aee310d8374cd3fba3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8108-0158 0000-0001-7621-1259 0000-0003-4378-141X 0000-0002-2454-4665 0000-0003-2144-8413 0000-0002-8302-7596 0000-0003-4783-1752 0000-0002-8600-0671 0000-0002-2739-8843 0000-0002-2300-7964 0000-0001-5438-7624 0000-0003-0252-1427 |
| PMID | 36071161 |
| PQID | 2715491460 |
| PQPubID | 40569 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2711843278 proquest_journals_2715491460 pubmed_primary_36071161 crossref_citationtrail_10_1038_s41586_022_05187_x crossref_primary_10_1038_s41586_022_05187_x springer_journals_10_1038_s41586_022_05187_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-15 |
| PublicationDateYYYYMMDD | 2022-09-15 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Morffy, N. & Strader, L. C. Structural aspects of auxin signaling. Cold Spring Harb. Perspect. Biol.14, a039883 (2021). LiLCell surface and intracellular auxin signalling for H + fluxes in root growthNature20215992732772021Natur.599..273L1:CAS:528:DC%2BB3MXisFCmtLbL34707283761230010.1038/s41586-021-04037-6 DahlkeRIProtoplast swelling and hypocotyl growth depend on different auxin signaling pathwaysPlant Physiol.201717598299428860155561990210.1104/pp.17.00733 KlodeMDahlkeRISauterMSteffensBExpression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1)J. Plant Growth Regul.2011304164241:CAS:528:DC%2BC3MXhtlyqtLrP10.1007/s00344-011-9203-2 Živanovic, B., Köhler, K., Galland, P. & Weisenseel, M. Membrane potential and endogenous ion current of Phycomyces sporangiophores. Electro. Magnetobiol.20, 343–362 (2009). MazurEClathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in ArabidopsisPlant Sci.20202931104141:CAS:528:DC%2BB3cXhslSlur4%3D3208126310.1016/j.plantsci.2020.110414 XuTCell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signalingScience2014343102510282014Sci...343.1025X1:CAS:528:DC%2BC2cXjt1ymt7k%3D24578577416656210.1126/science.1245125 MazurEBenkováEFrimlJVascular cambium regeneration and vessel formation in wounded inflorescence stems of ArabidopsisSci. Rep.201662016NatSR...633754M1:CAS:528:DC%2BC28XhsFGrt7%2FO27649687503067610.1038/srep33754 HajnýJTanSFrimlJAuxin canalization: from speculative models toward molecular playersCurr. Opin. Plant Biol.2022651021743512388010.1016/j.pbi.2022.102174 GalleiMLuschnigCFrimlJAuxin signalling in growth: Schrödinger’s cat out of the bagCurr. Opin. Plant Biol.20205343491:CAS:528:DC%2BC1MXitFKisL3P3176023110.1016/j.pbi.2019.10.003 Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci.27, 440–449 (2022). AnthisNJCloreGMSequence-specific determination of protein and peptide concentrations by absorbance at 205 nmProtein Sci.2013228518581:CAS:528:DC%2BC3sXot1elt7s%3D23526461369072310.1002/pro.2253 TianHKlambtDJonesAMAuxin-binding protein 1 does not bind auxin within the endoplasmic reticulum despite this being the predominant subcellular location for this hormone receptorJ. Biol. Chem.199527026962269691:CAS:528:DyaK2MXpsVGlsLo%3D759294310.1074/jbc.270.45.26962 KellySMJessTJPriceNCHow to study proteins by circular dichroismBiochim. Biophys. Acta200517511191391:CAS:528:DC%2BD2MXns1Wnt7k%3D1602705310.1016/j.bbapap.2005.06.005 DubeySMSerreNBCOulehlováDVittalPFendrychMNo time for transcription-rapid auxin responses in plantsCold Spring Harb. Perspect. Biol.202113a0398911:CAS:528:DC%2BB38XjsF2lt70%3D3364898810.1101/cshperspect.a039891 McLaughlinHMAngACHØstergaardLNoncanonical auxin signalingCold Spring Harb. Perspect. Biol.202113a0399171:CAS:528:DC%2BB3MXhvVyqurjL3343158310.1101/cshperspect.a039917 TyanovaSThe Perseus computational platform for comprehensive analysis of (prote)omics dataNat. Methods2016137317401:CAS:528:DC%2BC28XhtVKntbnN2734871210.1038/nmeth.3901 JayakannanMBoseJBabourinaORengelZShabalaSSalicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channelJ. Exp. Bot.201364225522681:CAS:528:DC%2BC3sXnvV2nurs%3D23580750365441710.1093/jxb/ert085 TominagaMItoKThe molecular mechanism and physiological role of cytoplasmic streamingCurr. Opin. Plant Biol.2015271041101:CAS:528:DC%2BC2MXhtFemtb%2FI2620209610.1016/j.pbi.2015.06.017 YinKHanXXuZXueHArabidopsis GLP4 is localized to the Golgi and binds auxin in vitroActa Biochim. Biophys. Sin.2009414784871:CAS:528:DC%2BD1MXntF2gtr8%3D1949915110.1093/abbs/gmp036 DaiXEmbryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene.Nature Plants20151151831:CAS:528:DC%2BC2MXhvF2ks7nP27057346482119510.1038/nplants.2015.183 SauerMCanalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarityGenes Dev.200620290229111:CAS:528:DC%2BD28XhtFWqsbfP17043314161993910.1101/gad.390806 FendrychMRapid and reversible root growth inhibition by TIR1 auxin signallingNat. Plants201844534591:CAS:528:DC%2BC1cXht1aksLzI29942048610434510.1038/s41477-018-0190-1 Lin, W. et al. TMK-based cell-surface auxin signaling activates cell wall acidification. Nature599, 278–282 (2021). CaoMTMK1-mediated auxin signalling regulates differential growth of the apical hookNature20195682402432019Natur.568..240C1:CAS:528:DC%2BC1MXosVSitbw%3D3094446610.1038/s41586-019-1069-7 WasilkoDJThe titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirusProtein Expr. Purif.2009651221321:CAS:528:DC%2BD1MXjt1KntLo%3D1917419110.1016/j.pep.2009.01.002 RobertSABP1 mediates auxin inhibition of clathrin-dependent endocytosis in ArabidopsisCell20101431111211:CAS:528:DC%2BC3cXht1Cmu7zN20887896350350710.1016/j.cell.2010.09.027 HertelRThomsonKSRussoVEIn-vitro auxin binding to particulate cell fractions from corn coleoptilesPlanta19721073253401:CAS:528:DyaE3sXpvFc%3D2447748210.1007/BF00386394 MichalkoJDraveckáMBollenbachTFrimlJEmbryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM geneF1000Res.20154110426629335464285110.12688/f1000research.7143.1 BenkováELocal, efflux-dependent auxin gradients as a common module for plant organ formationCell20031155916021465185010.1016/S0092-8674(03)00924-3 DaiNWangWPattersonSEBleeckerABThe TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxinPLoS One20138e609902013PLoSO...860990D1:CAS:528:DC%2BC3sXmslSit74%3D23613767362870310.1371/journal.pone.0060990 Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol.14, a039859 (2021). Jerabek-WillemsenMWienkenCJBraunDBaaskePDuhrSMolecular interaction studies using microscale thermophoresisAssay Drug Dev. Technol.201193423531:CAS:528:DC%2BC3MXps1Omsr8%3D21812660314878710.1089/adt.2011.0380 MazurEKulikIHajnýJFrimlJAuxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in ArabidopsisNew Phytol.2020226137513831:CAS:528:DC%2BB3cXot12qtLc%3D31971254731814410.1111/nph.16446 YoungGQuantitative mass imaging of single biological macromoleculesScience20183604234272018Sci...360..423Y1:CAS:528:DC%2BC1cXotFyku7k%3D29700264610322510.1126/science.aar5839 DindasJAUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signalingNat. Commun.201892018NatCo...9.1174D29563504586298510.1038/s41467-018-03582-5 PaponovIAAuxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1Front. Plant Sci.20199195330705682634444710.3389/fpls.2018.01953 SerreNBCAFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana rootNat. Plants20217122912381:CAS:528:DC%2BB3MXitVGgtrbL34282287761168310.1038/s41477-021-00969-z KuhnADirect ETTIN–auxin interaction controls chromatin states in gynoecium developmenteLife20209e5178732267233716495210.7554/eLife.51787 Okumura, M. & Kinoshita, T. Measurement of ATP hydrolytic activity of plasma membrane H+-ATPase from Arabidopsis thaliana leaves. Bio-protocol6, e2044 (2016). WooEJCrystal structure of auxin-binding protein 1 in complex with auxinEMBO J.200221287728851:CAS:528:DC%2BD38XlsVSlt7Y%3D1206540112605010.1093/emboj/cdf291 Napier, R. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol.13, a039909 (2021). GaoYAuxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis developmentProc. Natl Acad. Sci. USA2015112227522802015PNAS..112.2275G1:CAS:528:DC%2BC2MXhvFCgs7w%3D25646447434310610.1073/pnas.1500365112 GelováZDevelopmental roles of auxin binding protein 1 in Arabidopsis thalianaPlant Sci.20213031107503348733910.1016/j.plantsci.2020.110750 LavyMEstelleMMechanisms of auxin signalingDevelopment2016143322632291:CAS:528:DC%2BC28XitVWisr%2FF27624827504765710.1242/dev.131870 Han, H. et al. Rapid auxin-mediated phosphorylation of myosin regulates trafficking and polarity in Arabidopsis. Preprint at bioRxivhttps://doi.org/10.1101/2021.04.13.439603 (2021). TanSSalicylic acid targets protein phosphatase 2A to attenuate growth in plantsCurr. Biol.202030381395.e81:CAS:528:DC%2BB3cXht1SitLg%3D31956021699788810.1016/j.cub.2019.11.058 Smakowska-LuzanEAn extracellular network of Arabidopsis leucine-rich repeat receptor kinasesNature20185533423462018Natur.553..342S1:CAS:528:DC%2BC1cXntVGgtA%3D%3D29320478648560510.1038/nature25184 WabnikKEmergence of tissue polarization from synergy of intracellular and extracellular auxin signalingMol. Syst. Biol.201064471:CAS:528:DC%2BC3MXhs1Gmtro%3D21179019301816210.1038/msb.2010.103 ÖzkanEAn extracellular interactome of immunoglobulin and LRR proteins reveals receptor–ligand networksCell2013154228–239375666110.1016/j.cell.2013.06.006 WiśniewskiJRZougmanANagarajNMannMUniversal sample preparation method for proteome analysisNat. Methods200963593621937748510.1038/nmeth.1322 VizcaínoJA2016 update of the PRIDE database and its related toolsNucleic Acids Res.201644D447D4562652772210.1093/nar/gkv1145 GronesPAuxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental rolesJ. Exp. Bot.201566505550651:CAS:528:DC%2BC2MXitVWhsb3F2592249010.1093/jxb/erv177 SachsTThe induction of transport channels by auxinPlanta19751272012061:CAS:528:DyaE28XntFKksw%3D%3D2443046910.1007/BF00380716 FrimlJEfflux-dependent auxin gradients establish the apical-basal axis of ArabidopsisNature20034261471532003Natur.426..147F1:CAS:528:DC%2BD3sXovVKmtLY%3D1461449710.1038/nature02085 NarasimhanMSystematic analysis of specific and nonspecific auxin effects on endocytosis and traffickingPlant Physiol.2021186112211421:CAS:528:DC%2BB3MXhvVOhs7bI33734402819551310.1093/plphys/kiab134 AdamowskiMFrimlJPIN-dependent auxin transport: action, regulation, and evolu JA Vizcaíno (5187_CR53) 2016; 44 RI Dahlke (5187_CR30) 2017; 175 E Mazur (5187_CR38) 2020; 226 5187_CR1 M Lavy (5187_CR2) 2016; 143 N Dai (5187_CR39) 2013; 8 T Xu (5187_CR21) 2014; 343 M Tominaga (5187_CR34) 2015; 27 L Li (5187_CR17) 2021; 599 M Jerabek-Willemsen (5187_CR50) 2011; 9 P Grones (5187_CR23) 2015; 66 Z Gelová (5187_CR29) 2021; 303 JR Wiśniewski (5187_CR51) 2009; 6 5187_CR54 5187_CR55 E Mazur (5187_CR37) 2020; 293 NJ Anthis (5187_CR58) 2013; 22 S Robert (5187_CR14) 2010; 143 5187_CR18 5187_CR16 R Hertel (5187_CR20) 1972; 107 M Narasimhan (5187_CR13) 2021; 186 IA Paponov (5187_CR32) 2019; 9 SM Dubey (5187_CR11) 2021; 13 K Yin (5187_CR43) 2009; 41 E Benková (5187_CR45) 2003; 115 K Wabnik (5187_CR41) 2010; 6 SM Kelly (5187_CR57) 2005; 1751 E Mazur (5187_CR36) 2016; 6 Y Gao (5187_CR22) 2015; 112 J Hajný (5187_CR40) 2022; 65 S Tan (5187_CR49) 2020; 30 E Smakowska-Luzan (5187_CR26) 2018; 553 A Kuhn (5187_CR9) 2020; 9 T Sachs (5187_CR15) 1975; 127 NBC Serre (5187_CR33) 2021; 7 J Dindas (5187_CR6) 2018; 9 J Hajný (5187_CR42) 2020; 370 M Jayakannan (5187_CR31) 2013; 64 M Fendrych (5187_CR5) 2018; 4 M Cao (5187_CR10) 2019; 568 M Sauer (5187_CR35) 2006; 20 M Gallei (5187_CR7) 2020; 53 J Michalko (5187_CR24) 2015; 4 DJ Wasilko (5187_CR48) 2009; 65 X Dai (5187_CR25) 2015; 1 M Adamowski (5187_CR12) 2015; 27 G Young (5187_CR56) 2018; 360 J Friml (5187_CR44) 2003; 426 5187_CR3 5187_CR4 M Klode (5187_CR46) 2011; 30 5187_CR8 E Özkan (5187_CR47) 2013; 154 EJ Woo (5187_CR27) 2002; 21 H Tian (5187_CR28) 1995; 270 HM McLaughlin (5187_CR19) 2021; 13 S Tyanova (5187_CR52) 2016; 13 36076023 - Nature. 2022 Sep;609(7927):475-476. doi: 10.1038/d41586-022-02339-x. |
| References_xml | – reference: ÖzkanEAn extracellular interactome of immunoglobulin and LRR proteins reveals receptor–ligand networksCell2013154228–239375666110.1016/j.cell.2013.06.006 – reference: AnthisNJCloreGMSequence-specific determination of protein and peptide concentrations by absorbance at 205 nmProtein Sci.2013228518581:CAS:528:DC%2BC3sXot1elt7s%3D23526461369072310.1002/pro.2253 – reference: JayakannanMBoseJBabourinaORengelZShabalaSSalicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channelJ. Exp. Bot.201364225522681:CAS:528:DC%2BC3sXnvV2nurs%3D23580750365441710.1093/jxb/ert085 – reference: GronesPAuxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental rolesJ. Exp. Bot.201566505550651:CAS:528:DC%2BC2MXitVWhsb3F2592249010.1093/jxb/erv177 – reference: TianHKlambtDJonesAMAuxin-binding protein 1 does not bind auxin within the endoplasmic reticulum despite this being the predominant subcellular location for this hormone receptorJ. Biol. Chem.199527026962269691:CAS:528:DyaK2MXpsVGlsLo%3D759294310.1074/jbc.270.45.26962 – reference: LiLCell surface and intracellular auxin signalling for H + fluxes in root growthNature20215992732772021Natur.599..273L1:CAS:528:DC%2BB3MXisFCmtLbL34707283761230010.1038/s41586-021-04037-6 – reference: KlodeMDahlkeRISauterMSteffensBExpression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1)J. Plant Growth Regul.2011304164241:CAS:528:DC%2BC3MXhtlyqtLrP10.1007/s00344-011-9203-2 – reference: TyanovaSThe Perseus computational platform for comprehensive analysis of (prote)omics dataNat. Methods2016137317401:CAS:528:DC%2BC28XhtVKntbnN2734871210.1038/nmeth.3901 – reference: HajnýJTanSFrimlJAuxin canalization: from speculative models toward molecular playersCurr. Opin. Plant Biol.2022651021743512388010.1016/j.pbi.2022.102174 – reference: WabnikKEmergence of tissue polarization from synergy of intracellular and extracellular auxin signalingMol. Syst. Biol.201064471:CAS:528:DC%2BC3MXhs1Gmtro%3D21179019301816210.1038/msb.2010.103 – reference: AdamowskiMFrimlJPIN-dependent auxin transport: action, regulation, and evolutionPlant Cell20152720321:CAS:528:DC%2BC2MXkt1Wmu7o%3D25604445433058910.1105/tpc.114.134874 – reference: WasilkoDJThe titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirusProtein Expr. Purif.2009651221321:CAS:528:DC%2BD1MXjt1KntLo%3D1917419110.1016/j.pep.2009.01.002 – reference: DahlkeRIProtoplast swelling and hypocotyl growth depend on different auxin signaling pathwaysPlant Physiol.201717598299428860155561990210.1104/pp.17.00733 – reference: BenkováELocal, efflux-dependent auxin gradients as a common module for plant organ formationCell20031155916021465185010.1016/S0092-8674(03)00924-3 – reference: SachsTThe induction of transport channels by auxinPlanta19751272012061:CAS:528:DyaE28XntFKksw%3D%3D2443046910.1007/BF00380716 – reference: Han, H. et al. Rapid auxin-mediated phosphorylation of myosin regulates trafficking and polarity in Arabidopsis. Preprint at bioRxivhttps://doi.org/10.1101/2021.04.13.439603 (2021). – reference: Smakowska-LuzanEAn extracellular network of Arabidopsis leucine-rich repeat receptor kinasesNature20185533423462018Natur.553..342S1:CAS:528:DC%2BC1cXntVGgtA%3D%3D29320478648560510.1038/nature25184 – reference: Okumura, M. & Kinoshita, T. Measurement of ATP hydrolytic activity of plasma membrane H+-ATPase from Arabidopsis thaliana leaves. Bio-protocol6, e2044 (2016). – reference: MazurEBenkováEFrimlJVascular cambium regeneration and vessel formation in wounded inflorescence stems of ArabidopsisSci. Rep.201662016NatSR...633754M1:CAS:528:DC%2BC28XhsFGrt7%2FO27649687503067610.1038/srep33754 – reference: GaoYAuxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis developmentProc. Natl Acad. Sci. USA2015112227522802015PNAS..112.2275G1:CAS:528:DC%2BC2MXhvFCgs7w%3D25646447434310610.1073/pnas.1500365112 – reference: FrimlJEfflux-dependent auxin gradients establish the apical-basal axis of ArabidopsisNature20034261471532003Natur.426..147F1:CAS:528:DC%2BD3sXovVKmtLY%3D1461449710.1038/nature02085 – reference: SauerMCanalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarityGenes Dev.200620290229111:CAS:528:DC%2BD28XhtFWqsbfP17043314161993910.1101/gad.390806 – reference: CaoMTMK1-mediated auxin signalling regulates differential growth of the apical hookNature20195682402432019Natur.568..240C1:CAS:528:DC%2BC1MXosVSitbw%3D3094446610.1038/s41586-019-1069-7 – reference: McLaughlinHMAngACHØstergaardLNoncanonical auxin signalingCold Spring Harb. Perspect. Biol.202113a0399171:CAS:528:DC%2BB3MXhvVyqurjL3343158310.1101/cshperspect.a039917 – reference: DubeySMSerreNBCOulehlováDVittalPFendrychMNo time for transcription-rapid auxin responses in plantsCold Spring Harb. Perspect. Biol.202113a0398911:CAS:528:DC%2BB38XjsF2lt70%3D3364898810.1101/cshperspect.a039891 – reference: NarasimhanMSystematic analysis of specific and nonspecific auxin effects on endocytosis and traffickingPlant Physiol.2021186112211421:CAS:528:DC%2BB3MXhvVOhs7bI33734402819551310.1093/plphys/kiab134 – reference: WooEJCrystal structure of auxin-binding protein 1 in complex with auxinEMBO J.200221287728851:CAS:528:DC%2BD38XlsVSlt7Y%3D1206540112605010.1093/emboj/cdf291 – reference: TanSSalicylic acid targets protein phosphatase 2A to attenuate growth in plantsCurr. Biol.202030381395.e81:CAS:528:DC%2BB3cXht1SitLg%3D31956021699788810.1016/j.cub.2019.11.058 – reference: DindasJAUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signalingNat. Commun.201892018NatCo...9.1174D29563504586298510.1038/s41467-018-03582-5 – reference: HertelRThomsonKSRussoVEIn-vitro auxin binding to particulate cell fractions from corn coleoptilesPlanta19721073253401:CAS:528:DyaE3sXpvFc%3D2447748210.1007/BF00386394 – reference: Napier, R. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol.13, a039909 (2021). – reference: WiśniewskiJRZougmanANagarajNMannMUniversal sample preparation method for proteome analysisNat. Methods200963593621937748510.1038/nmeth.1322 – reference: VizcaínoJA2016 update of the PRIDE database and its related toolsNucleic Acids Res.201644D447D4562652772210.1093/nar/gkv1145 – reference: FendrychMRapid and reversible root growth inhibition by TIR1 auxin signallingNat. Plants201844534591:CAS:528:DC%2BC1cXht1aksLzI29942048610434510.1038/s41477-018-0190-1 – reference: Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol.14, a039859 (2021). – reference: RobertSABP1 mediates auxin inhibition of clathrin-dependent endocytosis in ArabidopsisCell20101431111211:CAS:528:DC%2BC3cXht1Cmu7zN20887896350350710.1016/j.cell.2010.09.027 – reference: Živanovic, B., Köhler, K., Galland, P. & Weisenseel, M. Membrane potential and endogenous ion current of Phycomyces sporangiophores. Electro. Magnetobiol.20, 343–362 (2009). – reference: DaiXEmbryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene.Nature Plants20151151831:CAS:528:DC%2BC2MXhvF2ks7nP27057346482119510.1038/nplants.2015.183 – reference: MazurEKulikIHajnýJFrimlJAuxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in ArabidopsisNew Phytol.2020226137513831:CAS:528:DC%2BB3cXot12qtLc%3D31971254731814410.1111/nph.16446 – reference: Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci.27, 440–449 (2022). – reference: MichalkoJDraveckáMBollenbachTFrimlJEmbryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM geneF1000Res.20154110426629335464285110.12688/f1000research.7143.1 – reference: SerreNBCAFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana rootNat. Plants20217122912381:CAS:528:DC%2BB3MXitVGgtrbL34282287761168310.1038/s41477-021-00969-z – reference: GelováZDevelopmental roles of auxin binding protein 1 in Arabidopsis thalianaPlant Sci.20213031107503348733910.1016/j.plantsci.2020.110750 – reference: PaponovIAAuxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1Front. Plant Sci.20199195330705682634444710.3389/fpls.2018.01953 – reference: KellySMJessTJPriceNCHow to study proteins by circular dichroismBiochim. Biophys. Acta200517511191391:CAS:528:DC%2BD2MXns1Wnt7k%3D1602705310.1016/j.bbapap.2005.06.005 – reference: XuTCell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signalingScience2014343102510282014Sci...343.1025X1:CAS:528:DC%2BC2cXjt1ymt7k%3D24578577416656210.1126/science.1245125 – reference: Jerabek-WillemsenMWienkenCJBraunDBaaskePDuhrSMolecular interaction studies using microscale thermophoresisAssay Drug Dev. Technol.201193423531:CAS:528:DC%2BC3MXps1Omsr8%3D21812660314878710.1089/adt.2011.0380 – reference: KuhnADirect ETTIN–auxin interaction controls chromatin states in gynoecium developmenteLife20209e5178732267233716495210.7554/eLife.51787 – reference: YoungGQuantitative mass imaging of single biological macromoleculesScience20183604234272018Sci...360..423Y1:CAS:528:DC%2BC1cXotFyku7k%3D29700264610322510.1126/science.aar5839 – reference: HajnýJReceptor kinase module targets PIN-dependent auxin transport during canalizationScience202037055055733122378711642610.1126/science.aba3178 – reference: TominagaMItoKThe molecular mechanism and physiological role of cytoplasmic streamingCurr. Opin. Plant Biol.2015271041101:CAS:528:DC%2BC2MXhtFemtb%2FI2620209610.1016/j.pbi.2015.06.017 – reference: Lin, W. et al. TMK-based cell-surface auxin signaling activates cell wall acidification. Nature599, 278–282 (2021). – reference: DaiNWangWPattersonSEBleeckerABThe TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxinPLoS One20138e609902013PLoSO...860990D1:CAS:528:DC%2BC3sXmslSit74%3D23613767362870310.1371/journal.pone.0060990 – reference: MazurEClathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in ArabidopsisPlant Sci.20202931104141:CAS:528:DC%2BB3cXhslSlur4%3D3208126310.1016/j.plantsci.2020.110414 – reference: YinKHanXXuZXueHArabidopsis GLP4 is localized to the Golgi and binds auxin in vitroActa Biochim. Biophys. Sin.2009414784871:CAS:528:DC%2BD1MXntF2gtr8%3D1949915110.1093/abbs/gmp036 – reference: Morffy, N. & Strader, L. C. Structural aspects of auxin signaling. Cold Spring Harb. Perspect. Biol.14, a039883 (2021). – reference: GalleiMLuschnigCFrimlJAuxin signalling in growth: Schrödinger’s cat out of the bagCurr. Opin. Plant Biol.20205343491:CAS:528:DC%2BC1MXitFKisL3P3176023110.1016/j.pbi.2019.10.003 – reference: LavyMEstelleMMechanisms of auxin signalingDevelopment2016143322632291:CAS:528:DC%2BC28XitVWisr%2FF27624827504765710.1242/dev.131870 – volume: 27 start-page: 104 year: 2015 ident: 5187_CR34 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.06.017 – volume: 115 start-page: 591 year: 2003 ident: 5187_CR45 publication-title: Cell doi: 10.1016/S0092-8674(03)00924-3 – volume: 6 start-page: 359 year: 2009 ident: 5187_CR51 publication-title: Nat. Methods doi: 10.1038/nmeth.1322 – volume: 127 start-page: 201 year: 1975 ident: 5187_CR15 publication-title: Planta doi: 10.1007/BF00380716 – volume: 107 start-page: 325 year: 1972 ident: 5187_CR20 publication-title: Planta doi: 10.1007/BF00386394 – ident: 5187_CR8 doi: 10.1016/j.tplants.2021.11.006 – volume: 303 start-page: 110750 year: 2021 ident: 5187_CR29 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110750 – volume: 186 start-page: 1122 year: 2021 ident: 5187_CR13 publication-title: Plant Physiol. doi: 10.1093/plphys/kiab134 – volume: 27 start-page: 20 year: 2015 ident: 5187_CR12 publication-title: Plant Cell doi: 10.1105/tpc.114.134874 – volume: 270 start-page: 26962 year: 1995 ident: 5187_CR28 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.45.26962 – volume: 13 start-page: a039917 year: 2021 ident: 5187_CR19 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a039917 – volume: 293 start-page: 110414 year: 2020 ident: 5187_CR37 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110414 – ident: 5187_CR1 doi: 10.1101/cshperspect.a039859 – ident: 5187_CR55 doi: 10.1081/JBC-100108575 – volume: 20 start-page: 2902 year: 2006 ident: 5187_CR35 publication-title: Genes Dev. doi: 10.1101/gad.390806 – volume: 226 start-page: 1375 year: 2020 ident: 5187_CR38 publication-title: New Phytol. doi: 10.1111/nph.16446 – ident: 5187_CR3 doi: 10.1101/cshperspect.a039883 – volume: 370 start-page: 550 year: 2020 ident: 5187_CR42 publication-title: Science doi: 10.1126/science.aba3178 – volume: 426 start-page: 147 year: 2003 ident: 5187_CR44 publication-title: Nature doi: 10.1038/nature02085 – volume: 44 start-page: D447 year: 2016 ident: 5187_CR53 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1145 – volume: 9 start-page: 1953 year: 2019 ident: 5187_CR32 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01953 – volume: 112 start-page: 2275 year: 2015 ident: 5187_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1500365112 – volume: 30 start-page: 416 year: 2011 ident: 5187_CR46 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-011-9203-2 – volume: 1 start-page: 15183 year: 2015 ident: 5187_CR25 publication-title: Nature Plants doi: 10.1038/nplants.2015.183 – volume: 41 start-page: 478 year: 2009 ident: 5187_CR43 publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmp036 – volume: 65 start-page: 122 year: 2009 ident: 5187_CR48 publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2009.01.002 – volume: 66 start-page: 5055 year: 2015 ident: 5187_CR23 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv177 – volume: 360 start-page: 423 year: 2018 ident: 5187_CR56 publication-title: Science doi: 10.1126/science.aar5839 – ident: 5187_CR4 doi: 10.1101/cshperspect.a039909 – volume: 143 start-page: 3226 year: 2016 ident: 5187_CR2 publication-title: Development doi: 10.1242/dev.131870 – volume: 13 start-page: 731 year: 2016 ident: 5187_CR52 publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 1751 start-page: 119 year: 2005 ident: 5187_CR57 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2005.06.005 – volume: 8 start-page: e60990 year: 2013 ident: 5187_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0060990 – volume: 65 start-page: 102174 year: 2022 ident: 5187_CR40 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2022.102174 – ident: 5187_CR18 doi: 10.1038/s41586-021-03976-4 – volume: 4 start-page: 453 year: 2018 ident: 5187_CR5 publication-title: Nat. Plants doi: 10.1038/s41477-018-0190-1 – ident: 5187_CR16 doi: 10.1101/2021.04.13.439603 – volume: 599 start-page: 273 year: 2021 ident: 5187_CR17 publication-title: Nature doi: 10.1038/s41586-021-04037-6 – volume: 343 start-page: 1025 year: 2014 ident: 5187_CR21 publication-title: Science doi: 10.1126/science.1245125 – volume: 154 start-page: 228–239 year: 2013 ident: 5187_CR47 publication-title: Cell doi: 10.1016/j.cell.2013.06.006 – volume: 9 start-page: e51787 year: 2020 ident: 5187_CR9 publication-title: eLife doi: 10.7554/eLife.51787 – volume: 22 start-page: 851 year: 2013 ident: 5187_CR58 publication-title: Protein Sci. doi: 10.1002/pro.2253 – volume: 21 start-page: 2877 year: 2002 ident: 5187_CR27 publication-title: EMBO J. doi: 10.1093/emboj/cdf291 – volume: 553 start-page: 342 year: 2018 ident: 5187_CR26 publication-title: Nature doi: 10.1038/nature25184 – volume: 30 start-page: 381 year: 2020 ident: 5187_CR49 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.11.058 – volume: 9 start-page: 342 year: 2011 ident: 5187_CR50 publication-title: Assay Drug Dev. Technol. doi: 10.1089/adt.2011.0380 – volume: 4 start-page: 1104 year: 2015 ident: 5187_CR24 publication-title: F1000Res. doi: 10.12688/f1000research.7143.1 – volume: 175 start-page: 982 year: 2017 ident: 5187_CR30 publication-title: Plant Physiol. doi: 10.1104/pp.17.00733 – ident: 5187_CR54 doi: 10.21769/BioProtoc.2044 – volume: 13 start-page: a039891 year: 2021 ident: 5187_CR11 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a039891 – volume: 64 start-page: 2255 year: 2013 ident: 5187_CR31 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert085 – volume: 7 start-page: 1229 year: 2021 ident: 5187_CR33 publication-title: Nat. Plants doi: 10.1038/s41477-021-00969-z – volume: 53 start-page: 43 year: 2020 ident: 5187_CR7 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2019.10.003 – volume: 9 year: 2018 ident: 5187_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03582-5 – volume: 143 start-page: 111 year: 2010 ident: 5187_CR14 publication-title: Cell doi: 10.1016/j.cell.2010.09.027 – volume: 568 start-page: 240 year: 2019 ident: 5187_CR10 publication-title: Nature doi: 10.1038/s41586-019-1069-7 – volume: 6 year: 2016 ident: 5187_CR36 publication-title: Sci. Rep. doi: 10.1038/srep33754 – volume: 6 start-page: 447 year: 2010 ident: 5187_CR41 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.103 – reference: 36076023 - Nature. 2022 Sep;609(7927):475-476. doi: 10.1038/d41586-022-02339-x. |
| SSID | ssj0005174 |
| Score | 2.6706452 |
| Snippet | The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 575 |
| SubjectTerms | 14/19 14/28 38/70 631/208/2491 631/449/2675 82/103 96/35 96/44 Acids Apoplast Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Auxins Cell surface Cytoplasmic Streaming H+-transporting ATPase Humanities and Social Sciences Hydrogen-Ion Concentration Indoleacetic Acids - metabolism Ion flux Ion fluxes Kinases Localization multidisciplinary Mutants Mutation Perception Phosphorylation Plant Growth Regulators - metabolism Plant hormones Plasma Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteins Proton-Translocating ATPases - metabolism Receptors Science Science (multidisciplinary) |
| Title | ABP1–TMK auxin perception for global phosphorylation and auxin canalization |
| URI | https://link.springer.com/article/10.1038/s41586-022-05187-x https://www.ncbi.nlm.nih.gov/pubmed/36071161 https://www.proquest.com/docview/2715491460 https://www.proquest.com/docview/2711843278 |
| Volume | 609 |
| WOSCitedRecordID | wos000851357500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RFiQulJY_0xIZiQMI3MZrO7s-oaZqhRQ5WKWgiIu1v6JS5YQ4QeHGO_CGfZLOrjeJoKIXDv4ky2N75ZnZ_bw7OwPwyqRC6kxnUWbslhylRISDAo-QnPRSo3VOesIVm6DDIRuN8tJPuDU-rHLZJ7qOWo2lnSM_JNQmE0O_7r6ffI9s1Si7uupLaGzAFhJlZh2zIMU6xOOvLMx-00w3YYcNDlzMht-SCMXQ0RZ_Dkw32OaNlVI3AJ1u_2_TH8IDTz3Do9ZWduCOrnfhngsBlc0u7Hg3b8LXPhf1m0dQHPXL-OrX7_NiEPL54qIOJ6tImBD5btgmFAkn38YNHtOfbWhdyGvl5W1U2aXf7PkYPp-enB9_iHwFhkgiTZpFglCeCZ1iL2CYrWSVmVSm1JI0o4kwhmuhMsZNnuoe1xq5osI_3lSqxAiemOQJbNbjWj-DkCrFbfo5YoRBEiTylOc9LnUsUyJlogKIl5-_kj49ua2ScVm5ZfKEVa3KKlRZ5VRWLQJ4u7pn0ibnuFV6f6meyjtqU611E8DL1WV0Mbtuwms9njsZWxWHUBbA09YaVq9LbH4-ZM0BvFuax_rh_27L89vbsgf3iTPNPIqzfdicTef6BdyVP2YXzbQDG_Tsi8URdcgQ2XHcga3-ybA8w7NB_wCx6A46ziEcfnRYWqQtfkIss6_XBvMOZA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQQboOVlKDBIIIFg1GY8ju0FQuVRtUoTughSd8M8RaXKCXEC6Y5_4D_4KL6EO-NxIqjorgsWXnk8fsy5L8-59wI8cVxpm9mMZs6n5BijKBoFSdE56XJnbcm6KjSbyAeD4vCwPFiBn20ujKdVtjoxKGoz0v4f-SbLfTExlOut1-Mv1HeN8rurbQuNBhY9e_INQ7b61d47XN-njO28H77dpbGrANVo-qdUsVxmynJEtit8d6bMcc1z73g4y5Rz0iqTFdKV3Haltej_GIziuDapUzJ1Kc57AS5yHwl5qiD7sKSU_FX1OSbpbKXFZo2GsvB0X0ZxGAr2_E9DeMq7PbUzGwzezvX_7VPdgGvRtSbbjSyswYqt1uFyoLjqeh3WohqrybNYa_v5Tehvvzno_Pr-Y9jvETmbH1VkvGD6EPTnSVMwhYw_j2o8JicNdZDIysTxnjV3HJNZb8HHc3nB27BajSp7F0hujPTl9ZhTDp08VXJZdqW2Hc2Z1qlJoNMut9Cx_LrvAnIsAg0gLUQDEYEQEQEiYp7Ai8U146b4yJmjN1o4iKiIarHEQgKPF6dRhfh9IVnZ0SyM8V1_WF4kcKdB3-J2qa8_iFFBAi9bOC4n__ez3Dv7WR7Bld1hf1_s7w169-EqC2JR0k62AavTycw-gEv66_SonjwMAkbg03nD9DcUnWHp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V8iMuQAttDQUWCSQQXaVZr2P7gFChRFShUQ5Fqnox-ysqVU6Ikza98Q68DY_DkzC7XieCit564OCTx-uf_WZ2xvvNDMBzy6UyiUloYl1KjtaS4qIgKDonHW6NyVlH-mYTab-fHR7mgyX42eTCOFplYxO9odZD5f6Rt1jqiomhXm-3bKBFDHa7b0ffqOsg5XZam3YaNUR65vwMw7fqzd4uzvULxrofDt5_pKHDAFXoBkyoZKlIpOGIcpu5Tk2J5YqnzgmxhklrhZE6yYTNuekIY9AX0hjRcaVjK0VsYxz3GlxPMcZ0dMJBcrSgl_xVATok7GzHWavCRTNz1F9GUQyVfPbnonjB072wS-sXv-7d__mz3YM7weUmO7WOrMCSKVfhpqe-qmoVVoJ5q8jLUIP71X3Y33k3aP_6_uNgv0fEdHZcktGcAUTQzyd1IRUy-jqs8Bif15RCIkod5B2b7iQkuT6Az1fygmuwXA5LswEk1Vq4snvMSovOn8y5yDtCmbbiTKlYR9Bupr5QoSy76w5yUnh6QJwVNVwKhEvh4VLMIng9v2ZUFyW5VHqzgUYRDFRVLHARwbP5aTQtbr9IlGY49TKuGxBLswjWayTObxe7uoQYLUSw1UBzMfi_n-Xh5c_yFG4hOotPe_3eI7jNvIbktJ1swvJkPDWP4YY6nRxX4yde1wh8uWqU_gYrvmrY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABP1%E2%80%93TMK+auxin+perception+for+global+phosphorylation+and+auxin+canalization&rft.jtitle=Nature+%28London%29&rft.au=Friml%2C+Ji%C5%99%C3%AD&rft.au=Gallei%2C+Michelle&rft.au=Gelov%C3%A1%2C+Zuzana&rft.au=Johnson%2C+Alexander&rft.date=2022-09-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=609&rft.issue=7927&rft.spage=575&rft.epage=581&rft_id=info:doi/10.1038%2Fs41586-022-05187-x&rft.externalDocID=10_1038_s41586_022_05187_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |