Leveraging deep learning for robust EEG analysis in mental health monitoring

Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroinformatics Jg. 18; S. 1494970
Hauptverfasser: Liu, Zixiang, Zhao, Juan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 03.01.2025
Frontiers Media S.A
Schlagworte:
ISSN:1662-5196, 1662-5196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios. To overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals. Our empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.
AbstractList Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios.IntroductionMental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios.To overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals.MethodsTo overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals.Our empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.Results and discussionOur empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.
Introduction: Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios.
Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios. To overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals. Our empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.
IntroductionMental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios.MethodsTo overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals.Results and discussionOur empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.
Author Zhao, Juan
Liu, Zixiang
Author_xml – sequence: 1
  givenname: Zixiang
  surname: Liu
  fullname: Liu, Zixiang
– sequence: 2
  givenname: Juan
  surname: Zhao
  fullname: Zhao, Juan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39829439$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrGzEUhUVJaR7tH-iiDHTTjV1JI41GyxLcNGDIpl2Lq9GVIzMjuZJcyL_v-JFSssjqPvjO4XLPNbmIKSIhHxldtm2vv_oYol9yysWSCS20om_IFes6vpBMdxf_9ZfkupQtpR3vpHpHLlvdcy1afUXWa_yDGTYhbhqHuGtGhBwPk0-5ycnuS21Wq7sGIoxPJZQmxGbCWGFsHhHG-thMKYaa8qx5T956GAt-ONcb8uv76uftj8X64e7-9tt6MQjB6kJzHKig0oGTzHHZexBeKisBhRWohHCU951DT9nAJQygQHHF-s46qixvb8j9ydcl2JpdDhPkJ5MgmOMi5Y2BXMMworEo6dBbrrxyAjy10rfQou499dx7O3t9OXntcvq9x1LNFMqA4wgR076YlkklJeWSzujnF-g27fP8lyPVUaXbvpupT2dqbyd0_857_vkM9CdgyKmUjN4MoUINKdYMYTSMmkO85hivOcRrzvHOUv5C-uz-iugvTWeo2w
CitedBy_id crossref_primary_10_3390_psycholint7030061
crossref_primary_10_1142_S021951942550023X
Cites_doi 10.3389/fninf.2023.1306277
10.1016/j.jneumeth.2003.10.009
10.1109/ACCESS.2023.3297887
10.3389/fnins.2023.1201865
10.1049/cvi2.12142
10.3389/fnbot.2023.1338104
10.1109/ICBAIE56435.2022.9985881
10.1155/2018/5174815
10.1088/1741-2552/aace8c
10.1088/1741-2552/aab2f2
10.3389/fnins.2023.1148855
10.1002/hbm.23730
10.1088/1741-2552/ab260c
10.1136/medethics-2018-105313
10.3390/eng5040143
10.3389/fnins.2024.1329411
10.1016/j.ymeth.2019.04.008
ContentType Journal Article
Copyright Copyright © 2025 Liu and Zhao.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2025 Liu and Zhao.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3389/fninf.2024.1494970
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_be50c8b27f7d4af0b5f3a3e98f0f2ffb
39829439
10_3389_fninf_2024_1494970
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c441t-92ec0405dad51d258fa4f57b5ae4b4e744d0286def01c25aca7a727186bd07b23
IEDL.DBID M2P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397554900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Tue Oct 14 19:05:25 EDT 2025
Sun Nov 09 09:19:44 EST 2025
Fri Jul 25 11:49:57 EDT 2025
Thu Jan 30 12:29:55 EST 2025
Tue Nov 18 22:16:59 EST 2025
Sat Nov 29 02:31:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords transformer
mental health monitoring
EEG
application of EEG
neural electrical signals
Language English
License Copyright © 2025 Liu and Zhao.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-92ec0405dad51d258fa4f57b5ae4b4e744d0286def01c25aca7a727186bd07b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3156079386?pq-origsite=%requestingapplication%
PMID 39829439
PQID 3156079386
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_be50c8b27f7d4af0b5f3a3e98f0f2ffb
proquest_miscellaneous_3157550250
proquest_journals_3156079386
pubmed_primary_39829439
crossref_citationtrail_10_3389_fninf_2024_1494970
crossref_primary_10_3389_fninf_2024_1494970
PublicationCentury 2000
PublicationDate 2025-01-03
PublicationDateYYYYMMDD 2025-01-03
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2025
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Wu (B38) 2022
Schirrmeister (B28) 2017; 38
Li (B21) 2020; 166
B24
B25
B26
Lakshminarayanan (B18) 2023; 17
B29
Kwon (B17) 2019; 137
Delorme (B7) 2004; 134
LaRocco (B19) 2023; 17
Lotte (B23) 2018; 15
Cassani (B4) 2018; 22
Wan (B36) 2023; 17
Akter (B2) 2024; 5
Liaw (B22) 2002; 2
Hong (B12) 2024; 17
Simar (B30) 2024; 18
B31
B10
B33
B34
B13
B35
B14
Stahl (B32) 2019; 45
B15
B37
B16
B39
B3
Lawhern (B20) 2018; 15
B5
B6
B8
B9
He (B11) 2023; 17
Ai (B1) 2023; 11
Roy (B27) 2019; 16
References_xml – ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– volume: 2
  start-page: 18
  year: 2002
  ident: B22
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: B5
– ident: B29
– volume: 17
  start-page: 1306277
  year: 2023
  ident: B19
  article-title: Evaluation of an english language phoneme-based imagined speech brain computer interface with low-cost electroencephalography
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2023.1306277
– ident: B25
– volume: 134
  start-page: 9
  year: 2004
  ident: B7
  article-title: EEGlab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 11
  start-page: 78984
  year: 2023
  ident: B1
  article-title: Exploration of digital transformation of government governance under the information environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3297887
– volume: 17
  start-page: 1201865
  year: 2023
  ident: B18
  article-title: The effect of combining action observation in virtual reality with kinesthetic motor imagery on cortical activity
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2023.1201865
– volume: 17
  start-page: 513
  year: 2023
  ident: B11
  article-title: Makeup transfer: a review
  publication-title: IET Comput. Vis
  doi: 10.1049/cvi2.12142
– ident: B16
– ident: B31
– volume: 17
  start-page: 1338104
  year: 2024
  ident: B12
  article-title: Education robot object detection with a brain-inspired approach integrating faster R-CNN, yolov3, and semi-supervised learning
  publication-title: Front. Neurorobot
  doi: 10.3389/fnbot.2023.1338104
– ident: B33
– ident: B37
– ident: B39
– ident: B8
– start-page: 635
  volume-title: 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE)
  year: 2022
  ident: B38
  article-title: “Research on individual recognition and matching of whale and dolphin based on efficientnet model,”
  doi: 10.1109/ICBAIE56435.2022.9985881
– volume: 22
  start-page: 1559
  year: 2018
  ident: B4
  article-title: EEG as a measure of mental health states: a review of its application in clinical and non-clinical contexts
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1155/2018/5174815
– ident: B13
– volume: 15
  start-page: 056013
  year: 2018
  ident: B20
  article-title: EEGnet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 137
  start-page: 12
  year: 2019
  ident: B17
  article-title: A deep learning framework for classification of EEG signals with motor imagery in brain–computer interface
  publication-title: Expert Syst. Appl
– volume: 15
  start-page: 031005
  year: 2018
  ident: B23
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– volume: 17
  start-page: 1148855
  year: 2023
  ident: B36
  article-title: EEGformer: a transformer-based brain activity classification method using EEG signal
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2023.1148855
– ident: B26
– ident: B6
– volume: 38
  start-page: 5391
  year: 2017
  ident: B28
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.23730
– ident: B24
– volume: 16
  start-page: 051001
  year: 2019
  ident: B27
  article-title: Deep learning for EEG-based classification: a review
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ab260c
– volume: 45
  start-page: 597
  year: 2019
  ident: B32
  article-title: Ethical considerations for brain-computer interfaces in mental health monitoring
  publication-title: J. Med. Ethics
  doi: 10.1136/medethics-2018-105313
– volume: 5
  start-page: 2728
  year: 2024
  ident: B2
  article-title: An embedded system for real-time atrial fibrillation diagnosis using a multimodal approach to ECG data
  publication-title: Eng
  doi: 10.3390/eng5040143
– volume: 18
  start-page: 1329411
  year: 2024
  ident: B30
  article-title: Machine learning for hand pose classification from phasic and tonic EMG signals during bimanual activities in virtual reality
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2024.1329411
– ident: B15
– volume: 166
  start-page: 1
  year: 2020
  ident: B21
  article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.008
– ident: B34
SSID ssj0062657
Score 2.371676
Snippet Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in...
Introduction: Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal...
IntroductionMental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1494970
SubjectTerms Adaptability
Algorithms
application of EEG
Brain research
Datasets
Deep learning
EEG
Electroencephalography
Graph representations
Information processing
Machine learning
Mental disorders
Mental health
mental health monitoring
neural electrical signals
Neural networks
Support vector machines
transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5C6CGX0DRN6iQtKpReioktS5Z1TMumPYTQQwK5CT1GJdB4wz4K_fcdSd4ll7SXXmUZi3np-2TNDMAHFXTvo8SaNnMiKIQgaqdjR1RFe99HIkVoc7MJdX093N3p709afaU7YaU8cBHcuUPZ-MFxFVUQNjZOxs52qIfYRB6jS9G3UXpDpkoMJpQuVUmRoa_p8ziSuogMckGRQQudWhM_2YZytf7nIWbeai5fwv6EEdlFWdsB7OD4Cg4vRuLHD7_ZR5Zvbebj8EO4ukIyxtxqiAXERza1gfjBCI2yxdytlys2m31ldqo-wu5HVgr6s5IDyR6yW6fzvddwezm7-fKtnjok1J5gzKrWHD15oQw2yDZwOUQrolROWhROoBIiEH7oA8am9Vxab5UlwNIOvQuNcrw7gt1xPuIbYCkjdVC6b_sehXVKI2rp0SINCIG8gnYjMOOn8uGpi8VPQzQiCdlkIZskZDMJuYJP23ceS_GMv87-nPSwnZkKX-cBMgczmYP5lzlUcLbRopm8cWm6lC5OgWjoK3i_fUx-lH6O2BHn6zxHEVsjRFjBcdH-diWdHrgm5HbyP1Z4Cns89RDOV9nOYHe1WONbeOF_re6Xi3fZjP8A6d74qw
  priority: 102
  providerName: Directory of Open Access Journals
Title Leveraging deep learning for robust EEG analysis in mental health monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/39829439
https://www.proquest.com/docview/3156079386
https://www.proquest.com/docview/3157550250
https://doaj.org/article/be50c8b27f7d4af0b5f3a3e98f0f2ffb
Volume 18
WOSCitedRecordID wos001397554900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZolwMXXoUSKCsjIS4o6sax4_iEWrQFpHYVIZCWU-THuKpEk2UflfrvGTvehQu9cMnBcRIrMx5_Mx7PR8hb6VRlvYAcF3N0UBBB5Eb5El0VZW3l0SkCHckm5GxWz-eqSQG3VUqr3NrEaKhdb0OM_LgMR35Rmerqw-JXHlijwu5qotDYIyNENkVI6bpgzdYSI1YXcjgog99Ux75DoaFLyDjaB8VVICj-azGKNfv_DTTjgnP26H-H-pg8TFCTngy68YTcg-4pOTjp0M2-vqXvaEz-jFH1A3J-DqjTkbGIOoAFTWwSlxRBLV32ZrNa0-n0E9WpiAm96ujAC0CHo5T0OlqHECZ8Rr6fTb99_JwnooXcIhpa54qBxcksnHaicEzUXnMvpBEauOEgOXcIQyoHflJYJrTVUiPuKerKuIk0rHxO9ru-gxeEhoOttVRVUVXAtZEKQAkLGrCBc2AZKbZ_vLWpCnkgw_jZojcSpNRGKbVBSm2SUkbe755ZDDU47ux9GgS56xnqZ8eGfnnZpunYGhATWxsmvXRc-4kRvtQlqNpPPPPeZORoK9o2TepV-0euGXmzu43TMeyx6A76Tewj0elDYJmRw0F9diMpVc0UAsCXd7_8FXnAAslwzHU7Ivvr5QZek_v2Zn21Wo7JnpzXYzI6nc6ar-MYQhhHrQ9XiddR8-Wi-fEbTpAK-Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJceJXHQgEjARcUNeu14_iAUIEtXXW72kORyim1nXFViSbLPkD9U_xGxk6ycKG3HrgmThTHn7-ZsT3zAbxSpc6cl5iQMacAhTyIxGo_oFBFO5d5CorQRLEJNZnkJyd6ugG_ulyYcKyy48RI1GXtwhr57iCk_BKY8uz97HsSVKPC7monodHA4hAvf1LItng3-kTj-5rz_eHxx4OkVRVIHJn-ZaI5OkKuLE0p-yWXuTfCS2WlQWEFKiFKsrlZiT7tOy6NM8qQke_nmS1TZUOhA6L8LUFgTzdhazo6mn7tuJ-iA6ma1Bzqpd71FcGEglAuiJG00EES-S_zF1UC_u3aRhO3f-d_-zl34XbrTLO9Bv33YAOr-7C9V5llfXHJ3rB4vDXuG2zDeIw0a6MmEysRZ6zVyzhj5LazeW1XiyUbDj8z05ZpYecVa5QPWJMsyi4i_4WF0Afw5Vr69RA2q7rCx8BC6m6udNbPMhTGKo2opUODdEEI5D3odyNcuLbOepD7-FZQvBVQUURUFAEVRYuKHrxdPzNrqoxc2fpDAM66ZagQHi_U87OiJZzCokxdbrnyqhTGp1b6gRmgzn3qufe2BzsdlIqWthbFHxz14OX6NhFO2EUyFdar2EZRWEvo78GjBq7rLxnonGtycZ9c_fIXcPPg-GhcjEeTw6dwiwdJ5Xiybwc2l_MVPoMb7sfyfDF_3s4vBqfXjdrfg2Fj0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLUJc-CqUhQJGAi4o2l3HjuMDQi3dhaqr1QqB1FuwnXFViSbLfoD61_h1jJ1k4UJvPXBNnCiOn2fm2Z55AC9VqTPnJSbkzImgUASRWO1ToiraucwTKUITxSbUdJqfnurZFvzqcmHCscrOJkZDXdYurJH305DyS2DKs75vj0XMjsbv5t-ToCAVdlo7OY0GIid4-ZPo2_Lt8RGN9SvOx6PP7z8mrcJA4igMWCWaoyMUy9KUclhymXsjvFRWGhRWoBKiJP-blegHQ8elcUYZcvjDPLPlQNlQ9IDM_45KifRsw87haDr71PkBYgpSNWk61GPd9xVBhggpF2SdtNBBHvkvVxgVA_4d5kZ3N77zP_-ou3C7DbLZQTMr7sEWVvdh96Ayq_rikr1m8dhr3E_YhckEaTZHrSZWIs5Zq6NxxiicZ4varpcrNhp9YKYt38LOK9YoIrAmiZRdRLsYFkgfwJdr6ddD2K7qCh8BCym9udLZMMtQGKs0opYODdIFIZD3YNiNduHa-utBBuRbQTwsIKSICCkCQooWIT14s3lm3lQfubL1YQDRpmWoHB4v1IuzojVEhUU5cLnlyqtSGD-w0qcmRZ37gefe2x7sd7AqWnO2LP5gqgcvNrfJEIXdJVNhvY5tFNFdCql7sNdAd_Mlqc65ptD38dUvfw43CarF5Hh68gRu8aC0HA_87cP2arHGp3DD_VidLxfP2qnG4Ot1g_Y3-Z1sbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+deep+learning+for+robust+EEG+analysis+in+mental+health+monitoring&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Liu%2C+Zixiang&rft.au=Zhao%2C+Juan&rft.date=2025-01-03&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=18&rft.spage=1494970&rft_id=info:doi/10.3389%2Ffninf.2024.1494970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon