Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method

A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 22; H. 11; S. 1213
Hauptverfasser: Chen, Shu-Bo, Soradi-Zeid, Samaneh, Jahanshahi, Hadi, Alcaraz, Raúl, Gómez-Aguilar, José Francisco, Bekiros, Stelios, Chu, Yu-Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 26.10.2020
MDPI AG
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a collocation method is applied to convert the time-delay fractional optimal control problem to a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the original one will be finally obtained. In this way, the proposed strategy introduces a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The algorithm’s performance has been analyzed for several non-trivial examples, and the obtained results have shown that this scheme is more accurate, robust, and efficient than most previous methods.
AbstractList A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a collocation method is applied to convert the time-delay fractional optimal control problem to a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the original one will be finally obtained. In this way, the proposed strategy introduces a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The algorithm’s performance has been analyzed for several non-trivial examples, and the obtained results have shown that this scheme is more accurate, robust, and efficient than most previous methods.
A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a collocation method is applied to convert the time-delay fractional optimal control problem to a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the original one will be finally obtained. In this way, the proposed strategy introduces a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The algorithm's performance has been analyzed for several non-trivial examples, and the obtained results have shown that this scheme is more accurate, robust, and efficient than most previous methods.A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More precisely, a set of global radial basis functions are firstly used to approximate the states and control variables in the problem. Then, a collocation method is applied to convert the time-delay fractional optimal control problem to a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the original one will be finally obtained. In this way, the proposed strategy introduces a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The algorithm's performance has been analyzed for several non-trivial examples, and the obtained results have shown that this scheme is more accurate, robust, and efficient than most previous methods.
Author Soradi-Zeid, Samaneh
Gómez-Aguilar, José Francisco
Chu, Yu-Ming
Jahanshahi, Hadi
Chen, Shu-Bo
Alcaraz, Raúl
Bekiros, Stelios
AuthorAffiliation 3 Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; jahanshahi.hadi90@gmail.com
7 Rimini Centre for Economic Analysis (RCEA), LH3079, Wilfrid Laurier University, 75 University Ave W., Waterloo, ON N2L3C5, Canada
2 Faculty of Industry and Mining (khash), University of Sistan and Baluchestan, Zahedan 98155-987, Iran; soradizeid@eng.usb.ac.ir
4 Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha (UCLM), 16071 Cuenca, Spain
8 Department of Mathematics, Huzhou University, Huzhou 313000, China
1 School of Science, Hunan City University, Yiyang 413000, China; shubo.chen@163.com
5 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca C.P. 62490, Morelos, Mexico; jose.ga@cenidet.tecnm.mx
9 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
6 Department o
AuthorAffiliation_xml – name: 7 Rimini Centre for Economic Analysis (RCEA), LH3079, Wilfrid Laurier University, 75 University Ave W., Waterloo, ON N2L3C5, Canada
– name: 8 Department of Mathematics, Huzhou University, Huzhou 313000, China
– name: 2 Faculty of Industry and Mining (khash), University of Sistan and Baluchestan, Zahedan 98155-987, Iran; soradizeid@eng.usb.ac.ir
– name: 6 Department of Economics, European University Institute, Via delle Fontanelle, 18, I-50014 Florence, Italy; stelios.bekiros@eui.eu
– name: 3 Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; jahanshahi.hadi90@gmail.com
– name: 9 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
– name: 4 Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha (UCLM), 16071 Cuenca, Spain
– name: 5 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca C.P. 62490, Morelos, Mexico; jose.ga@cenidet.tecnm.mx
– name: 1 School of Science, Hunan City University, Yiyang 413000, China; shubo.chen@163.com
Author_xml – sequence: 1
  givenname: Shu-Bo
  surname: Chen
  fullname: Chen, Shu-Bo
– sequence: 2
  givenname: Samaneh
  orcidid: 0000-0001-5918-915X
  surname: Soradi-Zeid
  fullname: Soradi-Zeid, Samaneh
– sequence: 3
  givenname: Hadi
  surname: Jahanshahi
  fullname: Jahanshahi, Hadi
– sequence: 4
  givenname: Raúl
  orcidid: 0000-0002-0942-3638
  surname: Alcaraz
  fullname: Alcaraz, Raúl
– sequence: 5
  givenname: José Francisco
  orcidid: 0000-0001-9403-3767
  surname: Gómez-Aguilar
  fullname: Gómez-Aguilar, José Francisco
– sequence: 6
  givenname: Stelios
  surname: Bekiros
  fullname: Bekiros, Stelios
– sequence: 7
  givenname: Yu-Ming
  orcidid: 0000-0002-0944-2134
  surname: Chu
  fullname: Chu, Yu-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33286981$$D View this record in MEDLINE/PubMed
BookMark eNplkktP3TAQhS1Exass-ANVlu0ixY_EsTeV4JbbUlEhVXRtzXUmYORrhzhBQv3z9X2AoF155PnOOfbYh2Q3xICEnDD6WQhNT5FzxhhnYoccMKp1WQlKd1_V--QwpXtKueBM7pF9IbiSWrED8ue6H90SfDGLYRyiL2JX3Lglll_Rw1MxH8COLoYMXDxMsCpT8eiggOJHdGEszvreO7turKS_oHWZPYfkUjGfgt0oILQ5wPu4JX_ieBfb9-RdBz7h8XY9Ir_nFzez7-XV9bfL2dlVaauKjaVGWXOoW-Sy08CkpVXTdKrmXd0KphltREsBlKRCLaBBWndKW15TFICVasQRudz4thHuTT_k-w5PJoIz64043BoYRmc9mk5KQZWmknKoJCiNtZaLSknJ2goWXfb6svHqp8USW4t5auDfmL7tBHdnbuOjaRrGtFwd5uPWYIgPE6bRLF2y6D0EjFMyvJJKCKmozuiH11kvIc-vl4HTDWCHmNKAnbFuXE84RztvGDWr_2Fe_kdWfPpH8Wz6P_sX4NO5sw
CitedBy_id crossref_primary_10_1016_j_ast_2021_107293
crossref_primary_10_1016_j_chaos_2021_110881
crossref_primary_10_1016_j_chaos_2023_113878
crossref_primary_10_1016_j_matcom_2021_12_001
crossref_primary_10_1016_j_chaos_2021_110681
crossref_primary_10_3390_e23050610
crossref_primary_10_1016_j_chaos_2022_112883
crossref_primary_10_1080_10255842_2022_2040489
crossref_primary_10_1007_s40314_022_01810_9
crossref_primary_10_1007_s00034_023_02513_0
crossref_primary_10_1002_mma_9178
crossref_primary_10_1016_j_seta_2022_102667
crossref_primary_10_3390_math11020477
crossref_primary_10_3389_fenrg_2021_789316
crossref_primary_10_1016_j_cnsns_2022_106581
crossref_primary_10_3390_math10020165
crossref_primary_10_1080_10255842_2022_2050222
crossref_primary_10_32604_cmes_2022_022177
crossref_primary_10_1016_j_ecocom_2021_100943
crossref_primary_10_1177_10775463221147715
crossref_primary_10_1016_j_physa_2021_126100
crossref_primary_10_1016_j_cam_2022_114952
crossref_primary_10_1016_j_chaos_2023_113964
crossref_primary_10_1177_01423312211053321
crossref_primary_10_1007_s11071_022_07371_0
crossref_primary_10_1016_j_chaos_2020_110576
crossref_primary_10_1088_1402_4896_acfacc
crossref_primary_10_1002_mma_8492
crossref_primary_10_1002_mma_9085
crossref_primary_10_1016_j_apm_2022_04_006
crossref_primary_10_1016_j_chaos_2022_112093
crossref_primary_10_1016_j_seta_2022_102534
crossref_primary_10_1515_phys_2022_0033
crossref_primary_10_3390_fractalfract6050279
crossref_primary_10_1016_j_cam_2022_114606
crossref_primary_10_1007_s12346_021_00520_7
crossref_primary_10_1016_j_chaos_2021_110776
crossref_primary_10_1016_j_matcom_2022_12_032
crossref_primary_10_1177_10775463211051447
Cites_doi 10.1007/s40314-013-0089-4
10.1007/978-3-319-58356-3
10.1016/j.robot.2016.10.015
10.1007/s11075-017-0363-4
10.1007/s11071-004-3744-x
10.1016/j.ces.2014.06.033
10.1002/oca.4660130103
10.1093/imamci/dnx063
10.1007/s11071-016-2983-y
10.1016/j.aej.2020.04.029
10.1109/TAC.2005.861718
10.1007/s40995-017-0420-9
10.1002/asjc.1858
10.1016/j.chaos.2019.05.008
10.1002/asjc.1371
10.1002/1099-1514(200005/06)21:3<91::AID-OCA669>3.0.CO;2-C
10.1016/j.cam.2018.10.058
10.1007/s10957-011-9932-1
10.1007/s40314-014-0142-y
10.1177/1077546317705041
10.1016/j.jmr.2007.11.007
10.1177/0142331218819048
10.1016/j.cam.2017.09.031
10.1137/0316013
10.1016/S0378-4371(02)01048-8
10.1007/s40995-017-0373-z
10.1016/j.apnum.2019.03.005
10.11121/ijocta.01.2018.00442
10.1016/j.physa.2019.123731
10.1007/s10957-009-9548-x
10.1016/j.amc.2006.06.075
10.1049/ip-d.1983.0003
10.1016/j.amc.2018.10.058
10.1016/j.jfranklin.2003.12.011
10.1007/s40314-019-1003-5
10.1007/s40314-017-0424-2
10.1016/j.cnsns.2018.04.019
10.1177/1077546318777338
10.1002/9783527622979
10.1177/1077546307087435
10.1007/s11071-007-9322-2
10.1177/1077546316687936
10.1007/978-3-642-60185-9_24
10.1007/s10092-015-0160-1
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e22111213
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_f6630890602a46a89e596b48661d4abf
PMC7711967
33286981
10_3390_e22111213
Genre Journal Article
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-9e652a5de26f9a16c0477f852f5d3191073d0aa86038ba7e05f89c250e3ae4873
IEDL.DBID DOA
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592868700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:53:03 EDT 2025
Tue Nov 04 01:49:33 EST 2025
Thu Sep 04 15:12:21 EDT 2025
Thu Jan 02 22:58:00 EST 2025
Tue Nov 18 22:13:38 EST 2025
Sat Nov 29 07:16:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords radial basis function
fractional optimal control problem
direct optimization
nonlinear programming problem
collocation points
delay system
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-9e652a5de26f9a16c0477f852f5d3191073d0aa86038ba7e05f89c250e3ae4873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5918-915X
0000-0001-9403-3767
0000-0002-0944-2134
0000-0002-0942-3638
OpenAccessLink https://doaj.org/article/f6630890602a46a89e596b48661d4abf
PMID 33286981
PQID 2468336809
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f6630890602a46a89e596b48661d4abf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7711967
proquest_miscellaneous_2468336809
pubmed_primary_33286981
crossref_citationtrail_10_3390_e22111213
crossref_primary_10_3390_e22111213
PublicationCentury 2000
PublicationDate 20201026
PublicationDateYYYYMMDD 2020-10-26
PublicationDate_xml – month: 10
  year: 2020
  text: 20201026
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Youssri (ref_15) 2018; 8
Jesus (ref_9) 2008; 54
Raberto (ref_6) 2002; 314
Rahimkhani (ref_19) 2018; 77
Zeid (ref_17) 2017; 37
Wang (ref_43) 2007; 184
ref_52
Magin (ref_1) 2008; 190
Rahimkhani (ref_28) 2016; 86
Hosseinpour (ref_39) 2018; 351
Dehghan (ref_30) 2015; 34
Xu (ref_12) 2019; 142
Youssri (ref_11) 2019; 43
ref_24
Dadebo (ref_46) 1992; 13
Chen (ref_47) 2000; 21
Rahimkhani (ref_21) 2018; 42
Moradi (ref_38) 2020; 22
Diwekar (ref_10) 2014; 117
(ref_14) 2020; 39
Bhrawy (ref_26) 2016; 53
Mirinejad (ref_34) 2017; 87
Haddadi (ref_41) 2012; 153
Khellat (ref_50) 2009; 143
Bohannan (ref_8) 2008; 14
Ziaei (ref_31) 2018; 36
Banks (ref_44) 1978; 16
ref_36
ref_35
Moradi (ref_27) 2018; 25
ref_32
Basin (ref_49) 2006; 51
Wahi (ref_23) 2004; 38
Ghomanjani (ref_40) 2013; 33
Zeid (ref_16) 2019; 125
Rao (ref_45) 1983; Volume 130
Mohammadi (ref_13) 2018; 339
Tian (ref_22) 2020; 545
ref_37
Yong (ref_33) 2008; 29
Safaie (ref_25) 2014; 34
Marzban (ref_48) 2004; 341
Safaie (ref_51) 2014; 4
Rabiei (ref_29) 2017; 24
Sun (ref_3) 2018; 64
Chen (ref_20) 2019; 348
Sabermahani (ref_42) 2019; 41
ref_2
Zamani (ref_7) 2007; 10
Jajarmi (ref_53) 2017; 19
ref_5
ref_4
Ghassabzadeh (ref_18) 2020; 3
References_xml – volume: 33
  start-page: 687
  year: 2013
  ident: ref_40
  article-title: Optimal control of time-varying linear delay systems based on the Bezier curves
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-013-0089-4
– ident: ref_37
  doi: 10.1007/978-3-319-58356-3
– ident: ref_5
– ident: ref_32
– volume: 87
  start-page: 219
  year: 2017
  ident: ref_34
  article-title: An RBF collocation method for solving optimal control problems
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.10.015
– volume: 77
  start-page: 1283
  year: 2018
  ident: ref_19
  article-title: Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0363-4
– volume: 38
  start-page: 3
  year: 2004
  ident: ref_23
  article-title: Averaging oscillations with small fractional damping and delayed terms
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-004-3744-x
– volume: 117
  start-page: 239
  year: 2014
  ident: ref_10
  article-title: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution of fractional optimal control problems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.06.033
– volume: 29
  start-page: 397
  year: 2008
  ident: ref_33
  article-title: A survey of numerical methods for trajectory optimization of spacecraft
  publication-title: J. Astronaut.
– ident: ref_35
– volume: 13
  start-page: 29
  year: 1992
  ident: ref_46
  article-title: Optimal control of time-delay systems by dynamic programming
  publication-title: Optim. Control Methods
  doi: 10.1002/oca.4660130103
– volume: 36
  start-page: 713
  year: 2018
  ident: ref_31
  article-title: The approximate solution of non-linear time-delay fractional optimal control problems by embedding process
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/dnx063
– volume: 86
  start-page: 1649
  year: 2016
  ident: ref_28
  article-title: An efficient approximate method for solving delay fractional optimal control problems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2983-y
– ident: ref_24
  doi: 10.1016/j.aej.2020.04.029
– volume: 51
  start-page: 91
  year: 2006
  ident: ref_49
  article-title: Optimal control for linear systems with multiple time delays in control input
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2005.861718
– volume: 43
  start-page: 543
  year: 2019
  ident: ref_11
  article-title: Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence
  publication-title: Iran. J. Sci. Technol. Trans. Sci.
  doi: 10.1007/s40995-017-0420-9
– volume: 22
  start-page: 204
  year: 2020
  ident: ref_38
  article-title: A Comparative Approach for Time-Delay Fractional Optimal Control Problems: Discrete Versus Continuous Chebyshev Polynomials
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1858
– volume: 3
  start-page: 127
  year: 2020
  ident: ref_18
  article-title: Numerical Method for Approximate Solutions of Fractional Differential Equations with Time-Delay
  publication-title: Int. J. Ind. Electron. Control. Optim.
– volume: 125
  start-page: 171
  year: 2019
  ident: ref_16
  article-title: Approximation methods for solving fractional equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.05.008
– volume: 4
  start-page: 77
  year: 2014
  ident: ref_51
  article-title: An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials
  publication-title: Iran. J. Numer. Anal. Optim.
– volume: 19
  start-page: 554
  year: 2017
  ident: ref_53
  article-title: An efficient finite difference method for the time-delay optimal control problems with time-varying delay
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1371
– volume: 21
  start-page: 91
  year: 2000
  ident: ref_47
  article-title: Numerical solution of time-delayed optimal control problems by iterative dynamic programming
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/1099-1514(200005/06)21:3<91::AID-OCA669>3.0.CO;2-C
– volume: 351
  start-page: 344
  year: 2018
  ident: ref_39
  article-title: Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.10.058
– volume: 153
  start-page: 338
  year: 2012
  ident: ref_41
  article-title: Optimal control of delay systems by using a hybrid functions approximation
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9932-1
– volume: 34
  start-page: 831
  year: 2014
  ident: ref_25
  article-title: An approximate method for numerically solving multidimensional delay fractional optimal control problems by Bernstein polynomials
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-014-0142-y
– volume: 24
  start-page: 3370
  year: 2017
  ident: ref_29
  article-title: Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems
  publication-title: J. Vib. Control
  doi: 10.1177/1077546317705041
– volume: 190
  start-page: 255
  year: 2008
  ident: ref_1
  article-title: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.11.007
– volume: 41
  start-page: 2997
  year: 2019
  ident: ref_42
  article-title: Fractional-order Lagrange polynomials: An application for solving delay fractional optimal control problems
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331218819048
– volume: 10
  start-page: 169
  year: 2007
  ident: ref_7
  article-title: FOPID controller design for robust performance using particle swarm optimization
  publication-title: J. Frac. Calc. Appl. Anal.
– volume: 339
  start-page: 306
  year: 2018
  ident: ref_13
  article-title: A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.09.031
– volume: 16
  start-page: 169
  year: 1978
  ident: ref_44
  article-title: Hereditary control problems: Numerical methods based on averaging approximations
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0316013
– volume: 314
  start-page: 749
  year: 2002
  ident: ref_6
  article-title: Waitingtimes and returns in high-frequency financial data: An empirical study
  publication-title: Physics A
  doi: 10.1016/S0378-4371(02)01048-8
– volume: 42
  start-page: 2131
  year: 2018
  ident: ref_21
  article-title: Numerical studies for fractional pantograph differential equations based on piecewise fractional-order Taylor function approximations
  publication-title: Iran. J. Sci. Technol. Trans. Sci.
  doi: 10.1007/s40995-017-0373-z
– volume: 142
  start-page: 122
  year: 2019
  ident: ref_12
  article-title: Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.03.005
– volume: 8
  start-page: 152
  year: 2018
  ident: ref_15
  article-title: Spectral tau algorithm for solving a class of fractional optimal control problems via Jacobi polynomials
  publication-title: Int. J. Optim. Control. Theor. Appl.
  doi: 10.11121/ijocta.01.2018.00442
– volume: 545
  start-page: 123731
  year: 2020
  ident: ref_22
  article-title: The resonance behavior in the fractional harmonic oscillator with time delay and fluctuating mass
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123731
– volume: 143
  start-page: 107
  year: 2009
  ident: ref_50
  article-title: Optimal control of linear time-delayed systems by linear Legendre multi-wavelets
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9548-x
– volume: 34
  start-page: 77
  year: 2015
  ident: ref_30
  article-title: A numerical approximation for delay fractional optimal control problems based on the method of moments
  publication-title: IMA J. Math. Control Inf.
– volume: 184
  start-page: 849
  year: 2007
  ident: ref_43
  article-title: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.075
– volume: Volume 130
  start-page: 9
  year: 1983
  ident: ref_45
  article-title: Improved algorithms for parameter identification in continuous systems via Walsh functions
  publication-title: IET Proceedings D-Control Theory and Applications
  doi: 10.1049/ip-d.1983.0003
– volume: 348
  start-page: 465
  year: 2019
  ident: ref_20
  article-title: Piecewise Picard iteration method for solving nonlinear fractional differential equation with proportional delays
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.10.058
– volume: 341
  start-page: 279
  year: 2004
  ident: ref_48
  article-title: Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2003.12.011
– volume: 39
  start-page: 20
  year: 2020
  ident: ref_14
  article-title: Efficient radial basis functions approaches for solving a class of fractional optimal control problems
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-1003-5
– volume: 37
  start-page: 158
  year: 2017
  ident: ref_17
  article-title: Approximation methods for solving fractional optimal control problems
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-017-0424-2
– volume: 64
  start-page: 213
  year: 2018
  ident: ref_3
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 25
  start-page: 310
  year: 2018
  ident: ref_27
  article-title: A direct numerical solution of time-delay fractional optimal control problems by using Chelyshov wavelets
  publication-title: J. Vib. Control
  doi: 10.1177/1077546318777338
– ident: ref_2
  doi: 10.1002/9783527622979
– volume: 14
  start-page: 1487
  year: 2008
  ident: ref_8
  article-title: Analog fractional order controller in temperature and motor control applications
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087435
– volume: 54
  start-page: 263
  year: 2008
  ident: ref_9
  article-title: Fractional control of heat diffusion systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-007-9322-2
– ident: ref_36
– ident: ref_52
  doi: 10.1177/1077546316687936
– ident: ref_4
  doi: 10.1007/978-3-642-60185-9_24
– volume: 53
  start-page: 521
  year: 2016
  ident: ref_26
  article-title: A new Legendre operational technique for delay fractional optimal control problems
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0160-1
SSID ssj0023216
Score 2.4485595
Snippet A novel approach to solve optimal control problems dealing simultaneously with fractional differential equations and time delay is proposed in this work. More...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1213
SubjectTerms collocation points
delay system
direct optimization
fractional optimal control problem
nonlinear programming problem
radial basis function
Title Optimal Control of Time-Delay Fractional Equations via a Joint Application of Radial Basis Functions and Collocation Method
URI https://www.ncbi.nlm.nih.gov/pubmed/33286981
https://www.proquest.com/docview/2468336809
https://pubmed.ncbi.nlm.nih.gov/PMC7711967
https://doaj.org/article/f6630890602a46a89e596b48661d4abf
Volume 22
WOSCitedRecordID wos000592868700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOBSFfFKgZVBHLhETfz2sVt2BYguq_LQcoocxxaRlgQ220oVEr-dcZxduqgSFy45OGPF8ow988XjbxB6YTkz3EmXCqNZCiuRpqVyLLXWV9Kq0rr-btXnd3I2U4uFnl8p9RVywiI9cJy4Iw8uMVM6ExkxTBilHdeiZAr8SsVM6cPuC1HPBkwNUIuSXEQeIQqg_sgRwDmBvGzH-_Qk_ddFln8nSF7xONMDtD-Eivg4DvEuuuGae-jne1jj36D5JOaY49bjcI0jfeWW5hJPV_GiAghMfkQW7w5f1AYb_LatmzU-_nNgHbqeBWqCJR6bru7wFHxc7GGaCodfCu0gedrXmb6PPk0nH09ep0MBhdRClLNOtROcGF45Irw2ubAZk9IrTjyvYOkB8qNVZowSGVWlkS7jXmkLQZGjxgGSoQ_QXtM27hHCtBIWwLIFuKYY96ak1FErvPQ57BmkTNDLzcQWdmAXD0UulgWgjKCDYquDBD3fin6PlBrXCY2DdrYCgQW7bwDbKAbbKP5lGwl6ttFtAasmHIWYxrXnXUGYUJQKlekEPYy63n6KUqKEVnmC5I4V7Ixl901Tf-2ZuaXMYUeTh_9j8I_RHRKwPfhJIp6gvfXq3D1Ft-3Fuu5WI3RTLtQI3RpPZvOzUW_8o5C3-iE8f03gzfzN6fzLbxLGC-E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Control+of+Time-Delay+Fractional+Equations+via+a+Joint+Application+of+Radial+Basis+Functions+and+Collocation+Method&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Shu-Bo+Chen&rft.au=Samaneh+Soradi-Zeid&rft.au=Hadi+Jahanshahi&rft.au=Ra%C3%BAl+Alcaraz&rft.date=2020-10-26&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=22&rft.issue=11&rft.spage=1213&rft_id=info:doi/10.3390%2Fe22111213&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6630890602a46a89e596b48661d4abf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon