Joint Adaptive Sampling Interval and Power Allocation for Maneuvering Target Tracking in a Multiple Opportunistic Array Radar System

In this paper, a joint adaptive sampling interval and power allocation (JASIPA) scheme based on chance-constraint programming (CCP) is proposed for maneuvering target tracking (MTT) in a multiple opportunistic array radar (OAR) system. In order to conveniently predict the maneuvering target state of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 20; číslo 4; s. 981
Hlavní autoři: Han, Qinghua, Pan, Minghai, Long, Weijun, Liang, Zhiheng, Shan, Chenggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI 12.02.2020
MDPI AG
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a joint adaptive sampling interval and power allocation (JASIPA) scheme based on chance-constraint programming (CCP) is proposed for maneuvering target tracking (MTT) in a multiple opportunistic array radar (OAR) system. In order to conveniently predict the maneuvering target state of the next sampling instant, the best-fitting Gaussian (BFG) approximation is introduced and used to replace the multimodal prior target probability density function (PDF) at each time step. Since the mean and covariance of the BFG approximation can be computed by a recursive formula, we can utilize an existing Riccati-like recursion to accomplish effective resource allocation. The prior Cramér-Rao lower boundary (prior CRLB-like) is compared with the upper boundary of the desired tracking error range to determine the adaptive sampling interval, and the Bayesian CRLB-like (BCRLB-like) gives a criterion used for measuring power allocation. In addition, considering the randomness of target radar cross section (RCS), we adopt the CCP to package the deterministic resource management model, which minimizes the total transmitted power by effective resource allocation. Lastly, the stochastic simulation is embedded into a genetic algorithm (GA) to produce a hybrid intelligent optimization algorithm (HIOA) to solve the CCP optimization problem. Simulation results show that the global performance of the radar system can be improved effectively by the resource allocation scheme.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20040981