Optimization of TIG Welding Parameters Using a Hybrid Nelder Mead-Evolutionary Algorithms Method

A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Manufacturing and Materials Processing Ročník 4; číslo 1; s. 10
Hlavní autoři: Kshirsagar, Rohit, Jones, Steve, Lawrence, Jonathan, Tabor, Jim
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 01.03.2020
Témata:
ISSN:2504-4494, 2504-4494
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort.
AbstractList A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort. Keywords: genetic algorithm; simulated annealing; particle swarm optimization; Nelder-Mead optimization; TIG welding; bead geometry optimization
A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort.
Audience Academic
Author Tabor, Jim
Kshirsagar, Rohit
Lawrence, Jonathan
Jones, Steve
Author_xml – sequence: 1
  givenname: Rohit
  surname: Kshirsagar
  fullname: Kshirsagar, Rohit
– sequence: 2
  givenname: Steve
  orcidid: 0000-0003-0957-6375
  surname: Jones
  fullname: Jones, Steve
– sequence: 3
  givenname: Jonathan
  surname: Lawrence
  fullname: Lawrence, Jonathan
– sequence: 4
  givenname: Jim
  surname: Tabor
  fullname: Tabor, Jim
BookMark eNptkVtLJDEQhYO44PXJP5B3ac2tk87jIK4OuKsPyj7GdFIZM3R3hnRWcH_9ZhwFWZYEKpyc71BUHaH9KU2A0BklF5xrcrkex40glNS7hw5ZS0QjhBb7X94H6HSe14QQ1rWKa36Inu83JY7xjy0xTTgF_Li8wb9g8HFa4Qeb7QgF8oyf5q1g8e1bn6PHP6sDMv4B1jfXr2n4vcVtfsOLYZVyLC_jXD_LS_In6FuwwwynH_UYPX2_fry6be7ub5ZXi7vGCUFL0_Wt7aFnWnHXE9tRp6kOzoHsiZZcKW2BOu9rtdVCql0JDq1UvJXaM36Mlrtcn-zabHIcazsm2WjehZRXxuYS3QCGUaq9J0yCkoJC6ED5PnRUUsUE70LNuthlrWy1xymkkq2rx8MYXZ16iFVfSM44azslK0B3gMtpnjME42J5H2kF42AoMdsVmS8rqsz5P8xn0_9z_wWEOJRQ
CitedBy_id crossref_primary_10_1155_2021_6639032
crossref_primary_10_3390_app11072888
crossref_primary_10_3390_jmmp4030066
crossref_primary_10_1109_ACCESS_2021_3078750
crossref_primary_10_3390_cryst13091377
crossref_primary_10_3390_ma18174084
crossref_primary_10_2166_wcc_2023_459
crossref_primary_10_3390_ma14237139
crossref_primary_10_3390_coatings11101227
crossref_primary_10_3390_cryst14110973
crossref_primary_10_3390_jmmp4030096
Cites_doi 10.1007/s10845-012-0682-1
10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
10.1007/s10845-014-0891-x
10.1007/BF01473900
10.1016/j.jmatprotec.2008.06.030
10.1016/j.matdes.2005.06.003
10.1016/S1003-6326(08)60221-6
10.1007/s00170-013-5131-6
10.1016/j.asoc.2010.10.005
10.1016/j.asoc.2009.10.007
10.3390/jmmp3020039
10.1016/S0890-6955(99)00013-9
10.1007/s10845-012-0675-0
10.1016/j.jmatprotec.2004.04.243
10.1016/0375-9601(87)90796-1
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
DBID AAYXX
CITATION
DOA
DOI 10.3390/jmmp4010010
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4494
ExternalDocumentID oai_doaj_org_article_2119dd026e7641ef8e7dbf816172438f
A632325876
10_3390_jmmp4010010
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
DWQXO
FRNLG
GROUPED_DOAJ
HCIFZ
IAO
K60
K6~
KB.
M0C
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
BAAKF
ITC
ID FETCH-LOGICAL-c441t-8b5abeb2973cb0a81c919fcce6b0963779ae1cdd79aa73c0b5a743e5673569d23
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591330100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-4494
IngestDate Tue Oct 14 19:07:36 EDT 2025
Sat Nov 29 10:08:10 EST 2025
Sat Nov 29 07:09:45 EST 2025
Tue Nov 18 21:07:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-8b5abeb2973cb0a81c919fcce6b0963779ae1cdd79aa73c0b5a743e5673569d23
ORCID 0000-0003-0957-6375
OpenAccessLink https://doaj.org/article/2119dd026e7641ef8e7dbf816172438f
ParticipantIDs doaj_primary_oai_doaj_org_article_2119dd026e7641ef8e7dbf816172438f
gale_infotracacademiconefile_A632325876
crossref_citationtrail_10_3390_jmmp4010010
crossref_primary_10_3390_jmmp4010010
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Manufacturing and Materials Processing
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Acherjee (ref_4) 2011; 11
Kolahan (ref_13) 2010; 69
Karsai (ref_6) 1992; 3
Nagesh (ref_3) 2010; 10
Vitek (ref_7) 2003; 82
Pashazadeh (ref_16) 2016; 27
Tarng (ref_11) 1999; 39
Jaszkiewicz (ref_12) 1998; 7
ref_17
Lakshminarayanan (ref_2) 2009; 19
Sathiya (ref_14) 2009; 209
Katherasan (ref_9) 2014; 25
ref_8
Szu (ref_18) 1987; 122
Correia (ref_15) 2005; 160
Roshan (ref_10) 2013; 69
Xiong (ref_1) 2014; 25
Okuyucu (ref_5) 2007; 28
References_xml – volume: 25
  start-page: 157
  year: 2014
  ident: ref_1
  article-title: Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis
  publication-title: J. Intellect. Manuf.
  doi: 10.1007/s10845-012-0682-1
– volume: 7
  start-page: 34
  year: 1998
  ident: ref_12
  article-title: Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization
  publication-title: J. Mult-Criteria Decis. Anal.
  doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
– ident: ref_8
– volume: 27
  start-page: 549
  year: 2016
  ident: ref_16
  article-title: Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0891-x
– volume: 3
  start-page: 229
  year: 1992
  ident: ref_6
  article-title: Neural network methods for the modeling and control of welding processes
  publication-title: J. Intell. Manuf.
  doi: 10.1007/BF01473900
– volume: 209
  start-page: 2576
  year: 2009
  ident: ref_14
  article-title: Optimization of friction welding parameters using evolutionary computational techniques
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.06.030
– volume: 28
  start-page: 78
  year: 2007
  ident: ref_5
  article-title: Artificial neural network application to the friction stir welding of aluminum plates
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.06.003
– volume: 69
  start-page: 259
  year: 2010
  ident: ref_13
  article-title: Modeling and optimization of MAG welding for gas pipelines using regression analysis and simulated annealing algorithm
  publication-title: JSIR
– volume: 19
  start-page: 9
  year: 2009
  ident: ref_2
  article-title: Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(08)60221-6
– volume: 69
  start-page: 1803
  year: 2013
  ident: ref_10
  article-title: Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5131-6
– volume: 11
  start-page: 2548
  year: 2011
  ident: ref_4
  article-title: Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.10.005
– volume: 10
  start-page: 897
  year: 2010
  ident: ref_3
  article-title: Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.10.007
– ident: ref_17
  doi: 10.3390/jmmp3020039
– volume: 39
  start-page: 1427
  year: 1999
  ident: ref_11
  article-title: Modeling, optimization and classification of weld quality in tungsten inert gas welding
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(99)00013-9
– volume: 82
  start-page: 43-S
  year: 2003
  ident: ref_7
  article-title: Improved Ferrite Number Prediction Model that Accounts for Cooling Rate Effects Part 1: Model Development
  publication-title: Weld. J.
– volume: 25
  start-page: 67
  year: 2014
  ident: ref_9
  article-title: Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-012-0675-0
– volume: 160
  start-page: 70
  year: 2005
  ident: ref_15
  article-title: Comparison between genetic algorithms and response surface methodology in GMAW welding optimization
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.04.243
– volume: 122
  start-page: 157
  year: 1987
  ident: ref_18
  article-title: Fast simulated annealing
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(87)90796-1
SSID ssj0002857393
Score 2.224119
Snippet A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 10
SubjectTerms Algorithms
bead geometry optimization
Gas welding
genetic algorithm
Mathematical models
nelder-mead optimization
Optimization theory
particle swarm optimization
simulated annealing
tig welding
Title Optimization of TIG Welding Parameters Using a Hybrid Nelder Mead-Evolutionary Algorithms Method
URI https://doaj.org/article/2119dd026e7641ef8e7dbf816172438f
Volume 4
WOSCitedRecordID wos000591330100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: 7WY
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: M0C
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: KB.
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: BENPR
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-4494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002857393
  issn: 2504-4494
  databaseCode: PIMPY
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kevAiior1UfZQEITQpptkk2OVVgtac6haT3Gf2tIXbS303zuTxBJB8OIpkAxkM7OP78vufENI1QDEdjXnTmC173iGSUcK1MZjzArp-Q2b6hY83_NuN-z3o7hQ6gvPhGXywJnjaqhApjUwBcMDzzU2NFxLGyIsb3gstDj71nlUIFPD9JeRj1JvWUIeA15fG47HM-ASyIF-LEGpUn8-HxdWlvY-2cshIW1mTTkgW2ZySN4eYSyP8yRJOrW017mlLybdKqKxwCNVqItJ0y1_KujdGlOvaNdg1W2KcrpOa5V3KzFf0-bofTofLD_GC3iIRaOPyFO71bu5c_JqCI4CyLJ0QukLCTw44kzJughdFbmRVcoEEmgI6gYK4yqt4SrApA7mgA6MH3DmB5FusGNSmkwn5oRQX6o6CwE6AFvyLOfSammYEqEGOKYZK5OrbwclKpcKx4oVowQoA3ozKXizTKob41mmkPG72TV6emOCstbpDQh2kgc7-SvYZXKJcUpw8EGDlMhzCOCzUMYqaQYMEKIPM_zpf7zujOw2kF6nR87OSWk5_zQXZEetloPFvJL2uArZjjsP8esXelbc0w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+TIG+Welding+Parameters+Using+a+Hybrid+Nelder+Mead-Evolutionary+Algorithms+Method&rft.jtitle=Journal+of+Manufacturing+and+Materials+Processing&rft.au=Kshirsagar%2C+Rohit&rft.au=Jones%2C+Steve&rft.au=Lawrence%2C+Jonathan&rft.au=Tabor%2C+Jim&rft.date=2020-03-01&rft.pub=MDPI+AG&rft.issn=2504-4494&rft.eissn=2504-4494&rft.volume=4&rft.issue=1&rft_id=info:doi/10.3390%2Fjmmp4010010&rft.externalDocID=A632325876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4494&client=summon