Biosignal Compression Toolbox for Digital Biomarker Discovery

A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare “data deluge,” leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 21; číslo 2; s. 516
Hlavní autori: Bent, Brinnae, Lu, Baiying, Kim, Juseong, Dunn, Jessilyn P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI 13.01.2021
MDPI AG
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare “data deluge,” leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the “Biosignal Data Compression Toolbox,” an open-source, accessible software platform for compressing biosignal data.
AbstractList A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare "data deluge," leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the "Biosignal Data Compression Toolbox," an open-source, accessible software platform for compressing biosignal data.
A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare "data deluge," leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the "Biosignal Data Compression Toolbox," an open-source, accessible software platform for compressing biosignal data.A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare "data deluge," leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the "Biosignal Data Compression Toolbox," an open-source, accessible software platform for compressing biosignal data.
Author Bent, Brinnae
Dunn, Jessilyn P.
Lu, Baiying
Kim, Juseong
AuthorAffiliation 2 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
1 Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; brinnae.bent@duke.edu (B.B.); baiying.lu@duke.edu (B.L.); juseong.kim@duke.edu (J.K.)
AuthorAffiliation_xml – name: 2 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
– name: 1 Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; brinnae.bent@duke.edu (B.B.); baiying.lu@duke.edu (B.L.); juseong.kim@duke.edu (J.K.)
Author_xml – sequence: 1
  givenname: Brinnae
  orcidid: 0000-0002-7039-0177
  surname: Bent
  fullname: Bent, Brinnae
– sequence: 2
  givenname: Baiying
  orcidid: 0000-0002-6345-235X
  surname: Lu
  fullname: Lu, Baiying
– sequence: 3
  givenname: Juseong
  orcidid: 0000-0002-0576-5956
  surname: Kim
  fullname: Kim, Juseong
– sequence: 4
  givenname: Jessilyn P.
  orcidid: 0000-0002-3241-8183
  surname: Dunn
  fullname: Dunn, Jessilyn P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33450898$$D View this record in MEDLINE/PubMed
BookMark eNptkTlPAzEQhS0E4ggU_AGUEoqAz41dgAThlJBo0luzPoJhsw72JoJ_jyEQAaKyNfP5vfG8HbTextYhtE_wMWMKn2RKMMWCVGtom3DKB5JSvP7jvoV2cn7CmDLG5CbaYowLLJXcRqcXIeYwaaHpj-J0llzOIbb9cYxNHV_7Pqb-ZZiErvQLOYX07D4q2cSFS2-7aMNDk93e19lD4-ur8eh2cP9wczc6vx8Yzkk3ACK9UNR6K6wjaii9sYxXrJZGUlIprpw11HIPmFsCILnFmLAhGGwYcNZDd0tZG-FJz1Ioc7zpCEF_FmKaaEhdMI3TikkragNMVpSDsBKYEpxQ4LVXvvy_h86WWrN5PS22ru0SNL9Ef3fa8KgncaGHksqy7SJw-CWQ4svc5U5Pyzpc00Dr4jxryodSyIqJqqAHP71WJt_rL8DREjAp5pycXyEE649o9Srawp78YU2JpStplTFD88-Ld-HVpPU
CitedBy_id crossref_primary_10_1007_s11227_022_04535_y
crossref_primary_10_3389_fpsyt_2021_740292
crossref_primary_10_3390_sym14061139
crossref_primary_10_1146_annurev_bioeng_103020_040136
Cites_doi 10.1007/s11277-019-06513-9
10.1016/j.measurement.2017.11.006
10.1038/s41746-019-0217-7
10.3390/app10175842
10.1186/2047-2501-2-3
10.1016/j.compbiomed.2017.05.024
10.1016/j.bspc.2018.06.009
10.1117/12.2299967
10.1017/cts.2020.511
10.3390/s19112450
10.1109/TCAD.2003.811452
10.2217/pme-2018-0044
10.9790/0661-1161519
10.1111/j.1467-8659.2008.01309.x
10.1109/TNSRE.2018.2826559
10.3390/s19163445
10.1109/TMC.2010.264
10.1002/mp.13886
10.1007/s10470-018-1323-1
10.1109/10.730435
10.1038/s41746-020-0226-6
10.1017/cts.2020.526
10.1016/j.medengphy.2005.02.007
10.1109/TBME.2018.2883396
10.1088/1361-6579/aa5efa
10.1109/TBME.2011.2156794
10.1016/j.measurement.2018.10.061
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21020516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_938d5bca38624a5d8a395412a4bf9f23
PMC7828339
33450898
10_3390_s21020516
Genre Letter
Correspondence
GrantInformation_xml – fundername: Chan Zuckerberg Initiative
  grantid: 2020-218599
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c441t-a18f592dfd5de1978fcd3463b8c8216949edc2d4fa04d1aa84d00137ac0c3a43
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000611694000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:44:15 EDT 2025
Tue Nov 04 01:48:02 EST 2025
Sun Nov 09 13:05:35 EST 2025
Thu Apr 03 07:06:47 EDT 2025
Tue Nov 18 21:57:45 EST 2025
Sat Nov 29 07:15:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords accelerometry
data compression
electrocardiogram
data
photoplethysmography
biosignal
electrodermal activity
wearables
data compression algorithms
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-a18f592dfd5de1978fcd3463b8c8216949edc2d4fa04d1aa84d00137ac0c3a43
Notes content type line 23
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
ORCID 0000-0002-7039-0177
0000-0002-6345-235X
0000-0002-3241-8183
0000-0002-0576-5956
OpenAccessLink https://doaj.org/article/938d5bca38624a5d8a395412a4bf9f23
PMID 33450898
PQID 2478586356
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_938d5bca38624a5d8a395412a4bf9f23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7828339
proquest_miscellaneous_2478586356
pubmed_primary_33450898
crossref_primary_10_3390_s21020516
crossref_citationtrail_10_3390_s21020516
PublicationCentury 2000
PublicationDate 20210113
PublicationDateYYYYMMDD 2021-01-13
PublicationDate_xml – month: 1
  year: 2021
  text: 20210113
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Mueller (ref_11) 1978; Volume 14
Hejrati (ref_31) 2017; 87
Sadhukhan (ref_20) 2019; 134
Choi (ref_12) 2017; 38
Mukhopadhyay (ref_19) 2019; 66
Rajankar (ref_28) 2019; 98
ref_36
Mahadevan (ref_6) 2020; 3
Wu (ref_21) 2011; 10
ref_35
ref_34
Dhar (ref_18) 2018; 116
ref_33
ref_10
Jas (ref_29) 2003; 22
Schueler (ref_8) 2019; 6
Dunn (ref_9) 2018; 15
(ref_32) 2005; 27
Raghupathi (ref_4) 2014; 2
ref_15
ref_37
Shaw (ref_24) 2018; 26
Arefan (ref_7) 2020; 47
Jha (ref_25) 2018; 46
Lee (ref_17) 2011; 58
ref_23
Gu (ref_22) 2009; 28
ref_1
ref_3
ref_2
Chen (ref_16) 1998; 45
Bej (ref_13) 2013; 11
ref_26
(ref_14) 2019; 9
ref_5
(ref_27) 2019; 108
Bent (ref_30) 2020; 3
References_xml – ident: ref_3
– volume: 108
  start-page: 2137
  year: 2019
  ident: ref_27
  article-title: An Efficient Algorithm Based on Combined Encoding Techniques for Compression of ECG Data from Multiple Leads
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06513-9
– volume: 116
  start-page: 533
  year: 2018
  ident: ref_18
  article-title: An efficient data compression and encryption technique for PPG signal
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2017.11.006
– ident: ref_26
– ident: ref_34
– volume: 3
  start-page: 5
  year: 2020
  ident: ref_6
  article-title: Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0217-7
– ident: ref_35
  doi: 10.3390/app10175842
– volume: 2
  start-page: 3
  year: 2014
  ident: ref_4
  article-title: Big data analytics in healthcare: Promise and potential
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1186/2047-2501-2-3
– volume: 87
  start-page: 87
  year: 2017
  ident: ref_31
  article-title: A new near-lossless EEG compression method using ANN-based reconstruction technique
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.05.024
– volume: 46
  start-page: 174
  year: 2018
  ident: ref_25
  article-title: Electrocardiogram data compression using DCT based discrete orthogonal Stockwell transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.06.009
– ident: ref_15
  doi: 10.1117/12.2299967
– ident: ref_37
– volume: Volume 14
  start-page: 81
  year: 1978
  ident: ref_11
  article-title: Arrhythmia Detection Program for an Ambulatory Ecg Monitor
  publication-title: Proceedings of the Biomedical Sciences Instrumentation
– ident: ref_1
– ident: ref_10
  doi: 10.1017/cts.2020.511
– ident: ref_23
  doi: 10.3390/s19112450
– volume: 22
  start-page: 797
  year: 2003
  ident: ref_29
  article-title: An efficient test vector compression scheme using selective huffman coding
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2003.811452
– volume: 15
  start-page: 429
  year: 2018
  ident: ref_9
  article-title: Wearables and the medical revolution
  publication-title: Pers. Med.
  doi: 10.2217/pme-2018-0044
– volume: 11
  start-page: 15
  year: 2013
  ident: ref_13
  article-title: Comparison Study of Lossless Data Compression Algorithms for Text Data
  publication-title: IOSR-JCE
  doi: 10.9790/0661-1161519
– volume: 28
  start-page: 1
  year: 2009
  ident: ref_22
  article-title: Compression of Human Motion Capture Data Using Motion Pattern Indexing
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2008.01309.x
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_14
  article-title: Effective high compression of ECG signals at low level distortion
  publication-title: Sci. Rep.
– volume: 26
  start-page: 957
  year: 2018
  ident: ref_24
  article-title: Highly efficient compression algorithms for multichannel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2826559
– ident: ref_33
– ident: ref_36
  doi: 10.3390/s19163445
– ident: ref_2
– volume: 10
  start-page: 1459
  year: 2011
  ident: ref_21
  article-title: Data compression by temporal and spatial correlations in a body-area sensor network: A case study in pilates motion recognition
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2010.264
– volume: 47
  start-page: 110
  year: 2020
  ident: ref_7
  article-title: Deep learning modeling using normal mammograms for predicting breast cancer risk
  publication-title: Med. Phys.
  doi: 10.1002/mp.13886
– volume: 98
  start-page: 59
  year: 2019
  ident: ref_28
  article-title: An electrocardiogram signal compression techniques: A comprehensive review
  publication-title: Analog Integr. Circuits Signal Process.
  doi: 10.1007/s10470-018-1323-1
– volume: 45
  start-page: 1414
  year: 1998
  ident: ref_16
  article-title: A wavelet transform-based ECG compression method guaranteeing desired signal quality
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.730435
– volume: 3
  start-page: 18
  year: 2020
  ident: ref_30
  article-title: Investigating sources of inaccuracy in wearable optical heart rate sensors
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-0226-6
– ident: ref_5
  doi: 10.1017/cts.2020.526
– volume: 27
  start-page: 798
  year: 2005
  ident: ref_32
  article-title: On the use of PRD and CR parameters for ECG compression
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.02.007
– volume: 6
  start-page: 217
  year: 2019
  ident: ref_8
  article-title: Editorial: Can Digital Technology Advance the Development of Treatments for Alzheimer’s Disease?
  publication-title: J. Prev. Alzheimer’s Dis.
– volume: 66
  start-page: 2081
  year: 2019
  ident: ref_19
  article-title: Compression of Steganographed PPG Signal with Guaranteed Reconstruction Quality Based on Optimum Truncation of Singular Values and ASCII Character Encoding
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2883396
– volume: 38
  start-page: 586
  year: 2017
  ident: ref_12
  article-title: Photoplethysmography sampling frequency: Pilot assessment of how low can we go to analyze pulse rate variability with reliability?
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa5efa
– volume: 58
  start-page: 2448
  year: 2011
  ident: ref_17
  article-title: A real-time ECG data compression and transmission algorithm for an e-health device
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2156794
– volume: 134
  start-page: 153
  year: 2019
  ident: ref_20
  article-title: Adaptive Band Limit Estimation based PPG data compression for portable home monitors
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2018.10.061
SSID ssj0023338
Score 2.3665714
Snippet A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 516
SubjectTerms Algorithms
biosignal
data
Data Compression
data compression algorithms
electrocardiogram
Electrocardiography
Letter
Photoplethysmography
Signal Processing, Computer-Assisted
Wavelet Analysis
wearables
Title Biosignal Compression Toolbox for Digital Biomarker Discovery
URI https://www.ncbi.nlm.nih.gov/pubmed/33450898
https://www.proquest.com/docview/2478586356
https://pubmed.ncbi.nlm.nih.gov/PMC7828339
https://doaj.org/article/938d5bca38624a5d8a395412a4bf9f23
Volume 21
WOSCitedRecordID wos000611694000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4UAPFd9NgVVAHLhETTxObB8p3QokulqhPSynyLHjslJJUHeL4MJvZybJrnarSly45OCMlMmMLc9zXt4AvPUoq1qkdRIkykTKIBODNiTK14iFCspWnWT-ZzWZ6PncTLdafTEnrJcH7gN3bFD7vHIW-U8Gm3tt0eQyE1ZWwQTR6XymyqzB1AC1kJBXryOEBOqPlwxsaPoVO7tPJ9J_W2V5kyC5teOcPYSDoVSM3_cuPoI7dfMY9rcEBJ8An9EyA4PMeGH3nNYmnrXtZdX-iqkgjU8XF9wXJCbL70zF4ZGlY-Lm76cwOxvPPnxMhoYIiaOqZZXYTIfcCB987uuM8F9wFOsCK-20yAojDbksvAw2lT6zVkvf6YZalzq0Ep_BXtM29SHEFZrCC2PT1AlZpGi84gNiFww6Kao0gnfrOJVuEAvnnhWXJYEGDmm5CWkEbzamP3qFjNuMTjjYGwMWte4GKNXlkOryX6mO4PU6VSUtAv6yYZu6vV6WQiqda5bai-B5n7rNoxAlFaFGR6B2krrjy-6dZvGtE9qm6knTexz9D-dfwAPBdJg0SzJ8CXurq-v6Fdx3P1eL5dUI7qq56q56BPdOxpPpl1E3o-l6_mdMY9NP59OvfwFsjvta
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosignal+Compression+Toolbox+for+Digital+Biomarker+Discovery&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Bent%2C+Brinnae&rft.au=Lu%2C+Baiying&rft.au=Kim%2C+Juseong&rft.au=Dunn%2C+Jessilyn+P&rft.date=2021-01-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=2&rft_id=info:doi/10.3390%2Fs21020516&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon