An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE

The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 19; číslo 5; s. 1041
Hlavní autori: Liu, Yang, Duan, Lixiang, Yuan, Zhuang, Wang, Ning, Zhao, Jianping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI 28.02.2019
MDPI AG
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.
AbstractList The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.
The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration signal of reciprocating compressors is nonlinear and non-stationary. However, the traditional methods applied to processing such signals have three issues, including separating the useful frequency bands from overlapped signals, extracting fault features with strong subjectivity, and processing the massive data with limited learning abilities. To address the above issues, this paper, which is based on the idea of deep learning, proposed an intelligent fault diagnosis method combining Local Mean Decomposition (LMD) and the Stack Denoising Autoencoder (SDAE). The vibration signal is firstly decomposed by LMD and reconstructed based on the cross-correlation criterion. The virtual noise channel is constructed to reduce the noise of the vibration signal. Then, the de-noised signal is input into the trained SDAE model to learn the fault features adaptively. Finally, the conditions of the reciprocating compressor valve are classified by the proposed method. The results show that classification accuracy is 92.72% under the condition of a low signal-noise ratio, which is 5 percentage points higher than that of the traditional methods. This shows the effectiveness and robustness of the proposed method.
Author Wang, Ning
Zhao, Jianping
Liu, Yang
Yuan, Zhuang
Duan, Lixiang
AuthorAffiliation College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China; llxxyy1002@163.com (Y.L.); yuanz1007@163.com (Z.Y.); 18642167839@163.com (N.W.); 13261590998@163.com (J.Z.)
AuthorAffiliation_xml – name: College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China; llxxyy1002@163.com (Y.L.); yuanz1007@163.com (Z.Y.); 18642167839@163.com (N.W.); 13261590998@163.com (J.Z.)
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Lixiang
  orcidid: 0000-0003-3796-2919
  surname: Duan
  fullname: Duan, Lixiang
– sequence: 3
  givenname: Zhuang
  surname: Yuan
  fullname: Yuan, Zhuang
– sequence: 4
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
– sequence: 5
  givenname: Jianping
  surname: Zhao
  fullname: Zhao, Jianping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30823502$$D View this record in MEDLINE/PubMed
BookMark eNplkUtvEzEUhS1URB-w4A8gL2ERev2YsWeDFJIWIqVC4rFgZXk8d6auJnZqT5D493Wbtmphda3rc78jnXNMDkIMSMhbBh-FaOA0swYqBpK9IEdMcjnTnMPBk_chOc75CoALIfQrcihAc1EBPyK_54GuwoTj6AcMEz23u3GiS2-HELPP9AKny9jRPib6HZ3fpujs5MNAF3GzTZhzTJl-thk7GgNdXyypDR39sZyfvSYveztmfHM_T8iv87Ofi6-z9bcvq8V8PXNSsmnWiBZEpwEkdLUQHeoOOEMrFKuRo-uhFwys6hFq1mDjhAathGpaKXXDK3FCVntuF-2V2Sa_semvidabu0VMg7Fp8m5EU2nWKoXFpW4lMmydahmAQsdU8W4K69Oetd21G-xcSSTZ8Rn0-U_wl2aIf0wtueINK4D394AUr3eYJ7Px2ZV0bcC4y4YzrSpeshdF-u6p16PJQzdFcLoXuBRzTtgb56cSfry19qNhYG7bN4_tl4sP_1w8QP_X3gAzmqxi
CitedBy_id crossref_primary_10_1007_s42417_023_01128_8
crossref_primary_10_1016_j_knosys_2024_112519
crossref_primary_10_1016_j_measurement_2022_112087
crossref_primary_10_3390_app10072512
crossref_primary_10_1016_j_measurement_2019_107315
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1016_j_chemolab_2022_104655
crossref_primary_10_1016_j_measurement_2023_113575
crossref_primary_10_1109_ACCESS_2021_3072927
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1016_j_egyr_2021_10_053
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1088_1361_6501_ac7d97
crossref_primary_10_1177_14759217251319743
crossref_primary_10_1177_16878132251341384
crossref_primary_10_3390_app15105465
crossref_primary_10_1016_j_neucom_2019_11_006
crossref_primary_10_3390_app12105182
crossref_primary_10_1177_10775463211062330
crossref_primary_10_1007_s12206_023_0709_x
crossref_primary_10_1177_14613484241273652
crossref_primary_10_1016_j_ijepes_2021_107852
crossref_primary_10_3390_e23050520
crossref_primary_10_3390_app14051710
crossref_primary_10_1177_09544062231213276
crossref_primary_10_1177_09544089231207425
crossref_primary_10_1177_0309524X241237964
crossref_primary_10_1109_TII_2021_3139897
crossref_primary_10_1051_e3sconf_202125202023
crossref_primary_10_1155_2020_8058723
crossref_primary_10_1177_09544089241233990
crossref_primary_10_1177_01423312211019582
crossref_primary_10_1007_s13198_021_01395_2
crossref_primary_10_1155_2022_5448442
crossref_primary_10_1177_09576509231161855
crossref_primary_10_3390_electronics13081423
crossref_primary_10_3390_s19112590
Cites_doi 10.3390/s17122876
10.1016/j.compind.2014.06.003
10.1016/j.ymssp.2017.12.031
10.1016/j.engappai.2015.06.010
10.1109/TIE.2017.2774777
10.3390/s17071564
10.20944/preprints201701.0132.v1
10.3390/s17020414
10.1007/s00521-013-1447-2
10.1109/ISDEA.2010.400
10.3390/s130708679
10.1098/rsif.2005.0058
10.1016/j.cie.2012.10.013
10.1016/j.neucom.2017.01.032
10.1016/j.ijrefrig.2014.05.027
10.1016/j.sigpro.2016.07.028
10.1016/j.dsp.2015.07.001
10.1016/j.compind.2014.02.006
10.1016/j.neucom.2018.05.021
10.1007/s40799-016-0138-1
10.1016/j.ymssp.2015.11.014
10.1016/j.ymssp.2009.06.012
10.1007/s11265-018-1378-3
10.1016/j.neucom.2018.05.040
10.21595/jve.2016.16594
10.1049/iet-smt.2016.0423
10.1016/j.jlp.2009.08.012
10.1016/j.jsv.2016.05.027
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s19051041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_581b77e33d6b4e1ebc7b1007ec176339
PMC6427291
30823502
10_3390_s19051041
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: No. 2017YFC0805803
– fundername: National Natural Science Foundation of China
  grantid: No. 51674277
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-93b03d80040d633de8d021ea3716e2ecf0f310a7fe0619e9c38087379b4489253
IEDL.DBID DOA
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462540400060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:17 EDT 2025
Tue Nov 04 01:31:20 EST 2025
Thu Sep 04 17:18:13 EDT 2025
Wed Feb 19 02:33:11 EST 2025
Sat Nov 29 07:15:57 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
fault diagnosis
reciprocating compressor
stack denoising autoencoder
local mean decomposition
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-93b03d80040d633de8d021ea3716e2ecf0f310a7fe0619e9c38087379b4489253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3796-2919
OpenAccessLink https://doaj.org/article/581b77e33d6b4e1ebc7b1007ec176339
PMID 30823502
PQID 2187522353
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_581b77e33d6b4e1ebc7b1007ec176339
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6427291
proquest_miscellaneous_2187522353
pubmed_primary_30823502
crossref_citationtrail_10_3390_s19051041
crossref_primary_10_3390_s19051041
PublicationCentury 2000
PublicationDate 20190228
PublicationDateYYYYMMDD 2019-02-28
PublicationDate_xml – month: 2
  year: 2019
  text: 20190228
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Liu (ref_16) 2013; 13
Zhao (ref_11) 2013; 32
Li (ref_10) 2010; 24
Gao (ref_31) 2017; 238
ref_36
Chen (ref_22) 2016; 18
ref_33
Tang (ref_3) 2013; 15
Lu (ref_35) 2017; 130
Cui (ref_5) 2009; 22
Gao (ref_13) 2014; 25
Li (ref_24) 2015; 17
Zhao (ref_23) 2015; 55
Zhang (ref_39) 2016; 31
Xu (ref_34) 2018; 311
(ref_15) 2013; 64
Janssens (ref_26) 2016; 377
Xia (ref_38) 2017; 11
Selak (ref_17) 2014; 65
Wang (ref_9) 2013; 4
Wang (ref_19) 2018; 106
Zhu (ref_40) 2017; 39
Alzghoul (ref_14) 2014; 65
Eren (ref_27) 2019; 91
ref_25
Cao (ref_8) 2010; 31
Li (ref_20) 2015; 46
Wen (ref_28) 2018; 65
Hu (ref_32) 2015; 45
Wang (ref_41) 2017; 51
Gan (ref_30) 2016; 72–73
Kocyigit (ref_4) 2014; 45
Cai (ref_21) 2016; 40
Tang (ref_12) 2016; 3
ref_29
Chen (ref_2) 2011; 35
Smith (ref_18) 2005; 2
Li (ref_37) 2018; 310
Ma (ref_1) 2012; 31
ref_7
ref_6
References_xml – ident: ref_36
  doi: 10.3390/s17122876
– volume: 32
  start-page: 105
  year: 2013
  ident: ref_11
  article-title: Fault feature extraction based on multifractal and singular value decomposition for reciprocating compressors
  publication-title: J. Vib. Shock
– volume: 65
  start-page: 1126
  year: 2014
  ident: ref_14
  article-title: Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: A hydraulic drive system application
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2014.06.003
– volume: 106
  start-page: 24
  year: 2018
  ident: ref_19
  article-title: Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.031
– volume: 45
  start-page: 119
  year: 2015
  ident: ref_32
  article-title: An intelligent fault diagnosis system for process plant using a functional HAZOP and DBN integrated methodology
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.06.010
– volume: 65
  start-page: 5990
  year: 2018
  ident: ref_28
  article-title: A New Convolutional Neural Network Based Data-Driven Fault Diagnosis Method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– ident: ref_33
  doi: 10.3390/s17071564
– ident: ref_25
  doi: 10.20944/preprints201701.0132.v1
– volume: 39
  start-page: 152
  year: 2017
  ident: ref_40
  article-title: Fault diagnosis based on stacked denoising autoencoder
  publication-title: Manuf. Autom.
– volume: 17
  start-page: 203
  year: 2015
  ident: ref_24
  article-title: Application of CBSR and LMD in reciprocating compressor fault diagnosis
  publication-title: J. Vibroeng.
– volume: 3
  start-page: 23
  year: 2016
  ident: ref_12
  article-title: A Diagnosis Method for Typical Fault in Reciprocating Compressor Based on Principal Components Analysis and Support Vector Machine
  publication-title: Compress. Technol.
– ident: ref_29
  doi: 10.3390/s17020414
– volume: 25
  start-page: 55
  year: 2014
  ident: ref_13
  article-title: Motor fault diagnosis using negative selection algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1447-2
– ident: ref_7
  doi: 10.1109/ISDEA.2010.400
– volume: 13
  start-page: 8679
  year: 2013
  ident: ref_16
  article-title: LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information
  publication-title: Sensors
  doi: 10.3390/s130708679
– volume: 2
  start-page: 443
  year: 2005
  ident: ref_18
  article-title: The local mean decomposition and its application to EEG perception data
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2005.0058
– volume: 4
  start-page: 37
  year: 2013
  ident: ref_9
  article-title: Fault Feature Extraction from Reciprocating Compressor Valve Based on EMD and Information Entropy
  publication-title: Compress. Technol.
– volume: 64
  start-page: 357
  year: 2013
  ident: ref_15
  article-title: Automatic bearing fault diagnosis based on one-class ν-SVM
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2012.10.013
– volume: 238
  start-page: 13
  year: 2017
  ident: ref_31
  article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.032
– ident: ref_6
– volume: 45
  start-page: 44
  year: 2014
  ident: ref_4
  article-title: Fault diagnosis of a vapor compression refrigeration system with hermetic reciprocating compressor based on p-h diagram
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.05.027
– volume: 130
  start-page: 377
  year: 2017
  ident: ref_35
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 15
  start-page: 574
  year: 2013
  ident: ref_3
  article-title: Time-frequency feature extraction from multiple impulse source signal of reciprocating compressor based on local frequency
  publication-title: J. Vibroeng.
– volume: 51
  start-page: 128
  year: 2017
  ident: ref_41
  article-title: A Fault Diagnosis Method for Asynchronous Motor Using Deep Learning
  publication-title: J. Xi’an Jiaotong Univ.
– volume: 46
  start-page: 201
  year: 2015
  ident: ref_20
  article-title: A new rotating machinery fault diagnosis method based on improved local mean decomposition
  publication-title: Dig. Signal Process.
  doi: 10.1016/j.dsp.2015.07.001
– volume: 55
  start-page: 3515
  year: 2015
  ident: ref_23
  article-title: A feature extraction method based on LMD and MSE and its application for fault diagnosis of reciprocating compressor
  publication-title: J. Vibroeng.
– volume: 31
  start-page: 21
  year: 2016
  ident: ref_39
  article-title: Study on Sparse De-noising Auto-Encoder Neural Network
  publication-title: J. Inn. Mong. Univ. Natl. (Nat. Sci.)
– volume: 65
  start-page: 924
  year: 2014
  ident: ref_17
  article-title: Condition monitoring and fault diagnostics for hydropower plants
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2014.02.006
– volume: 310
  start-page: 77
  year: 2018
  ident: ref_37
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.021
– volume: 40
  start-page: 1
  year: 2016
  ident: ref_21
  article-title: Bearing Fault Diagnosis Method Based on Local Mean Decomposition and Wigner Higher Moment Spectrum
  publication-title: Exp. Tech.
  doi: 10.1007/s40799-016-0138-1
– volume: 35
  start-page: 130
  year: 2011
  ident: ref_2
  article-title: Diagnosis of reciprocating compressor piston-cylinder liner wear fault based on lifting scheme packet
  publication-title: J. China Univ. Pet. (Ed. Nat. Sci.)
– volume: 31
  start-page: 125
  year: 2010
  ident: ref_8
  article-title: Analyzing the Acoustic Signal of Compressor Surge by Using Fast Fourier Transform and Wavelet Transform
  publication-title: Energy Technol.
– volume: 72–73
  start-page: 92
  year: 2016
  ident: ref_30
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 31
  start-page: 26
  year: 2012
  ident: ref_1
  article-title: Feature extraction method based on chaotic fractal theory and its application in fault diagnosis of gas valves
  publication-title: J. Vib. Shock
– volume: 24
  start-page: 193
  year: 2010
  ident: ref_10
  article-title: EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2009.06.012
– volume: 91
  start-page: 179
  year: 2019
  ident: ref_27
  article-title: A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-018-1378-3
– volume: 311
  start-page: 1
  year: 2018
  ident: ref_34
  article-title: Open-Circuit Fault Diagnosis of Power Rectifier using Sparse Autoencoder based Deep Neural Network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.040
– volume: 18
  start-page: 1474
  year: 2016
  ident: ref_22
  article-title: An improved local mean decomposition method and its application for fault diagnosis of reciprocating compressor
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2016.16594
– volume: 11
  start-page: 687
  year: 2017
  ident: ref_38
  article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2016.0423
– volume: 22
  start-page: 864
  year: 2009
  ident: ref_5
  article-title: Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2009.08.012
– volume: 377
  start-page: 331
  year: 2016
  ident: ref_26
  article-title: Convolutional Neural Network Based Fault Detection for Rotating Machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
SSID ssj0023338
Score 2.470558
Snippet The effective fault diagnosis in the prognostic and health management of reciprocating compressors has been a research hotspot for a long time. The vibration...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1041
SubjectTerms deep learning
fault diagnosis
local mean decomposition
reciprocating compressor
stack denoising autoencoder
Title An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE
URI https://www.ncbi.nlm.nih.gov/pubmed/30823502
https://www.proquest.com/docview/2187522353
https://pubmed.ncbi.nlm.nih.gov/PMC6427291
https://doaj.org/article/581b77e33d6b4e1ebc7b1007ec176339
Volume 19
WOSCitedRecordID wos000462540400060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB7abQ_tYem76W6DWnroxaxt2ZZ1TDYJXdiE0AdkT0aPMRtYnBI7Pfa3dyQ7JikLvfSigyxsMRp5vg-NvgH4pGSokQsTRMbqIMlSHUgb8SCjaFe6kkcZep3Za7FY5KuVXB6U-nI5Ya08cGu4i5RwlRDIuc10ghFqI7Q72UcT0dbg_upeKOSeTHVUixPzanWEaEh4UUdOhipMoqPo40X670OWfydIHkSc2TM47aAiG7VTfA4PsHoBTw8EBF_CzahiV72oZsNmanfXsEmbPreu2dzXh2YETBnhw7WLVsrlOTP3G3BEe7Ot2ZgCmWWbil3PJ0xVln2bjKav4Mds-v3yS9AVSwgMIZomkFyH3OZuU1qyi8XcUvhGxYkQYYymDEtCckqUSBFcojQ8D3PBhdRE0GSc8tdwUm0qfAtMGpUnsSljm4rEnbsqTJTQZZRZpNfzAXzeG7EwnZK4K2hxVxCjcPYuensP4GM_9Gcrn3HfoLFbiX6AU7z2HeQHRecHxb_8YAAf9utY0A5xxx6qws2uLgjECEKZPKWJv2nXtf-UF-tJw3gA4mjFj-Zy_KRa33oVbiJuREyid_9j8mfwhICYbK_Kn8NJs93he3hsfjXrejuEh2IlfJsP4dF4ulh-HXp3p3b-e0p9y6v58uYPQAgDKQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Fault+Diagnosis+Method+for+Reciprocating+Compressors+Based+on+LMD+and+SDAE&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yang&rft.au=Duan%2C+Lixiang&rft.au=Yuan%2C+Zhuang&rft.au=Wang%2C+Ning&rft.date=2019-02-28&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=5&rft_id=info:doi/10.3390%2Fs19051041&rft_id=info%3Apmid%2F30823502&rft.externalDocID=PMC6427291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon