An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE
The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 19; číslo 5; s. 1041 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI
28.02.2019
MDPI AG |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method. |
|---|---|
| AbstractList | The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method. The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method. |
| Author | Wang, Ning Zhao, Jianping Liu, Yang Yuan, Zhuang Duan, Lixiang |
| AuthorAffiliation | College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China; llxxyy1002@163.com (Y.L.); yuanz1007@163.com (Z.Y.); 18642167839@163.com (N.W.); 13261590998@163.com (J.Z.) |
| AuthorAffiliation_xml | – name: College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China; llxxyy1002@163.com (Y.L.); yuanz1007@163.com (Z.Y.); 18642167839@163.com (N.W.); 13261590998@163.com (J.Z.) |
| Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 2 givenname: Lixiang orcidid: 0000-0003-3796-2919 surname: Duan fullname: Duan, Lixiang – sequence: 3 givenname: Zhuang surname: Yuan fullname: Yuan, Zhuang – sequence: 4 givenname: Ning surname: Wang fullname: Wang, Ning – sequence: 5 givenname: Jianping surname: Zhao fullname: Zhao, Jianping |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30823502$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkUtvEzEUhS1URB-w4A8gL2ERev2YsWeDFJIWIqVC4rFgZXk8d6auJnZqT5D493Wbtmphda3rc78jnXNMDkIMSMhbBh-FaOA0swYqBpK9IEdMcjnTnMPBk_chOc75CoALIfQrcihAc1EBPyK_54GuwoTj6AcMEz23u3GiS2-HELPP9AKny9jRPib6HZ3fpujs5MNAF3GzTZhzTJl-thk7GgNdXyypDR39sZyfvSYveztmfHM_T8iv87Ofi6-z9bcvq8V8PXNSsmnWiBZEpwEkdLUQHeoOOEMrFKuRo-uhFwys6hFq1mDjhAathGpaKXXDK3FCVntuF-2V2Sa_semvidabu0VMg7Fp8m5EU2nWKoXFpW4lMmydahmAQsdU8W4K69Oetd21G-xcSSTZ8Rn0-U_wl2aIf0wtueINK4D394AUr3eYJ7Px2ZV0bcC4y4YzrSpeshdF-u6p16PJQzdFcLoXuBRzTtgb56cSfry19qNhYG7bN4_tl4sP_1w8QP_X3gAzmqxi |
| CitedBy_id | crossref_primary_10_1007_s42417_023_01128_8 crossref_primary_10_1016_j_knosys_2024_112519 crossref_primary_10_1016_j_measurement_2022_112087 crossref_primary_10_3390_app10072512 crossref_primary_10_1016_j_measurement_2019_107315 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1016_j_chemolab_2022_104655 crossref_primary_10_1016_j_measurement_2023_113575 crossref_primary_10_1109_ACCESS_2021_3072927 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1016_j_egyr_2021_10_053 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1088_1361_6501_ac7d97 crossref_primary_10_1177_14759217251319743 crossref_primary_10_1177_16878132251341384 crossref_primary_10_3390_app15105465 crossref_primary_10_1016_j_neucom_2019_11_006 crossref_primary_10_3390_app12105182 crossref_primary_10_1177_10775463211062330 crossref_primary_10_1007_s12206_023_0709_x crossref_primary_10_1177_14613484241273652 crossref_primary_10_1016_j_ijepes_2021_107852 crossref_primary_10_3390_e23050520 crossref_primary_10_3390_app14051710 crossref_primary_10_1177_09544062231213276 crossref_primary_10_1177_09544089231207425 crossref_primary_10_1177_0309524X241237964 crossref_primary_10_1109_TII_2021_3139897 crossref_primary_10_1051_e3sconf_202125202023 crossref_primary_10_1155_2020_8058723 crossref_primary_10_1177_09544089241233990 crossref_primary_10_1177_01423312211019582 crossref_primary_10_1007_s13198_021_01395_2 crossref_primary_10_1155_2022_5448442 crossref_primary_10_1177_09576509231161855 crossref_primary_10_3390_electronics13081423 crossref_primary_10_3390_s19112590 |
| Cites_doi | 10.3390/s17122876 10.1016/j.compind.2014.06.003 10.1016/j.ymssp.2017.12.031 10.1016/j.engappai.2015.06.010 10.1109/TIE.2017.2774777 10.3390/s17071564 10.20944/preprints201701.0132.v1 10.3390/s17020414 10.1007/s00521-013-1447-2 10.1109/ISDEA.2010.400 10.3390/s130708679 10.1098/rsif.2005.0058 10.1016/j.cie.2012.10.013 10.1016/j.neucom.2017.01.032 10.1016/j.ijrefrig.2014.05.027 10.1016/j.sigpro.2016.07.028 10.1016/j.dsp.2015.07.001 10.1016/j.compind.2014.02.006 10.1016/j.neucom.2018.05.021 10.1007/s40799-016-0138-1 10.1016/j.ymssp.2015.11.014 10.1016/j.ymssp.2009.06.012 10.1007/s11265-018-1378-3 10.1016/j.neucom.2018.05.040 10.21595/jve.2016.16594 10.1049/iet-smt.2016.0423 10.1016/j.jlp.2009.08.012 10.1016/j.jsv.2016.05.027 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/s19051041 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_581b77e33d6b4e1ebc7b1007ec176339 PMC6427291 30823502 10_3390_s19051041 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: No. 2017YFC0805803 – fundername: National Natural Science Foundation of China grantid: No. 51674277 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c441t-93b03d80040d633de8d021ea3716e2ecf0f310a7fe0619e9c38087379b4489253 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462540400060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:17 EDT 2025 Tue Nov 04 01:31:20 EST 2025 Thu Sep 04 17:18:13 EDT 2025 Wed Feb 19 02:33:11 EST 2025 Sat Nov 29 07:15:57 EST 2025 Tue Nov 18 19:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning fault diagnosis reciprocating compressor stack denoising autoencoder local mean decomposition |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-93b03d80040d633de8d021ea3716e2ecf0f310a7fe0619e9c38087379b4489253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3796-2919 |
| OpenAccessLink | https://doaj.org/article/581b77e33d6b4e1ebc7b1007ec176339 |
| PMID | 30823502 |
| PQID | 2187522353 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_581b77e33d6b4e1ebc7b1007ec176339 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427291 proquest_miscellaneous_2187522353 pubmed_primary_30823502 crossref_citationtrail_10_3390_s19051041 crossref_primary_10_3390_s19051041 |
| PublicationCentury | 2000 |
| PublicationDate | 20190228 |
| PublicationDateYYYYMMDD | 2019-02-28 |
| PublicationDate_xml | – month: 2 year: 2019 text: 20190228 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Liu (ref_16) 2013; 13 Zhao (ref_11) 2013; 32 Li (ref_10) 2010; 24 Gao (ref_31) 2017; 238 ref_36 Chen (ref_22) 2016; 18 ref_33 Tang (ref_3) 2013; 15 Lu (ref_35) 2017; 130 Cui (ref_5) 2009; 22 Gao (ref_13) 2014; 25 Li (ref_24) 2015; 17 Zhao (ref_23) 2015; 55 Zhang (ref_39) 2016; 31 Xu (ref_34) 2018; 311 (ref_15) 2013; 64 Janssens (ref_26) 2016; 377 Xia (ref_38) 2017; 11 Selak (ref_17) 2014; 65 Wang (ref_9) 2013; 4 Wang (ref_19) 2018; 106 Zhu (ref_40) 2017; 39 Alzghoul (ref_14) 2014; 65 Eren (ref_27) 2019; 91 ref_25 Cao (ref_8) 2010; 31 Li (ref_20) 2015; 46 Wen (ref_28) 2018; 65 Hu (ref_32) 2015; 45 Wang (ref_41) 2017; 51 Gan (ref_30) 2016; 72–73 Kocyigit (ref_4) 2014; 45 Cai (ref_21) 2016; 40 Tang (ref_12) 2016; 3 ref_29 Chen (ref_2) 2011; 35 Smith (ref_18) 2005; 2 Li (ref_37) 2018; 310 Ma (ref_1) 2012; 31 ref_7 ref_6 |
| References_xml | – ident: ref_36 doi: 10.3390/s17122876 – volume: 32 start-page: 105 year: 2013 ident: ref_11 article-title: Fault feature extraction based on multifractal and singular value decomposition for reciprocating compressors publication-title: J. Vib. Shock – volume: 65 start-page: 1126 year: 2014 ident: ref_14 article-title: Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application publication-title: Comput. Ind. doi: 10.1016/j.compind.2014.06.003 – volume: 106 start-page: 24 year: 2018 ident: ref_19 article-title: Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.12.031 – volume: 45 start-page: 119 year: 2015 ident: ref_32 article-title: An intelligent fault diagnosis system for process plant using a functional HAZOP and DBN integrated methodology publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.06.010 – volume: 65 start-page: 5990 year: 2018 ident: ref_28 article-title: A New Convolutional Neural Network Based Data-Driven Fault Diagnosis Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – ident: ref_33 doi: 10.3390/s17071564 – ident: ref_25 doi: 10.20944/preprints201701.0132.v1 – volume: 39 start-page: 152 year: 2017 ident: ref_40 article-title: Fault diagnosis based on stacked denoising autoencoder publication-title: Manuf. Autom. – volume: 17 start-page: 203 year: 2015 ident: ref_24 article-title: Application of CBSR and LMD in reciprocating compressor fault diagnosis publication-title: J. Vibroeng. – volume: 3 start-page: 23 year: 2016 ident: ref_12 article-title: A Diagnosis Method for Typical Fault in Reciprocating Compressor Based on Principal Components Analysis and Support Vector Machine publication-title: Compress. Technol. – ident: ref_29 doi: 10.3390/s17020414 – volume: 25 start-page: 55 year: 2014 ident: ref_13 article-title: Motor fault diagnosis using negative selection algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1447-2 – ident: ref_7 doi: 10.1109/ISDEA.2010.400 – volume: 13 start-page: 8679 year: 2013 ident: ref_16 article-title: LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information publication-title: Sensors doi: 10.3390/s130708679 – volume: 2 start-page: 443 year: 2005 ident: ref_18 article-title: The local mean decomposition and its application to EEG perception data publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2005.0058 – volume: 4 start-page: 37 year: 2013 ident: ref_9 article-title: Fault Feature Extraction from Reciprocating Compressor Valve Based on EMD and Information Entropy publication-title: Compress. Technol. – volume: 64 start-page: 357 year: 2013 ident: ref_15 article-title: Automatic bearing fault diagnosis based on one-class ν-SVM publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2012.10.013 – volume: 238 start-page: 13 year: 2017 ident: ref_31 article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.032 – ident: ref_6 – volume: 45 start-page: 44 year: 2014 ident: ref_4 article-title: Fault diagnosis of a vapor compression refrigeration system with hermetic reciprocating compressor based on p-h diagram publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.05.027 – volume: 130 start-page: 377 year: 2017 ident: ref_35 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.028 – volume: 15 start-page: 574 year: 2013 ident: ref_3 article-title: Time-frequency feature extraction from multiple impulse source signal of reciprocating compressor based on local frequency publication-title: J. Vibroeng. – volume: 51 start-page: 128 year: 2017 ident: ref_41 article-title: A Fault Diagnosis Method for Asynchronous Motor Using Deep Learning publication-title: J. Xi’an Jiaotong Univ. – volume: 46 start-page: 201 year: 2015 ident: ref_20 article-title: A new rotating machinery fault diagnosis method based on improved local mean decomposition publication-title: Dig. Signal Process. doi: 10.1016/j.dsp.2015.07.001 – volume: 55 start-page: 3515 year: 2015 ident: ref_23 article-title: A feature extraction method based on LMD and MSE and its application for fault diagnosis of reciprocating compressor publication-title: J. Vibroeng. – volume: 31 start-page: 21 year: 2016 ident: ref_39 article-title: Study on Sparse De-noising Auto-Encoder Neural Network publication-title: J. Inn. Mong. Univ. Natl. (Nat. Sci.) – volume: 65 start-page: 924 year: 2014 ident: ref_17 article-title: Condition monitoring and fault diagnostics for hydropower plants publication-title: Comput. Ind. doi: 10.1016/j.compind.2014.02.006 – volume: 310 start-page: 77 year: 2018 ident: ref_37 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.021 – volume: 40 start-page: 1 year: 2016 ident: ref_21 article-title: Bearing Fault Diagnosis Method Based on Local Mean Decomposition and Wigner Higher Moment Spectrum publication-title: Exp. Tech. doi: 10.1007/s40799-016-0138-1 – volume: 35 start-page: 130 year: 2011 ident: ref_2 article-title: Diagnosis of reciprocating compressor piston-cylinder liner wear fault based on lifting scheme packet publication-title: J. China Univ. Pet. (Ed. Nat. Sci.) – volume: 31 start-page: 125 year: 2010 ident: ref_8 article-title: Analyzing the Acoustic Signal of Compressor Surge by Using Fast Fourier Transform and Wavelet Transform publication-title: Energy Technol. – volume: 72–73 start-page: 92 year: 2016 ident: ref_30 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.014 – volume: 31 start-page: 26 year: 2012 ident: ref_1 article-title: Feature extraction method based on chaotic fractal theory and its application in fault diagnosis of gas valves publication-title: J. Vib. Shock – volume: 24 start-page: 193 year: 2010 ident: ref_10 article-title: EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.06.012 – volume: 91 start-page: 179 year: 2019 ident: ref_27 article-title: A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-018-1378-3 – volume: 311 start-page: 1 year: 2018 ident: ref_34 article-title: Open-Circuit Fault Diagnosis of Power Rectifier using Sparse Autoencoder based Deep Neural Network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.040 – volume: 18 start-page: 1474 year: 2016 ident: ref_22 article-title: An improved local mean decomposition method and its application for fault diagnosis of reciprocating compressor publication-title: J. Vibroeng. doi: 10.21595/jve.2016.16594 – volume: 11 start-page: 687 year: 2017 ident: ref_38 article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2016.0423 – volume: 22 start-page: 864 year: 2009 ident: ref_5 article-title: Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2009.08.012 – volume: 377 start-page: 331 year: 2016 ident: ref_26 article-title: Convolutional Neural Network Based Fault Detection for Rotating Machinery publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 |
| SSID | ssj0023338 |
| Score | 2.470558 |
| Snippet | The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1041 |
| SubjectTerms | deep learning fault diagnosis local mean decomposition reciprocating compressor stack denoising autoencoder |
| Title | An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30823502 https://www.proquest.com/docview/2187522353 https://pubmed.ncbi.nlm.nih.gov/PMC6427291 https://doaj.org/article/581b77e33d6b4e1ebc7b1007ec176339 |
| Volume | 19 |
| WOSCitedRecordID | wos000462540400060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB7abQ_tYem76W6DWnroxaxt2ZZ1TDYJXdiE0AdkT0aPMRtYnBI7Pfa3dyQ7JikLvfSigyxsMRp5vg-NvgH4pGSokQsTRMbqIMlSHUgb8SCjaFe6kkcZep3Za7FY5KuVXB6U-nI5Ya08cGu4i5RwlRDIuc10ghFqI7Q72UcT0dbg_upeKOSeTHVUixPzanWEaEh4UUdOhipMoqPo40X670OWfydIHkSc2TM47aAiG7VTfA4PsHoBTw8EBF_CzahiV72oZsNmanfXsEmbPreu2dzXh2YETBnhw7WLVsrlOTP3G3BEe7Ot2ZgCmWWbil3PJ0xVln2bjKav4Mds-v3yS9AVSwgMIZomkFyH3OZuU1qyi8XcUvhGxYkQYYymDEtCckqUSBFcojQ8D3PBhdRE0GSc8tdwUm0qfAtMGpUnsSljm4rEnbsqTJTQZZRZpNfzAXzeG7EwnZK4K2hxVxCjcPYuensP4GM_9Gcrn3HfoLFbiX6AU7z2HeQHRecHxb_8YAAf9utY0A5xxx6qws2uLgjECEKZPKWJv2nXtf-UF-tJw3gA4mjFj-Zy_KRa33oVbiJuREyid_9j8mfwhICYbK_Kn8NJs93he3hsfjXrejuEh2IlfJsP4dF4ulh-HXp3p3b-e0p9y6v58uYPQAgDKQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Fault+Diagnosis+Method+for+Reciprocating+Compressors+Based+on+LMD+and+SDAE&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yang&rft.au=Duan%2C+Lixiang&rft.au=Yuan%2C+Zhuang&rft.au=Wang%2C+Ning&rft.date=2019-02-28&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=5&rft_id=info:doi/10.3390%2Fs19051041&rft_id=info%3Apmid%2F30823502&rft.externalDocID=PMC6427291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |