Preference Learning for Move Prediction and Evaluation Function Approximation in Othello

This paper investigates the use of preference learning as an approach to move prediction and evaluation function approximation, using the game of Othello as a test domain. Using the same sets of features, we compare our approach with least squares temporal difference learning, direct classification,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational intelligence and AI in games. Jg. 6; H. 3; S. 300 - 313
Hauptverfasser: Runarsson, Thomas Philip, Lucas, Simon M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2014
Schlagworte:
ISSN:1943-068X, 1943-0698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the use of preference learning as an approach to move prediction and evaluation function approximation, using the game of Othello as a test domain. Using the same sets of features, we compare our approach with least squares temporal difference learning, direct classification, and with the Bradley-Terry model, fitted using minorization-maximization (MM). The results show that the exact way in which preference learning is applied is critical to achieving high performance. Best results were obtained using a combination of board inversion and pair-wise preference learning. This combination significantly outperformed the others under test, both in terms of move prediction accuracy, and in the level of play achieved when using the learned evaluation function as a move selector during game play.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1943-068X
1943-0698
DOI:10.1109/TCIAIG.2014.2307272