Bio-Inspired Optimization Algorithm Associated with Reinforcement Learning for Multi-Objective Operating Planning in Radioactive Environment

This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is convert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomimetics (Basel, Switzerland) Jg. 9; H. 7; S. 438
Hauptverfasser: Kong, Shihan, Wu, Fang, Liu, Hao, Zhang, Wei, Sun, Jinan, Wang, Jian, Yu, Junzhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 17.07.2024
Schlagworte:
ISSN:2313-7673, 2313-7673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future.
AbstractList This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future.
This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future.This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future.
Author Liu, Hao
Wang, Jian
Sun, Jinan
Kong, Shihan
Zhang, Wei
Yu, Junzhi
Wu, Fang
Author_xml – sequence: 1
  givenname: Shihan
  orcidid: 0000-0002-6714-1313
  surname: Kong
  fullname: Kong, Shihan
– sequence: 2
  givenname: Fang
  surname: Wu
  fullname: Wu, Fang
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 5
  givenname: Jinan
  surname: Sun
  fullname: Sun, Jinan
– sequence: 6
  givenname: Jian
  orcidid: 0000-0003-3742-9671
  surname: Wang
  fullname: Wang, Jian
– sequence: 7
  givenname: Junzhi
  orcidid: 0000-0002-6347-572X
  surname: Yu
  fullname: Yu, Junzhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39056879$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQQCNUREvpD3BAkbhwCdixN7aPS9XCSosWVXC2HGeyzCqxF9spgm_oR-PdtAgViZOt8Ztnj2eeFyfOOyiKl5S8ZUyRdy36EUdIaKMignAmnxRnNaOsEo1gJ3_tT4uLGHeEEKqaBefkWXGaBYtGCnVW3L1HX61c3GOArtzsE474yyT0rlwOWx8wfRvLZYzeokmZ-JED5Q2g632wMIJL5RpMcOi2ZQ6Vn6YhYbVpd2AT3kI2Qsi6fPp5MO6IoStvTIfezMSVu8Xg3UH1onjamyHCxf16Xny9vvpy-bFabz6sLpfrynJOU6VaDspSULWooWNG9opB3SjFm87UTFGwsjcMeGdAUGUs72mrBAfWycwu2Hmxmr2dNzu9Dzia8FN7g_oY8GGrTcg_O4BuaiWb1tqG23xrR5SR1HJq6m6R44pl15vZtQ_--wQx6RGjhSFXC36KmhHJhRC1Ehl9_Qjd-Sm4XOlMMSXFgXp1T03tCN2f5z30LANyBmzwMQbotcV0bFkKBgdNiT5MiP53QnJq_Sj1wf6fpN-Fg8TT
CitedBy_id crossref_primary_10_3390_biomimetics9100643
Cites_doi 10.1016/j.knosys.2022.110144
10.1016/j.net.2023.09.012
10.1016/j.jocs.2021.101454
10.1016/j.nucengdes.2017.11.006
10.1016/j.anucene.2015.04.019
10.1016/j.anucene.2018.01.007
10.1109/ICCSCE.2018.8684963
10.1016/j.pnucene.2023.104651
10.31181/dmame622023644
10.1007/s00500-017-2760-y
10.1016/j.cor.2023.106249
10.1016/S0377-2217(99)00284-2
10.1007/978-3-030-34135-0_13
10.1016/j.coche.2022.100878
10.1016/j.jenvrad.2023.107270
10.1016/j.net.2021.05.038
10.1287/ijoc.3.4.376
10.3390/biomimetics8080574
10.1016/j.pnucene.2021.104076
10.1016/j.cie.2020.106778
10.1016/j.cor.2023.106455
10.3390/sym15112048
10.1007/s00521-017-2880-4
10.1109/ICACI58115.2023.10146181
10.1016/j.net.2023.02.005
10.3390/biomimetics8020238
10.1016/j.cor.2021.105400
10.1609/aaai.v37i8.26120
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/biomimetics9070438
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93
39056879
10_3390_biomimetics9070438
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62203015, 62233001, 62203436, 62273351
– fundername: Beijing Natural Science Foundation
  grantid: 4242038
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c441t-9b4e9c1e9272ed3a8f93e269946da2391ec8fa3e4dae719ac4f1b974e3d88f953
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Fri Oct 03 12:51:03 EDT 2025
Thu Oct 02 11:37:43 EDT 2025
Fri Jul 25 11:50:18 EDT 2025
Mon Jul 21 06:08:55 EDT 2025
Tue Nov 18 20:58:02 EST 2025
Sat Nov 29 07:13:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords combinatorial algorithm
radioactive environment planning
improved genetic algorithm
bio-inspired optimization algorithm
reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-9b4e9c1e9272ed3a8f93e269946da2391ec8fa3e4dae719ac4f1b974e3d88f953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6347-572X
0000-0003-3742-9671
0000-0002-6714-1313
OpenAccessLink https://doaj.org/article/62986bcc64cb4ed09a81c41a2d586b93
PMID 39056879
PQID 3084739877
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93
proquest_miscellaneous_3084777297
proquest_journals_3084739877
pubmed_primary_39056879
crossref_citationtrail_10_3390_biomimetics9070438
crossref_primary_10_3390_biomimetics9070438
PublicationCentury 2000
PublicationDate 2024-Jul-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-17
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chao (ref_9) 2018; 115
Alipour (ref_28) 2018; 30
ref_14
Mazyavkina (ref_25) 2021; 134
ref_30
Zheng (ref_23) 2023; 157
Chen (ref_24) 2020; 149
Yasear (ref_29) 2021; 14
Mahmoudinazlou (ref_22) 2024; 162
ref_18
ref_17
Zhang (ref_2) 2023; 159
ref_15
Liu (ref_8) 2015; 83
Reinelt (ref_27) 1991; 3
Toaza (ref_13) 2023; 148
Rehm (ref_1) 2023; 39
Adibel (ref_4) 2021; 53
Zheng (ref_16) 2023; 260
Xie (ref_6) 2022; 144
Mzili (ref_20) 2023; 6
ref_21
Helsgaun (ref_12) 2000; 126
Lee (ref_11) 2024; 56
Zhang (ref_10) 2023; 55
Hatamlou (ref_31) 2018; 22
Panwar (ref_19) 2021; 55
ref_26
Pentreath (ref_3) 2023; 270
Wang (ref_5) 2018; 326
ref_7
References_xml – volume: 260
  start-page: 110144
  year: 2023
  ident: ref_16
  article-title: Reinforced Lin–Kernighan–Helsgaun algorithms for the traveling salesman problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110144
– volume: 56
  start-page: 92
  year: 2024
  ident: ref_11
  article-title: A proposal on multi-agent static path planning strategy for minimizing radiation dose
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2023.09.012
– volume: 55
  start-page: 101454
  year: 2021
  ident: ref_19
  article-title: Transformation operators based grey wolf optimizer for travelling salesman problem
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101454
– volume: 326
  start-page: 79
  year: 2018
  ident: ref_5
  article-title: The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.11.006
– volume: 83
  start-page: 161
  year: 2015
  ident: ref_8
  article-title: Minimum dose method for walking-path planning of nuclear facilities
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.04.019
– volume: 115
  start-page: 73
  year: 2018
  ident: ref_9
  article-title: Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2018.01.007
– ident: ref_30
  doi: 10.1109/ICCSCE.2018.8684963
– volume: 159
  start-page: 104651
  year: 2023
  ident: ref_2
  article-title: Hybrid IACO-A*-PSO optimization algorithm for solving multiobjective path planning problem of mobile robot in radioactive environment
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2023.104651
– volume: 6
  start-page: 150
  year: 2023
  ident: ref_20
  article-title: Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm for solving the traveling salesman problem
  publication-title: Decis. Mak. Appl. Manag. Eng.
  doi: 10.31181/dmame622023644
– volume: 22
  start-page: 8167
  year: 2018
  ident: ref_31
  article-title: Solving travelling salesman problem using black hole algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2760-y
– volume: 157
  start-page: 106249
  year: 2023
  ident: ref_23
  article-title: A reinforced hybrid genetic algorithm for the traveling salesman problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106249
– ident: ref_14
– volume: 126
  start-page: 106
  year: 2000
  ident: ref_12
  article-title: An effective implementation of the Lin-Kernighan traveling salesman heuristic
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00284-2
– volume: 148
  start-page: 110908
  year: 2023
  ident: ref_13
  article-title: A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems
  publication-title: Eur. J. Oper. Res.
– ident: ref_17
  doi: 10.1007/978-3-030-34135-0_13
– volume: 14
  start-page: 136
  year: 2021
  ident: ref_29
  article-title: Fine-tuning the ant colony system algorithm through Harris’s hawk optimizer for travelling salesman problem
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 39
  start-page: 100878
  year: 2023
  ident: ref_1
  article-title: Advanced nuclear energy: The safest and most renewable clean energy
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2022.100878
– volume: 270
  start-page: 107270
  year: 2023
  ident: ref_3
  article-title: Radiological protection, radioecology, and the protection of animals in high-dose exposure situations
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2023.107270
– volume: 53
  start-page: 3505
  year: 2021
  ident: ref_4
  article-title: Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2021.05.038
– volume: 3
  start-page: 376
  year: 1991
  ident: ref_27
  article-title: TSPLIB-A traveling salesman problem library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– ident: ref_21
  doi: 10.3390/biomimetics8080574
– volume: 144
  start-page: 104076
  year: 2022
  ident: ref_6
  article-title: The multi-objective inspection path-planning in radioactive environment based on an improved ant colony optimization algorithm
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.104076
– volume: 149
  start-page: 106778
  year: 2020
  ident: ref_24
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106778
– volume: 162
  start-page: 106455
  year: 2024
  ident: ref_22
  article-title: A hybrid genetic algorithm for the min–max multiple traveling salesman problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106455
– ident: ref_7
  doi: 10.3390/sym15112048
– volume: 30
  start-page: 2935
  year: 2018
  ident: ref_28
  article-title: A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2880-4
– ident: ref_26
  doi: 10.1109/ICACI58115.2023.10146181
– volume: 55
  start-page: 1838
  year: 2023
  ident: ref_10
  article-title: Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2023.02.005
– ident: ref_18
  doi: 10.3390/biomimetics8020238
– volume: 134
  start-page: 105400
  year: 2021
  ident: ref_25
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105400
– ident: ref_15
  doi: 10.1609/aaai.v37i8.26120
SSID ssj0001965440
Score 2.276349
Snippet This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 438
SubjectTerms Algorithms
bio-inspired optimization algorithm
combinatorial algorithm
Genetic algorithms
Heuristic
improved genetic algorithm
Integer programming
Mutation
Optimization algorithms
Optimization techniques
Planning
Radiation
radioactive environment planning
Reinforcement
reinforcement learning
Robots
Traveling salesman problem
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMXXsujsCAjIS7I2iR2bM8JtagruHRXFUh7i1zbKUHbZGm7SPwHfjRjx2mFEHvhak8sRzMez8PzDSFvjKlFaGPBfATVxkuEQWkUUxJ07aUN2ZjYbELNZvriAs5TwG2TnlUOOjEqatfZECM_4RnqUY4esnp_9Z2FrlEhu5paaNwmhwGpDOX8cDKdnc_3URaQpRBZXy3D0b8_CVXtzSoUCG7QLwx5sD9upAjc_29rM946p_f_d78PyL1kb9JxLyAPyS3fPiJH4xZ97dVP-pbGF6AxtH5Efk2ajn1qQ-7dO3qGymSVqjTp-HKJi2-_rujAT6QIMVw69xF71cYwI01wrUuKQzQW97KzxbdeqeKKAcE5zA6tkmjT0rlxTWd6ium-7O4x-XI6_fzhI0vdGphFk2rLYCE82NxDoQrvuNE1cF9IACGdKTjk3uracC-c8SoHY0WdL9Cb8dxppC35E3LQdq1_Rihktc5zx8EpIZR1OuOWOwdlXXrBpRmRfOBYZROUeeiocVmhSxO4XP3N5RF5t_vmqgfyuJF6EgRhRxlAuONAt15W6UxXsgAtF9ZKYfHfXQZG51bkpnAljgMfkeNBNKqkGTbVXi5G5PVuGs90SNSY1nfXiSa4PUjztBe_3U5wv6XUCp7fvPgLcrdA84tFCNBjcrBdX_uX5I79sW0261fpmPwGzYwh6A
  priority: 102
  providerName: ProQuest
Title Bio-Inspired Optimization Algorithm Associated with Reinforcement Learning for Multi-Objective Operating Planning in Radioactive Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/39056879
https://www.proquest.com/docview/3084739877
https://www.proquest.com/docview/3084777297
https://doaj.org/article/62986bcc64cb4ed09a81c41a2d586b93
Volume 9
WOSCitedRecordID wos001276568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdg8MALGow_ZaMyEuIFRUtix_Y9tqgTe6CLKpDKU-TazpZpTdDaTdp32Ife2U7LEAJeeD1fIst39t35fL8j5L3WNfdtLBIXQLXRiCRQaJlIAap2wvhsTGg2IadTNZ9Dea_Vl38TFuGB48IdihyUWBgjuFlwZ1PQKjM807ktkA4B5zOVcC-YOo-gLwXnaaySYRjXH_pq9mbpCwNXGA_6_NcvligA9v_ZywzW5miXPO3dRDqK03tGHrj2OdkbtRgiL2_oBxoeboYb8T1yO2665Lj1KXNn6QmeAcu-uJKOLk47jP7PlnQjBuTwV6905gJkqgm3g7RHWT2lSKKhJjc5WZzHsxD_6IGX_eimwxFtWjrTtul05Jj8rJZ7Qb4dTb5--pz0TRYSg57QOgFcVTCZg1zmzjKtamAuFwBcWJ0zyJxRtWaOW-1kBtrwOltgEOKYVchbsJdkp-1a95pQSGuVZZaBlZxLY1XKDLMWirpwnAk9INlmwSvTI5D7RhgXFUYiXkjV70IakI_bb35E_I2_co-9HLecHjs7EFCjql6jqn9p1IAcbLSg6jf0qmIpmnEGSsoBebcdxq3o8yu6dd1Vz-OjFeR5FbVnOxOcbyGUhDf_Y4b75EmOvlUS8D0PyM768sq9JY_N9bpZXQ7JQzlXQ_JoPJmWs2HYF0P_pLVEWnn8pfx-B_x5F6g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqLRJc-Cs_WwoYCbggq0nsOPEBoS206qrtdlUVqZxSr-0sW3WTspuC-g48C8_IjJPsCiF664GrPYkS58uMZ8YzHyGvtc4F0lgw55tqgxFhKtYJS6RKcycNZmM82UQyGKQnJ2q4Qn61tTB4rLLViV5R29JgjHyTB6BHOXjIyYeLbwxZozC72lJo1LDYc1c_wGWbv-9_gu_7Jop2to8_7rKGVYAZMP0VUyPhlAmdipLIWa7TXHEXSaWEtDriKnQmzTV3wmqXhEobkYcj2HU7blOQRZYIUPmrAsAedMjqsH8w_LKM6igZCxHU1Tmcq2ATq-gnUyxInIMfinm3PyygJwr49-7WW7mde__b-twnd5v9NO3VP8ADsuKKh2StV-iqnF7Rt9SfcPWpgzXyc2tSsn6BZwucpYegLKdNFSrtnY_hZaqvU9riFSQwRk2PnO8ta3wYlTbtaMcUhqgvXmaHo7PaaMAdsUM1zrZUUHRS0CNtJ6WuJbaXZYWPyOcbWZfHpFOUhXtKqAryNAwtVzYRIjE2Dbjh1qo4j53gUndJ2CIkM02rdmQMOc_AZUNUZX-jqkveLa65qBuVXCu9hcBbSGKTcT9QzsZZo7MyGalUjoyRwsC720DpNDQi1JGNYVzxLtlooZg1mm-eLXHYJa8W06CzMBGlC1deNjLo1oHMkxruiyeB541lmqj162_-ktzePT7Yz_b7g71n5E4EW03m251ukE41u3TPyS3zvZrMZy-aX5SS05tG_W-QMoBL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLamgRA3_A1GxwAjATfIamI7jn2BUMdWUQ111QTS7oJrOyVoTbY2A-0deCKejmMnaYUQu9sFt85JFDtfjs_x-fkQeql1zj2NBXGhqTZsIkQlOiWpUDJ3wvhoTCCbSMdjeXKiJhvoV1cL49MqO50YFLWtjD8j77MI9CgDDznt521axGR_-O7snHgGKR9p7eg0Gogcussf4L4t34724Vu_onR48On9B9IyDBADZkBN1JQ7ZWKnaEqdZVrmijkqlOLCaspU7IzMNXPcapfGShuex1OwwB2zEmQ9YwSo_xsw14iGtMHJ-nxHiYTzqKnTYUxFfV9PX8x9aeISPFIfgftjLwyUAf-2c8N-N7z7P6_UPXSntbLxoPkt7qMNVz5AW4NS19X8Er_GIe81BBS20M-9oiKj0mccOIuPQIXO29pUPDidwWTqr3PcoRgk_Mk1Pnah46wJh6u4bVI7wzCEQ0kzOZp-a7YSeKLvW-2vdgRRuCjxsbZFpRuJg3Wx4UP0-VrW5RHaLKvSPUZYRbmMY8uUTTlPjZURM8xaleSJ40zoHoo7tGSmbeDueUROM3DkPMKyvxHWQ29W95w17UuulN7zIFxJ-tbjYaBazLJWk2WCKimmxghuYO42UlrGhsea2gTGFeuh3Q6WWasPl9kakz30YnUZNJkPT-nSVRetjHf2QGa7gf7qTeB9EyFTtXP1w5-jWwD17ONofPgE3aZgf5LQA3UXbdaLC_cU3TTf62K5eBb-VYy-XDfkfwPbOoeT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Optimization+Algorithm+Associated+with+Reinforcement+Learning+for+Multi-Objective+Operating+Planning+in+Radioactive+Environment&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Shihan+Kong&rft.au=Fang+Wu&rft.au=Hao+Liu&rft.au=Wei+Zhang&rft.date=2024-07-17&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=7&rft.spage=438&rft_id=info:doi/10.3390%2Fbiomimetics9070438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon