Bio-Inspired Optimization Algorithm Associated with Reinforcement Learning for Multi-Objective Operating Planning in Radioactive Environment
This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is convert...
Gespeichert in:
| Veröffentlicht in: | Biomimetics (Basel, Switzerland) Jg. 9; H. 7; S. 438 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
17.07.2024
|
| Schlagworte: | |
| ISSN: | 2313-7673, 2313-7673 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future. |
|---|---|
| AbstractList | This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future. This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future.This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is constructed, considering difficulty levels at each operating point. Based on this model, the multi-objective operating planning problem is converted to a variant traveling salesman problem (VTSP). Second, with respect to this issue, a novel combinatorial algorithm framework, namely hyper-parameter adaptive genetic algorithm (HPAGA), integrating bio-inspired optimization with reinforcement learning, is proposed, which allows for adaptive adjustment of the hyperparameters of GA so as to obtain optimal solutions efficiently. Third, comparative studies demonstrate the superior performance of the proposed HPAGA against classical evolutionary algorithms for various TSP instances. Additionally, a case study in the simulated radioactive environment implies the potential application of HPAGA in the future. |
| Author | Liu, Hao Wang, Jian Sun, Jinan Kong, Shihan Zhang, Wei Yu, Junzhi Wu, Fang |
| Author_xml | – sequence: 1 givenname: Shihan orcidid: 0000-0002-6714-1313 surname: Kong fullname: Kong, Shihan – sequence: 2 givenname: Fang surname: Wu fullname: Wu, Fang – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 4 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 5 givenname: Jinan surname: Sun fullname: Sun, Jinan – sequence: 6 givenname: Jian orcidid: 0000-0003-3742-9671 surname: Wang fullname: Wang, Jian – sequence: 7 givenname: Junzhi orcidid: 0000-0002-6347-572X surname: Yu fullname: Yu, Junzhi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39056879$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAQQCNUREvpD3BAkbhwCdixN7aPS9XCSosWVXC2HGeyzCqxF9spgm_oR-PdtAgViZOt8Ztnj2eeFyfOOyiKl5S8ZUyRdy36EUdIaKMignAmnxRnNaOsEo1gJ3_tT4uLGHeEEKqaBefkWXGaBYtGCnVW3L1HX61c3GOArtzsE474yyT0rlwOWx8wfRvLZYzeokmZ-JED5Q2g632wMIJL5RpMcOi2ZQ6Vn6YhYbVpd2AT3kI2Qsi6fPp5MO6IoStvTIfezMSVu8Xg3UH1onjamyHCxf16Xny9vvpy-bFabz6sLpfrynJOU6VaDspSULWooWNG9opB3SjFm87UTFGwsjcMeGdAUGUs72mrBAfWycwu2Hmxmr2dNzu9Dzia8FN7g_oY8GGrTcg_O4BuaiWb1tqG23xrR5SR1HJq6m6R44pl15vZtQ_--wQx6RGjhSFXC36KmhHJhRC1Ehl9_Qjd-Sm4XOlMMSXFgXp1T03tCN2f5z30LANyBmzwMQbotcV0bFkKBgdNiT5MiP53QnJq_Sj1wf6fpN-Fg8TT |
| CitedBy_id | crossref_primary_10_3390_biomimetics9100643 |
| Cites_doi | 10.1016/j.knosys.2022.110144 10.1016/j.net.2023.09.012 10.1016/j.jocs.2021.101454 10.1016/j.nucengdes.2017.11.006 10.1016/j.anucene.2015.04.019 10.1016/j.anucene.2018.01.007 10.1109/ICCSCE.2018.8684963 10.1016/j.pnucene.2023.104651 10.31181/dmame622023644 10.1007/s00500-017-2760-y 10.1016/j.cor.2023.106249 10.1016/S0377-2217(99)00284-2 10.1007/978-3-030-34135-0_13 10.1016/j.coche.2022.100878 10.1016/j.jenvrad.2023.107270 10.1016/j.net.2021.05.038 10.1287/ijoc.3.4.376 10.3390/biomimetics8080574 10.1016/j.pnucene.2021.104076 10.1016/j.cie.2020.106778 10.1016/j.cor.2023.106455 10.3390/sym15112048 10.1007/s00521-017-2880-4 10.1109/ICACI58115.2023.10146181 10.1016/j.net.2023.02.005 10.3390/biomimetics8020238 10.1016/j.cor.2021.105400 10.1609/aaai.v37i8.26120 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
| DOI | 10.3390/biomimetics9070438 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93 39056879 10_3390_biomimetics9070438 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62203015, 62233001, 62203436, 62273351 – fundername: Beijing Natural Science Foundation grantid: 4242038 |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c441t-9b4e9c1e9272ed3a8f93e269946da2391ec8fa3e4dae719ac4f1b974e3d88f953 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:51:03 EDT 2025 Thu Oct 02 11:37:43 EDT 2025 Fri Jul 25 11:50:18 EDT 2025 Mon Jul 21 06:08:55 EDT 2025 Tue Nov 18 20:58:02 EST 2025 Sat Nov 29 07:13:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | combinatorial algorithm radioactive environment planning improved genetic algorithm bio-inspired optimization algorithm reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-9b4e9c1e9272ed3a8f93e269946da2391ec8fa3e4dae719ac4f1b974e3d88f953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6347-572X 0000-0003-3742-9671 0000-0002-6714-1313 |
| OpenAccessLink | https://doaj.org/article/62986bcc64cb4ed09a81c41a2d586b93 |
| PMID | 39056879 |
| PQID | 3084739877 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93 proquest_miscellaneous_3084777297 proquest_journals_3084739877 pubmed_primary_39056879 crossref_citationtrail_10_3390_biomimetics9070438 crossref_primary_10_3390_biomimetics9070438 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jul-17 |
| PublicationDateYYYYMMDD | 2024-07-17 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chao (ref_9) 2018; 115 Alipour (ref_28) 2018; 30 ref_14 Mazyavkina (ref_25) 2021; 134 ref_30 Zheng (ref_23) 2023; 157 Chen (ref_24) 2020; 149 Yasear (ref_29) 2021; 14 Mahmoudinazlou (ref_22) 2024; 162 ref_18 ref_17 Zhang (ref_2) 2023; 159 ref_15 Liu (ref_8) 2015; 83 Reinelt (ref_27) 1991; 3 Toaza (ref_13) 2023; 148 Rehm (ref_1) 2023; 39 Adibel (ref_4) 2021; 53 Zheng (ref_16) 2023; 260 Xie (ref_6) 2022; 144 Mzili (ref_20) 2023; 6 ref_21 Helsgaun (ref_12) 2000; 126 Lee (ref_11) 2024; 56 Zhang (ref_10) 2023; 55 Hatamlou (ref_31) 2018; 22 Panwar (ref_19) 2021; 55 ref_26 Pentreath (ref_3) 2023; 270 Wang (ref_5) 2018; 326 ref_7 |
| References_xml | – volume: 260 start-page: 110144 year: 2023 ident: ref_16 article-title: Reinforced Lin–Kernighan–Helsgaun algorithms for the traveling salesman problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110144 – volume: 56 start-page: 92 year: 2024 ident: ref_11 article-title: A proposal on multi-agent static path planning strategy for minimizing radiation dose publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2023.09.012 – volume: 55 start-page: 101454 year: 2021 ident: ref_19 article-title: Transformation operators based grey wolf optimizer for travelling salesman problem publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101454 – volume: 326 start-page: 79 year: 2018 ident: ref_5 article-title: The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2017.11.006 – volume: 83 start-page: 161 year: 2015 ident: ref_8 article-title: Minimum dose method for walking-path planning of nuclear facilities publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.04.019 – volume: 115 start-page: 73 year: 2018 ident: ref_9 article-title: Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2018.01.007 – ident: ref_30 doi: 10.1109/ICCSCE.2018.8684963 – volume: 159 start-page: 104651 year: 2023 ident: ref_2 article-title: Hybrid IACO-A*-PSO optimization algorithm for solving multiobjective path planning problem of mobile robot in radioactive environment publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2023.104651 – volume: 6 start-page: 150 year: 2023 ident: ref_20 article-title: Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm for solving the traveling salesman problem publication-title: Decis. Mak. Appl. Manag. Eng. doi: 10.31181/dmame622023644 – volume: 22 start-page: 8167 year: 2018 ident: ref_31 article-title: Solving travelling salesman problem using black hole algorithm publication-title: Soft Comput. doi: 10.1007/s00500-017-2760-y – volume: 157 start-page: 106249 year: 2023 ident: ref_23 article-title: A reinforced hybrid genetic algorithm for the traveling salesman problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106249 – ident: ref_14 – volume: 126 start-page: 106 year: 2000 ident: ref_12 article-title: An effective implementation of the Lin-Kernighan traveling salesman heuristic publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00284-2 – volume: 148 start-page: 110908 year: 2023 ident: ref_13 article-title: A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems publication-title: Eur. J. Oper. Res. – ident: ref_17 doi: 10.1007/978-3-030-34135-0_13 – volume: 14 start-page: 136 year: 2021 ident: ref_29 article-title: Fine-tuning the ant colony system algorithm through Harris’s hawk optimizer for travelling salesman problem publication-title: Int. J. Intell. Eng. Syst. – volume: 39 start-page: 100878 year: 2023 ident: ref_1 article-title: Advanced nuclear energy: The safest and most renewable clean energy publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2022.100878 – volume: 270 start-page: 107270 year: 2023 ident: ref_3 article-title: Radiological protection, radioecology, and the protection of animals in high-dose exposure situations publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2023.107270 – volume: 53 start-page: 3505 year: 2021 ident: ref_4 article-title: Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2021.05.038 – volume: 3 start-page: 376 year: 1991 ident: ref_27 article-title: TSPLIB-A traveling salesman problem library publication-title: ORSA J. Comput. doi: 10.1287/ijoc.3.4.376 – ident: ref_21 doi: 10.3390/biomimetics8080574 – volume: 144 start-page: 104076 year: 2022 ident: ref_6 article-title: The multi-objective inspection path-planning in radioactive environment based on an improved ant colony optimization algorithm publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2021.104076 – volume: 149 start-page: 106778 year: 2020 ident: ref_24 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106778 – volume: 162 start-page: 106455 year: 2024 ident: ref_22 article-title: A hybrid genetic algorithm for the min–max multiple traveling salesman problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106455 – ident: ref_7 doi: 10.3390/sym15112048 – volume: 30 start-page: 2935 year: 2018 ident: ref_28 article-title: A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2880-4 – ident: ref_26 doi: 10.1109/ICACI58115.2023.10146181 – volume: 55 start-page: 1838 year: 2023 ident: ref_10 article-title: Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A* publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2023.02.005 – ident: ref_18 doi: 10.3390/biomimetics8020238 – volume: 134 start-page: 105400 year: 2021 ident: ref_25 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105400 – ident: ref_15 doi: 10.1609/aaai.v37i8.26120 |
| SSID | ssj0001965440 |
| Score | 2.276349 |
| Snippet | This paper aims to solve the multi-objective operating planning problem in the radioactive environment. First, a more complicated radiation dose model is... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 438 |
| SubjectTerms | Algorithms bio-inspired optimization algorithm combinatorial algorithm Genetic algorithms Heuristic improved genetic algorithm Integer programming Mutation Optimization algorithms Optimization techniques Planning Radiation radioactive environment planning Reinforcement reinforcement learning Robots Traveling salesman problem |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMXXsujsCAjIS7I2iR2bM8JtagruHRXFUh7i1zbKUHbZGm7SPwHfjRjx2mFEHvhak8sRzMez8PzDSFvjKlFaGPBfATVxkuEQWkUUxJ07aUN2ZjYbELNZvriAs5TwG2TnlUOOjEqatfZECM_4RnqUY4esnp_9Z2FrlEhu5paaNwmhwGpDOX8cDKdnc_3URaQpRBZXy3D0b8_CVXtzSoUCG7QLwx5sD9upAjc_29rM946p_f_d78PyL1kb9JxLyAPyS3fPiJH4xZ97dVP-pbGF6AxtH5Efk2ajn1qQ-7dO3qGymSVqjTp-HKJi2-_rujAT6QIMVw69xF71cYwI01wrUuKQzQW97KzxbdeqeKKAcE5zA6tkmjT0rlxTWd6ium-7O4x-XI6_fzhI0vdGphFk2rLYCE82NxDoQrvuNE1cF9IACGdKTjk3uracC-c8SoHY0WdL9Cb8dxppC35E3LQdq1_Rihktc5zx8EpIZR1OuOWOwdlXXrBpRmRfOBYZROUeeiocVmhSxO4XP3N5RF5t_vmqgfyuJF6EgRhRxlAuONAt15W6UxXsgAtF9ZKYfHfXQZG51bkpnAljgMfkeNBNKqkGTbVXi5G5PVuGs90SNSY1nfXiSa4PUjztBe_3U5wv6XUCp7fvPgLcrdA84tFCNBjcrBdX_uX5I79sW0261fpmPwGzYwh6A priority: 102 providerName: ProQuest |
| Title | Bio-Inspired Optimization Algorithm Associated with Reinforcement Learning for Multi-Objective Operating Planning in Radioactive Environment |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39056879 https://www.proquest.com/docview/3084739877 https://www.proquest.com/docview/3084777297 https://doaj.org/article/62986bcc64cb4ed09a81c41a2d586b93 |
| Volume | 9 |
| WOSCitedRecordID | wos001276568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdg8MALGow_ZaMyEuIFRUtix_Y9tqgTe6CLKpDKU-TazpZpTdDaTdp32Ife2U7LEAJeeD1fIst39t35fL8j5L3WNfdtLBIXQLXRiCRQaJlIAap2wvhsTGg2IadTNZ9Dea_Vl38TFuGB48IdihyUWBgjuFlwZ1PQKjM807ktkA4B5zOVcC-YOo-gLwXnaaySYRjXH_pq9mbpCwNXGA_6_NcvligA9v_ZywzW5miXPO3dRDqK03tGHrj2OdkbtRgiL2_oBxoeboYb8T1yO2665Lj1KXNn6QmeAcu-uJKOLk47jP7PlnQjBuTwV6905gJkqgm3g7RHWT2lSKKhJjc5WZzHsxD_6IGX_eimwxFtWjrTtul05Jj8rJZ7Qb4dTb5--pz0TRYSg57QOgFcVTCZg1zmzjKtamAuFwBcWJ0zyJxRtWaOW-1kBtrwOltgEOKYVchbsJdkp-1a95pQSGuVZZaBlZxLY1XKDLMWirpwnAk9INlmwSvTI5D7RhgXFUYiXkjV70IakI_bb35E_I2_co-9HLecHjs7EFCjql6jqn9p1IAcbLSg6jf0qmIpmnEGSsoBebcdxq3o8yu6dd1Vz-OjFeR5FbVnOxOcbyGUhDf_Y4b75EmOvlUS8D0PyM768sq9JY_N9bpZXQ7JQzlXQ_JoPJmWs2HYF0P_pLVEWnn8pfx-B_x5F6g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqLRJc-Cs_WwoYCbggq0nsOPEBoS206qrtdlUVqZxSr-0sW3WTspuC-g48C8_IjJPsCiF664GrPYkS58uMZ8YzHyGvtc4F0lgw55tqgxFhKtYJS6RKcycNZmM82UQyGKQnJ2q4Qn61tTB4rLLViV5R29JgjHyTB6BHOXjIyYeLbwxZozC72lJo1LDYc1c_wGWbv-9_gu_7Jop2to8_7rKGVYAZMP0VUyPhlAmdipLIWa7TXHEXSaWEtDriKnQmzTV3wmqXhEobkYcj2HU7blOQRZYIUPmrAsAedMjqsH8w_LKM6igZCxHU1Tmcq2ATq-gnUyxInIMfinm3PyygJwr49-7WW7mde__b-twnd5v9NO3VP8ADsuKKh2StV-iqnF7Rt9SfcPWpgzXyc2tSsn6BZwucpYegLKdNFSrtnY_hZaqvU9riFSQwRk2PnO8ta3wYlTbtaMcUhqgvXmaHo7PaaMAdsUM1zrZUUHRS0CNtJ6WuJbaXZYWPyOcbWZfHpFOUhXtKqAryNAwtVzYRIjE2Dbjh1qo4j53gUndJ2CIkM02rdmQMOc_AZUNUZX-jqkveLa65qBuVXCu9hcBbSGKTcT9QzsZZo7MyGalUjoyRwsC720DpNDQi1JGNYVzxLtlooZg1mm-eLXHYJa8W06CzMBGlC1deNjLo1oHMkxruiyeB541lmqj162_-ktzePT7Yz_b7g71n5E4EW03m251ukE41u3TPyS3zvZrMZy-aX5SS05tG_W-QMoBL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLamgRA3_A1GxwAjATfIamI7jn2BUMdWUQ111QTS7oJrOyVoTbY2A-0deCKejmMnaYUQu9sFt85JFDtfjs_x-fkQeql1zj2NBXGhqTZsIkQlOiWpUDJ3wvhoTCCbSMdjeXKiJhvoV1cL49MqO50YFLWtjD8j77MI9CgDDznt521axGR_-O7snHgGKR9p7eg0Gogcussf4L4t34724Vu_onR48On9B9IyDBADZkBN1JQ7ZWKnaEqdZVrmijkqlOLCaspU7IzMNXPcapfGShuex1OwwB2zEmQ9YwSo_xsw14iGtMHJ-nxHiYTzqKnTYUxFfV9PX8x9aeISPFIfgftjLwyUAf-2c8N-N7z7P6_UPXSntbLxoPkt7qMNVz5AW4NS19X8Er_GIe81BBS20M-9oiKj0mccOIuPQIXO29pUPDidwWTqr3PcoRgk_Mk1Pnah46wJh6u4bVI7wzCEQ0kzOZp-a7YSeKLvW-2vdgRRuCjxsbZFpRuJg3Wx4UP0-VrW5RHaLKvSPUZYRbmMY8uUTTlPjZURM8xaleSJ40zoHoo7tGSmbeDueUROM3DkPMKyvxHWQ29W95w17UuulN7zIFxJ-tbjYaBazLJWk2WCKimmxghuYO42UlrGhsea2gTGFeuh3Q6WWasPl9kakz30YnUZNJkPT-nSVRetjHf2QGa7gf7qTeB9EyFTtXP1w5-jWwD17ONofPgE3aZgf5LQA3UXbdaLC_cU3TTf62K5eBb-VYy-XDfkfwPbOoeT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Optimization+Algorithm+Associated+with+Reinforcement+Learning+for+Multi-Objective+Operating+Planning+in+Radioactive+Environment&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Shihan+Kong&rft.au=Fang+Wu&rft.au=Hao+Liu&rft.au=Wei+Zhang&rft.date=2024-07-17&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=7&rft.spage=438&rft_id=info:doi/10.3390%2Fbiomimetics9070438&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_62986bcc64cb4ed09a81c41a2d586b93 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |