Optimization of TIG Welding Parameters Using a Hybrid Nelder Mead-Evolutionary Algorithms Method
A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and...
Uloženo v:
| Vydáno v: | Journal of Manufacturing and Materials Processing Ročník 4; číslo 1; s. 10 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
MDPI AG
01.03.2020
|
| Témata: | |
| ISSN: | 2504-4494, 2504-4494 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort. |
|---|---|
| AbstractList | A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort. Keywords: genetic algorithm; simulated annealing; particle swarm optimization; Nelder-Mead optimization; TIG welding; bead geometry optimization A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort. |
| Audience | Academic |
| Author | Tabor, Jim Kshirsagar, Rohit Lawrence, Jonathan Jones, Steve |
| Author_xml | – sequence: 1 givenname: Rohit surname: Kshirsagar fullname: Kshirsagar, Rohit – sequence: 2 givenname: Steve orcidid: 0000-0003-0957-6375 surname: Jones fullname: Jones, Steve – sequence: 3 givenname: Jonathan surname: Lawrence fullname: Lawrence, Jonathan – sequence: 4 givenname: Jim surname: Tabor fullname: Tabor, Jim |
| BookMark | eNptkVtLJDEQhYO44PXJP5B3ac2tk87jIK4OuKsPyj7GdFIZM3R3hnRWcH_9ZhwFWZYEKpyc71BUHaH9KU2A0BklF5xrcrkex40glNS7hw5ZS0QjhBb7X94H6HSe14QQ1rWKa36Inu83JY7xjy0xTTgF_Li8wb9g8HFa4Qeb7QgF8oyf5q1g8e1bn6PHP6sDMv4B1jfXr2n4vcVtfsOLYZVyLC_jXD_LS_In6FuwwwynH_UYPX2_fry6be7ub5ZXi7vGCUFL0_Wt7aFnWnHXE9tRp6kOzoHsiZZcKW2BOu9rtdVCql0JDq1UvJXaM36Mlrtcn-zabHIcazsm2WjehZRXxuYS3QCGUaq9J0yCkoJC6ED5PnRUUsUE70LNuthlrWy1xymkkq2rx8MYXZ16iFVfSM44azslK0B3gMtpnjME42J5H2kF42AoMdsVmS8rqsz5P8xn0_9z_wWEOJRQ |
| CitedBy_id | crossref_primary_10_1155_2021_6639032 crossref_primary_10_3390_app11072888 crossref_primary_10_3390_jmmp4030066 crossref_primary_10_1109_ACCESS_2021_3078750 crossref_primary_10_3390_cryst13091377 crossref_primary_10_3390_ma18174084 crossref_primary_10_2166_wcc_2023_459 crossref_primary_10_3390_ma14237139 crossref_primary_10_3390_coatings11101227 crossref_primary_10_3390_cryst14110973 crossref_primary_10_3390_jmmp4030096 |
| Cites_doi | 10.1007/s10845-012-0682-1 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6 10.1007/s10845-014-0891-x 10.1007/BF01473900 10.1016/j.jmatprotec.2008.06.030 10.1016/j.matdes.2005.06.003 10.1016/S1003-6326(08)60221-6 10.1007/s00170-013-5131-6 10.1016/j.asoc.2010.10.005 10.1016/j.asoc.2009.10.007 10.3390/jmmp3020039 10.1016/S0890-6955(99)00013-9 10.1007/s10845-012-0675-0 10.1016/j.jmatprotec.2004.04.243 10.1016/0375-9601(87)90796-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 MDPI AG |
| Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3390/jmmp4010010 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-4494 |
| ExternalDocumentID | oai_doaj_org_article_2119dd026e7641ef8e7dbf816172438f A632325876 10_3390_jmmp4010010 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | 7WY 8FE 8FG 8FL AADQD AAFWJ AAYXX ABJCF ABUWG ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION D1I DWQXO FRNLG GROUPED_DOAJ HCIFZ IAO K60 K6~ KB. M0C MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC BAAKF ITC |
| ID | FETCH-LOGICAL-c441t-8b5abeb2973cb0a81c919fcce6b0963779ae1cdd79aa73c0b5a743e5673569d23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591330100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-4494 |
| IngestDate | Tue Oct 14 19:07:36 EDT 2025 Sat Nov 29 10:08:10 EST 2025 Sat Nov 29 07:09:45 EST 2025 Tue Nov 18 21:07:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-8b5abeb2973cb0a81c919fcce6b0963779ae1cdd79aa73c0b5a743e5673569d23 |
| ORCID | 0000-0003-0957-6375 |
| OpenAccessLink | https://doaj.org/article/2119dd026e7641ef8e7dbf816172438f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2119dd026e7641ef8e7dbf816172438f gale_infotracacademiconefile_A632325876 crossref_citationtrail_10_3390_jmmp4010010 crossref_primary_10_3390_jmmp4010010 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Manufacturing and Materials Processing |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Acherjee (ref_4) 2011; 11 Kolahan (ref_13) 2010; 69 Karsai (ref_6) 1992; 3 Nagesh (ref_3) 2010; 10 Vitek (ref_7) 2003; 82 Pashazadeh (ref_16) 2016; 27 Tarng (ref_11) 1999; 39 Jaszkiewicz (ref_12) 1998; 7 ref_17 Lakshminarayanan (ref_2) 2009; 19 Sathiya (ref_14) 2009; 209 Katherasan (ref_9) 2014; 25 ref_8 Szu (ref_18) 1987; 122 Correia (ref_15) 2005; 160 Roshan (ref_10) 2013; 69 Xiong (ref_1) 2014; 25 Okuyucu (ref_5) 2007; 28 |
| References_xml | – volume: 25 start-page: 157 year: 2014 ident: ref_1 article-title: Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis publication-title: J. Intellect. Manuf. doi: 10.1007/s10845-012-0682-1 – volume: 7 start-page: 34 year: 1998 ident: ref_12 article-title: Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization publication-title: J. Mult-Criteria Decis. Anal. doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6 – ident: ref_8 – volume: 27 start-page: 549 year: 2016 ident: ref_16 article-title: Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0891-x – volume: 3 start-page: 229 year: 1992 ident: ref_6 article-title: Neural network methods for the modeling and control of welding processes publication-title: J. Intell. Manuf. doi: 10.1007/BF01473900 – volume: 209 start-page: 2576 year: 2009 ident: ref_14 article-title: Optimization of friction welding parameters using evolutionary computational techniques publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.06.030 – volume: 28 start-page: 78 year: 2007 ident: ref_5 article-title: Artificial neural network application to the friction stir welding of aluminum plates publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.06.003 – volume: 69 start-page: 259 year: 2010 ident: ref_13 article-title: Modeling and optimization of MAG welding for gas pipelines using regression analysis and simulated annealing algorithm publication-title: JSIR – volume: 19 start-page: 9 year: 2009 ident: ref_2 article-title: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(08)60221-6 – volume: 69 start-page: 1803 year: 2013 ident: ref_10 article-title: Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5131-6 – volume: 11 start-page: 2548 year: 2011 ident: ref_4 article-title: Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.10.005 – volume: 10 start-page: 897 year: 2010 ident: ref_3 article-title: Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.10.007 – ident: ref_17 doi: 10.3390/jmmp3020039 – volume: 39 start-page: 1427 year: 1999 ident: ref_11 article-title: Modeling, optimization and classification of weld quality in tungsten inert gas welding publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(99)00013-9 – volume: 82 start-page: 43-S year: 2003 ident: ref_7 article-title: Improved Ferrite Number Prediction Model that Accounts for Cooling Rate Effects Part 1: Model Development publication-title: Weld. J. – volume: 25 start-page: 67 year: 2014 ident: ref_9 article-title: Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm publication-title: J. Intell. Manuf. doi: 10.1007/s10845-012-0675-0 – volume: 160 start-page: 70 year: 2005 ident: ref_15 article-title: Comparison between genetic algorithms and response surface methodology in GMAW welding optimization publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.04.243 – volume: 122 start-page: 157 year: 1987 ident: ref_18 article-title: Fast simulated annealing publication-title: Phys. Lett. A doi: 10.1016/0375-9601(87)90796-1 |
| SSID | ssj0002857393 |
| Score | 2.224119 |
| Snippet | A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order... |
| SourceID | doaj gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 10 |
| SubjectTerms | Algorithms bead geometry optimization Gas welding genetic algorithm Mathematical models nelder-mead optimization Optimization theory particle swarm optimization simulated annealing tig welding |
| Title | Optimization of TIG Welding Parameters Using a Hybrid Nelder Mead-Evolutionary Algorithms Method |
| URI | https://doaj.org/article/2119dd026e7641ef8e7dbf816172438f |
| Volume | 4 |
| WOSCitedRecordID | wos000591330100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: 7WY dateStart: 20170901 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: M0C dateStart: 20170901 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: KB. dateStart: 20170901 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: BENPR dateStart: 20170901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-4494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857393 issn: 2504-4494 databaseCode: PIMPY dateStart: 20170901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kevAiior1UfZQEITQpptkk2OVVgtac6haT3Gf2tIXbS303zuTxBJB8OIpkAxkM7OP78vufENI1QDEdjXnTmC173iGSUcK1MZjzArp-Q2b6hY83_NuN-z3o7hQ6gvPhGXywJnjaqhApjUwBcMDzzU2NFxLGyIsb3gstDj71nlUIFPD9JeRj1JvWUIeA15fG47HM-ASyIF-LEGpUn8-HxdWlvY-2cshIW1mTTkgW2ZySN4eYSyP8yRJOrW017mlLybdKqKxwCNVqItJ0y1_KujdGlOvaNdg1W2KcrpOa5V3KzFf0-bofTofLD_GC3iIRaOPyFO71bu5c_JqCI4CyLJ0QukLCTw44kzJughdFbmRVcoEEmgI6gYK4yqt4SrApA7mgA6MH3DmB5FusGNSmkwn5oRQX6o6CwE6AFvyLOfSammYEqEGOKYZK5OrbwclKpcKx4oVowQoA3ozKXizTKob41mmkPG72TV6emOCstbpDQh2kgc7-SvYZXKJcUpw8EGDlMhzCOCzUMYqaQYMEKIPM_zpf7zujOw2kF6nR87OSWk5_zQXZEetloPFvJL2uArZjjsP8esXelbc0w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+TIG+Welding+Parameters+Using+a+Hybrid+Nelder+Mead-Evolutionary+Algorithms+Method&rft.jtitle=Journal+of+Manufacturing+and+Materials+Processing&rft.au=Kshirsagar%2C+Rohit&rft.au=Jones%2C+Steve&rft.au=Lawrence%2C+Jonathan&rft.au=Tabor%2C+Jim&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.issn=2504-4494&rft.eissn=2504-4494&rft.volume=4&rft.issue=1&rft_id=info:doi/10.3390%2Fjmmp4010010&rft.externalDocID=A632325876 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4494&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4494&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4494&client=summon |