Left ventricular global myocardial strain assessment: Are CMR feature-tracking algorithms useful in the clinical setting?

Objectives Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Radiologia medica Ročník 125; číslo 5; s. 444 - 450
Hlavní autoři: Pierpaolo, Palumbo, Rolf, Symons, Manuel, Barreiro-Pérez, Davide, Curione, Dresselaers, Tom, Claus, Piet, Bogaert, Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Milan Springer Milan 01.05.2020
Springer Nature B.V
Témata:
ISSN:0033-8362, 1826-6983, 1826-6983
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objectives Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values. Methods In 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland–Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV). Results Manual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857–0.935) and intermediate for GLS (ICC 0.591–0.914), while ICC values for GRS ranged widely (ICC 0.271–0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%). Conclusion Some CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.
AbstractList Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values.OBJECTIVESMyocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values.In 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland-Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV).METHODSIn 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland-Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV).Manual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857-0.935) and intermediate for GLS (ICC 0.591-0.914), while ICC values for GRS ranged widely (ICC 0.271-0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%).RESULTSManual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857-0.935) and intermediate for GLS (ICC 0.591-0.914), while ICC values for GRS ranged widely (ICC 0.271-0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%).Some CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.CONCLUSIONSome CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.
Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values. In 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland-Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV). Manual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857-0.935) and intermediate for GLS (ICC 0.591-0.914), while ICC values for GRS ranged widely (ICC 0.271-0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%). Some CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.
Objectives Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values. Methods In 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland–Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV). Results Manual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857–0.935) and intermediate for GLS (ICC 0.591–0.914), while ICC values for GRS ranged widely (ICC 0.271–0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%). Conclusion Some CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.
ObjectivesMyocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and inter-observer agreement but rather disappointing inter-vendor agreement. Currently, it is unknown how well CMR-FT-based strain values agree with manually obtained strain values.MethodsIn 45 subjects (15 controls, 15 acute myocardial infarction, 15 non-ischemic dilated cardiomyopathy), end-systolic manually derived strains were compared to four CMR-FT software packages. Global radial strain (GRS), global circumferential strain (GCS) and global longitudinal strain (GLS) were determined. Intra- and inter-observer agreement and agreement between manual and CMR-FT analysis were calculated. Statistical analysis included Bland–Altman plots, intra-class correlation coefficient (ICC) and coefficient of variation (CV).ResultsManual contouring yielded excellent intra-observer (ICC 0.903 (GRS) to 0.995 (GCS)) and inter-observer agreement (ICC 0.915 (GRS) to 0.966 (GCS)) with CV ranging 4.7% (GCS) to 20.7% (GRS) and 12.7% (GCS) to 20.0% (GRS), for intra-observer and inter-observer agreement, respectively. Agreement between manual and CMR-FT strain values ranged from poor to excellent, with best agreement for GCS (ICC 0.857–0.935) and intermediate for GLS (ICC 0.591–0.914), while ICC values for GRS ranged widely (ICC 0.271–0.851). In particular, two software packages showed a strong trend toward systematic underestimation of myocardial strain in radial and longitudinal direction, correlating poorly to moderately with manual contouring, i.e., GRS (ICC 0.271, CV 25.2%) and GLS (ICC 0.591, CV 17.6%).ConclusionSome CMR-FT values agree poorly with manually derived strains, emphasizing to be cautious to use these software packages in the clinical setting. In particular, radial and longitudinal strain tends to be underestimated when using manually derived strains as reference.
Author Manuel, Barreiro-Pérez
Rolf, Symons
Davide, Curione
Dresselaers, Tom
Pierpaolo, Palumbo
Bogaert, Jan
Claus, Piet
Author_xml – sequence: 1
  givenname: Palumbo
  surname: Pierpaolo
  fullname: Pierpaolo, Palumbo
  organization: Department of Imaging and Pathology, KU Leuven – University of Leuven
– sequence: 2
  givenname: Symons
  surname: Rolf
  fullname: Rolf, Symons
  organization: Department of Imaging and Pathology, KU Leuven – University of Leuven
– sequence: 3
  givenname: Barreiro-Pérez
  surname: Manuel
  fullname: Manuel, Barreiro-Pérez
  organization: Servicio de Cardiología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Medicina, Universidad de Salamanca, y CIBERCV
– sequence: 4
  givenname: Curione
  surname: Davide
  fullname: Davide, Curione
  organization: Department of Radiology, Ospedale Bambin Jésu
– sequence: 5
  givenname: Tom
  surname: Dresselaers
  fullname: Dresselaers, Tom
  organization: Department of Imaging and Pathology, KU Leuven – University of Leuven
– sequence: 6
  givenname: Piet
  surname: Claus
  fullname: Claus, Piet
  organization: Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KU Leuven – University of Leuven
– sequence: 7
  givenname: Jan
  surname: Bogaert
  fullname: Bogaert, Jan
  email: jan.bogaert@uzleuven.be
  organization: Department of Imaging and Pathology, KU Leuven – University of Leuven
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32125636$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrFDEYhoNU7Lb6BzxIwIuX6JdkJjPjRcqirbAiiJ5DJvtlm5rJ1CRT2H9v1m0Reugp3-F5XsL7npGTOEck5DWH9xyg-5A5b5uOgQAG9RwYf0ZWvBeKqaGXJ2QFICXrpRKn5CznG4AGOAwvyKkUXLRKqhXZb9AVeoexJG-XYBLdhXk0gU772Zq09fXMJRkfqckZc54q-pFeJKTrbz-oQ1OWhKwS9rePO2rCbk6-XE-ZLhndEmg1yzVSG3z09pCGpVTy00vy3JmQ8dX9e05-ffn8c33FNt8vv64vNsw2DS-sV6ZzioN0vUHrhl71hnNQDQiOFq2Qney2zTiorjWSS2dHHAY5NqPbKgcoz8m7Y-5tmv8smIuefLYYgok4L1nXAGiBDxIq-vYRejMvKdbfaVGrE6oW2FbqzT21jBNu9W3yk0l7_VBqBfojYNOcc0KnrS-m-Dkeigyagz7sp4_76bqf_ref5lUVj9SH9CcleZRyheMO0_9vP2H9BSQdrVc
CitedBy_id crossref_primary_10_1007_s11604_022_01379_7
crossref_primary_10_3390_diagnostics12102298
crossref_primary_10_1007_s11547_022_01491_8
crossref_primary_10_3390_diagnostics12040786
crossref_primary_10_1007_s00330_021_08416_5
crossref_primary_10_1007_s00330_020_07364_w
crossref_primary_10_1186_s12880_022_00886_3
crossref_primary_10_3389_fcvm_2024_1421013
crossref_primary_10_1259_bjr_20201060
crossref_primary_10_1007_s11547_021_01432_x
crossref_primary_10_1038_s41598_023_50835_5
crossref_primary_10_1007_s11604_021_01223_4
crossref_primary_10_1016_j_heliyon_2024_e28341
crossref_primary_10_3390_diagnostics13030553
crossref_primary_10_1038_s41598_022_09064_5
Cites_doi 10.1186/s12968-016-0249-y
10.1186/s12968-017-0333-y
10.1016/j.ultrasmedbio.2013.02.463
10.1148/radiol.2018180513
10.1093/ehjci/jev006
10.1186/s12968-016-0269-7
10.1136/heartjnl-2014-305538
10.1016/j.crad.2015.05.006
10.1186/s12968-019-0575-y
10.1002/0471445428
10.1093/ehjci/jew042
10.1016/j.jacc.2014.01.073
10.1002/jmri.24979
10.1002/jmri.24623
10.1186/1532-429X-14-43
10.1093/eurheartj/ehv529
10.1002/jmri.24625
10.1186/s12968-017-0380-4
10.1007/978-3-642-38899-6_38
10.1038/s41591-018-0300-7
10.1161/CIRCIMAGING.115.004077
10.1007/s00330-018-5538-4
10.1007/s00330-019-06019-9
ContentType Journal Article
Copyright Italian Society of Medical Radiology 2020
Italian Society of Medical Radiology 2020.
Copyright_xml – notice: Italian Society of Medical Radiology 2020
– notice: Italian Society of Medical Radiology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1007/s11547-020-01159-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1826-6983
EndPage 450
ExternalDocumentID 32125636
10_1007_s11547_020_01159_1
Genre Journal Article
Comparative Study
GroupedDBID -5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z87
ZMTXR
ZOVNA
~A9
~S-
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c441t-86a7f6103f8aecf9868a11064021ecec23737d4b9675a313fcbe993b4bfd6f0e3
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518049500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0033-8362
1826-6983
IngestDate Fri Sep 05 11:02:27 EDT 2025
Tue Oct 07 06:48:12 EDT 2025
Mon Jul 21 05:47:43 EDT 2025
Tue Nov 18 21:28:36 EST 2025
Sat Nov 29 02:44:06 EST 2025
Fri Feb 21 02:40:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Magnetic resonance imaging
Myocardium
Function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-86a7f6103f8aecf9868a11064021ecec23737d4b9675a313fcbe993b4bfd6f0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 32125636
PQID 2401260405
PQPubID 2043526
PageCount 7
ParticipantIDs proquest_miscellaneous_2370501930
proquest_journals_2401260405
pubmed_primary_32125636
crossref_citationtrail_10_1007_s11547_020_01159_1
crossref_primary_10_1007_s11547_020_01159_1
springer_journals_10_1007_s11547_020_01159_1
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Italy
– name: Torino
PublicationSubtitle Official Journal of the Italian Society of Medical Radiology
PublicationTitle Radiologia medica
PublicationTitleAbbrev Radiol med
PublicationTitleAlternate Radiol Med
PublicationYear 2020
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Topol (CR22) 2019; 25
Singh, Steadman, Khan (CR10) 2015; 41
Moody, Taylor, Edwards, Chue, Umar, Taylor, Ferro, Young, Townend, Leyva, Steeds (CR7) 2015; 41
Heyde, Bouchez, Thieren (CR8) 2013; 39
Smiseth, Torp, Opdahl, Haugaa, Urheim (CR3) 2016; 37
Thavendiranathan, Poulin, Lim, Plana, Woo, Marwick (CR1) 2014; 63
Schuster, Hor, Kowallick, Beerbaum, Kutty (CR11) 2016; 9
Taylor, Moody, Umar (CR17) 2015; 16
Schuster, Stahnke, Unterberg-Buchwald (CR12) 2015; 70
Fleiss, Levin, Paik (CR20) 2003
Bourfiss, Vigneault, Aliyari Ghasebeh (CR18) 2017; 19
Kuetting, Dabir, Homsi (CR14) 2016; 18
Morais, Heyde, Barbosa, Queirós, Claus, D’hooge (CR9) 2013
Morais, Marchi, Bogaert (CR6) 2017; 19
Leiner, Rueckert, Suinesiaputra (CR23) 2019; 21
Kowallick, Morton, Lamata (CR15) 2016; 43
Pedrizzetti, Claus, Kilner, Nagel (CR2) 2016; 18
Tao, Wenjun, Wang (CR21) 2019; 290
Kuetting, Dabir, Homsi (CR25) 2016; 18
Morton, Schuster, Jogiya, Kutty, Beerbaum, Nagel (CR13) 2012; 14
Kalam, Otahal, Marwick (CR4) 2014; 100
Hor, Baumann, Pedrizzetti (CR5) 2011; 48
Lamacie, Houbois, Greiser, Jolly, Thavendiranathan, Wintersperger (CR24) 2019; 29
Barreiro-Pérez, Curione, Symons, Claus, Voigt, Bogaert (CR19) 2018; 28
Aurich, Keller, Greiner (CR16) 2016; 17
P Morais (1159_CR9) 2013
RJ Taylor (1159_CR17) 2015; 16
DL Kuetting (1159_CR25) 2016; 18
P Thavendiranathan (1159_CR1) 2014; 63
A Schuster (1159_CR11) 2016; 9
M Barreiro-Pérez (1159_CR19) 2018; 28
B Heyde (1159_CR8) 2013; 39
JL Fleiss (1159_CR20) 2003
A Singh (1159_CR10) 2015; 41
MM Lamacie (1159_CR24) 2019; 29
OA Smiseth (1159_CR3) 2016; 37
M Bourfiss (1159_CR18) 2017; 19
P Morais (1159_CR6) 2017; 19
DL Kuetting (1159_CR14) 2016; 18
JT Kowallick (1159_CR15) 2016; 43
KN Hor (1159_CR5) 2011; 48
K Kalam (1159_CR4) 2014; 100
Q Tao (1159_CR21) 2019; 290
M Aurich (1159_CR16) 2016; 17
A Schuster (1159_CR12) 2015; 70
G Pedrizzetti (1159_CR2) 2016; 18
T Leiner (1159_CR23) 2019; 21
EJ Topol (1159_CR22) 2019; 25
G Morton (1159_CR13) 2012; 14
WE Moody (1159_CR7) 2015; 41
References_xml – volume: 18
  start-page: 30
  year: 2016
  ident: CR25
  article-title: The effects of extra-cellular contrast agent (Gadobutrol) on the precision and reproducibility of cardiovascular magnetic resonance feature tracking
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0249-y
– volume: 19
  start-page: 24
  year: 2017
  ident: CR6
  article-title: Cardiovascular magnetic resonance myocardial feature tracking using a non-rigid, elastic image registration algorithm. Assessment of variability in a real-life clinical setting
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-017-0333-y
– volume: 39
  start-page: 1688
  year: 2013
  end-page: 1697
  ident: CR8
  article-title: Elastic image registration to quantify 3-D regional myocardial deformation from volumetric ultrasound: experimental validation in an animal model
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2013.02.463
– volume: 290
  start-page: 81
  year: 2019
  end-page: 88
  ident: CR21
  article-title: Deep-learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study
  publication-title: Radiology
  doi: 10.1148/radiol.2018180513
– volume: 16
  start-page: 871
  year: 2015
  end-page: 881
  ident: CR17
  article-title: Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jev006
– volume: 18
  start-page: 51
  issue: 1
  year: 2016
  ident: CR2
  article-title: Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0269-7
– volume: 100
  start-page: 1673
  year: 2014
  end-page: 1680
  ident: CR4
  article-title: Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction
  publication-title: Heart
  doi: 10.1136/heartjnl-2014-305538
– volume: 70
  start-page: 989
  year: 2015
  end-page: 998
  ident: CR12
  article-title: Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2015.05.006
– volume: 21
  start-page: 61
  year: 2019
  ident: CR23
  article-title: Machine learning in cardiovascular magnetic resonance: basic concepts and applications
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-019-0575-y
– year: 2003
  ident: CR20
  publication-title: Statistical methods for rates and proportions
  doi: 10.1002/0471445428
– volume: 17
  start-page: 1370
  year: 2016
  end-page: 1378
  ident: CR16
  article-title: Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jew042
– volume: 63
  start-page: 2751
  year: 2014
  end-page: 2768
  ident: CR1
  article-title: Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.01.073
– volume: 43
  start-page: 128
  year: 2016
  end-page: 137
  ident: CR15
  article-title: Inter-study variability of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24979
– volume: 41
  start-page: 1000
  year: 2015
  end-page: 1012
  ident: CR7
  article-title: Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24623
– volume: 14
  start-page: 43
  year: 2012
  ident: CR13
  article-title: Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-43
– volume: 37
  start-page: 1196
  year: 2016
  end-page: 1207
  ident: CR3
  article-title: Myocardial strain imaging: how useful is it in clinical decision making?
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehv529
– volume: 41
  start-page: 1129
  year: 2015
  end-page: 1137
  ident: CR10
  article-title: Intertechnique agreement and interstudy reproducibility of strain and diastolic strain rate at 1.5 and 3 Tesla: a comparison of feature-tracking and tagging in patients with aortic stenosis
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24625
– volume: 19
  start-page: 66
  year: 2017
  ident: CR18
  article-title: Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/cardiomyopathy: a multisoftware feasibility and clinical implementation study
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-017-0380-4
– year: 2013
  ident: CR9
  publication-title: Cardiac motion and deformation estimation from tagged MRI sequences using a temporal coherent image registration framework
  doi: 10.1007/978-3-642-38899-6_38
– volume: 48
  start-page: e2356
  year: 2011
  ident: CR5
  article-title: Magnetic resonance derived myocardial strain assessment using feature tracking
  publication-title: J Vis Exp
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: CR22
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 18
  start-page: 30
  issue: 1
  year: 2016
  ident: CR14
  article-title: The effects of extracellular contrast agent (Gadobutrol) on the precision and reproducibility of cardiovascular magnetic resonance feature tracking
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0249-y
– volume: 9
  start-page: e0004077
  issue: 4
  year: 2016
  ident: CR11
  article-title: Cardiovascular magnetic resonance myocardial feature tracking. Concepts and clinical applications
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.115.004077
– volume: 28
  start-page: 5137
  year: 2018
  end-page: 5147
  ident: CR19
  article-title: Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking software
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5538-4
– volume: 29
  start-page: 3658
  year: 2019
  end-page: 3668
  ident: CR24
  article-title: Quantification of myocardial deformation by deformable registration-based analysis of cine MRI: validation with tagged CMR
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06019-9
– volume: 19
  start-page: 66
  year: 2017
  ident: 1159_CR18
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-017-0380-4
– volume: 41
  start-page: 1000
  year: 2015
  ident: 1159_CR7
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24623
– volume-title: Statistical methods for rates and proportions
  year: 2003
  ident: 1159_CR20
  doi: 10.1002/0471445428
– volume: 9
  start-page: e0004077
  issue: 4
  year: 2016
  ident: 1159_CR11
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.115.004077
– volume: 48
  start-page: e2356
  year: 2011
  ident: 1159_CR5
  publication-title: J Vis Exp
– volume: 63
  start-page: 2751
  year: 2014
  ident: 1159_CR1
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.01.073
– volume: 21
  start-page: 61
  year: 2019
  ident: 1159_CR23
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-019-0575-y
– volume: 37
  start-page: 1196
  year: 2016
  ident: 1159_CR3
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehv529
– volume: 14
  start-page: 43
  year: 2012
  ident: 1159_CR13
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-14-43
– volume-title: Cardiac motion and deformation estimation from tagged MRI sequences using a temporal coherent image registration framework
  year: 2013
  ident: 1159_CR9
  doi: 10.1007/978-3-642-38899-6_38
– volume: 41
  start-page: 1129
  year: 2015
  ident: 1159_CR10
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24625
– volume: 25
  start-page: 44
  year: 2019
  ident: 1159_CR22
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 18
  start-page: 51
  issue: 1
  year: 2016
  ident: 1159_CR2
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0269-7
– volume: 43
  start-page: 128
  year: 2016
  ident: 1159_CR15
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24979
– volume: 17
  start-page: 1370
  year: 2016
  ident: 1159_CR16
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jew042
– volume: 16
  start-page: 871
  year: 2015
  ident: 1159_CR17
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jev006
– volume: 70
  start-page: 989
  year: 2015
  ident: 1159_CR12
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2015.05.006
– volume: 28
  start-page: 5137
  year: 2018
  ident: 1159_CR19
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5538-4
– volume: 100
  start-page: 1673
  year: 2014
  ident: 1159_CR4
  publication-title: Heart
  doi: 10.1136/heartjnl-2014-305538
– volume: 290
  start-page: 81
  year: 2019
  ident: 1159_CR21
  publication-title: Radiology
  doi: 10.1148/radiol.2018180513
– volume: 29
  start-page: 3658
  year: 2019
  ident: 1159_CR24
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06019-9
– volume: 39
  start-page: 1688
  year: 2013
  ident: 1159_CR8
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2013.02.463
– volume: 18
  start-page: 30
  year: 2016
  ident: 1159_CR25
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0249-y
– volume: 18
  start-page: 30
  issue: 1
  year: 2016
  ident: 1159_CR14
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-016-0249-y
– volume: 19
  start-page: 24
  year: 2017
  ident: 1159_CR6
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-017-0333-y
SSID ssj0040109
Score 2.297967
Snippet Objectives Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and...
Myocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and...
ObjectivesMyocardial strains can be calculated using cardiovascular magnetic resonance (CMR) feature-tracking (FT) algorithms. They show excellent intra- and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 444
SubjectTerms Agreements
Algorithms
Analysis of Variance
Biomechanical Phenomena - physiology
Cardiac Radiology
Cardiomyopathy, Dilated - diagnostic imaging
Cardiomyopathy, Dilated - physiopathology
Case-Control Studies
Coefficient of variation
Contouring
Correlation coefficients
Diagnostic Radiology
Female
Humans
Imaging
Interventional Radiology
Magnetic resonance
Magnetic Resonance Imaging, Cine - methods
Male
Mathematical analysis
Medicine
Medicine & Public Health
Middle Aged
Myocardial Contraction - physiology
Myocardial infarction
Myocardial Infarction - diagnostic imaging
Myocardial Infarction - physiopathology
Neuroradiology
Radiology
Reproducibility of Results
Software
Software packages
Statistical analysis
Stress, Mechanical
Tracking
Ultrasound
Ventricular Dysfunction, Left - diagnostic imaging
Ventricular Dysfunction, Left - physiopathology
Ventricular Function, Left - physiology
Title Left ventricular global myocardial strain assessment: Are CMR feature-tracking algorithms useful in the clinical setting?
URI https://link.springer.com/article/10.1007/s11547-020-01159-1
https://www.ncbi.nlm.nih.gov/pubmed/32125636
https://www.proquest.com/docview/2401260405
https://www.proquest.com/docview/2370501930
Volume 125
WOSCitedRecordID wos000518049500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1826-6983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040109
  issn: 0033-8362
  databaseCode: RSV
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61FCEu0PIMpciVemstxXE2drigChX1UFBFW7S3yHHGgLTsok0WiX_P2El2haBI7TkTx7HHM994XgCfcrJ7TKUFFxoTnjqMuU6NI2GYO4eJVUnqQrMJdXamh8P8Z5cUVvfR7r1LMkjqRbIbaXvFvbnjYUzOyeZ5Q-pO-4YN578uevmbemdPW4xRck3yuUuVeX6Mx-roCcZ84h8Naudk_f8m_BbWOpjJvrZ88Q5e4XgDVk47R_om3P9A1zAf6xguAM2UtZVB2M09KTfPNCNWh_YRzMxrdx7SeMiOT8-Zw1APlBOF9XftzIwuJ9Pr5uqmZrMa3WzE6E3ClqzPvGQ1hgjroy34c_Lt9_F33nVh4JagUsN1ZpQjkCWdNmhdrjNtCDNkZHgKtGgTqaSq0jIn08NIIZ0tkUBPmZauylyMchuWxpMx7gKLs0oRgqtkJdADRWIImw1KY0ohPGNEIPrNKGxXotz_6qhYFFf2a1rQmhZhTQsRwef5O7dtgY4Xqff7PS66w1oXBGoEmXU0owg-zh_TMfO-EzPGyYxopIoHBIdlHMFOyxvzz0lS_4NMZhF86RlhMfjf57L3b-TvYTUJvOSDLfdhqZnO8AMs27vmup4ewGs11AfhIDwA1I__vw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5NbAJe2GBshLHhSXsbluI4TZy9TAiBmNZWEwPEW-Q45w2ptKhJJ_Hfc3aSVogfEnvOxXHs8913Pt9ngC8ZxT26VIILhRGPLYZcxdqSMcysxcikUWz9ZRPpcKguLrJfbVFY1Z1271KS3lIvit3I26fchTsOxmScYp6XMXksx5h_8vu8s7-xS_Y0ZIySK7LPbanMw23cdUf3MOa9_Kh3O0ev_6_Db2CthZlsv9GLdXiB4w1YHrSJ9Ldw00dbM3fW0W8A6ilrmEHY1Q05N6c0I1b56yOYnnN3fqP2kB0MTphFzwfKScK4vXamR38m08v671XFZhXa2YjRm4QtWVd5ySr0J6y_b8LZ0eHpwTFvb2HghqBSzVWiU0sgS1ql0dhMJUoTZkgo8BRo0EQylWkZFxmFHloKaU2BBHqKuLBlYkOU72BpPBnjFrAwKVNCcKUsBTqgSAphkl6hdSGEU4wARDcZuWkpyt2vjvIFubIb05zGNPdjmosAvs7fuW4IOp6U3unmOG8Xa5UTqBEU1lGPAvg8f0zLzOVO9BgnM5KRadgjOCzDAN43ujH_nCT330tkEsBepwiLxh_vy_bzxHdh5fh00M_7P4Y_P8Bq5PXKHbzcgaV6OsOP8Mr8qy-r6Se_HG4B0skByg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5NY5r2AmzACIzNk3gb1uI4TRxeEBqrhtiqCQbaW-Q4Z6jUpVOTIu3fc3aSFjSYhPaci-PYZ993vrvPAK8z8nt0qQQXCiMeWwy5irWlzTCzFiOTRrH1l02ko5G6vMzOf6vi99nufUiyrWlwLE1Vc3hd2sNl4RtZ_pQ718dBmoyT__Mgdon0zl__8q3fi2MX-GmJGSVXtFd3ZTN_b-NP03QLb96KlXoTNHx0_84_hocd_GTvW33ZhBWstmD9rAuwP4GbU7QNczmQ_mBQz1jLGMKubsjoOWWasNpfK8H0gtPzLbWH7OjsM7PoeUI5SRh3Bs_05Pt0Nm5-XNVsXqOdTxi9SZiT9RWZrEafef3uKXwdHl8cnfDudgZuCEI1XCU6tQS-pFUajc1UojRhiYQcUoEGTSRTmZZxkZFLoqWQ1hRIYKiIC1smNkT5DFaraYXPgYVJmRKyK2Up0AFIUhSTDAqtCyGcwgQg-onJTUdd7n51ki9Jl92Y5jSmuR_TXARwsHjnuiXuuFN6p5_vvFvEdU5gR5C7Rz0KYH_xmJafi6noCqdzkpFpOCCYLMMAtls9WXxOEiwYJDIJ4E2vFMvG_92XF_8nvgfr5x-G-enH0aeXsBF5tXL5mDuw2szm-ArWzM9mXM92_cr4BdIkCq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+ventricular+global+myocardial+strain+assessment%3A+Are+CMR+feature-tracking+algorithms+useful+in+the+clinical+setting%3F&rft.jtitle=Radiologia+medica&rft.au=Pierpaolo%2C+Palumbo&rft.au=Rolf%2C+Symons&rft.au=Manuel%2C+Barreiro-P%C3%A9rez&rft.au=Davide%2C+Curione&rft.date=2020-05-01&rft.eissn=1826-6983&rft.volume=125&rft.issue=5&rft.spage=444&rft_id=info:doi/10.1007%2Fs11547-020-01159-1&rft_id=info%3Apmid%2F32125636&rft.externalDocID=32125636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon