Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data

Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Briefings in bioinformatics Ročník 25; číslo 2
Hlavní autori: Xiao, Chuxi, Chen, Yixin, Meng, Qiuchen, Wei, Lei, Zhang, Xuegong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 22.01.2024
Oxford Publishing Limited (England)
Predmet:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
AbstractList Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
Author Meng, Qiuchen
Zhang, Xuegong
Xiao, Chuxi
Wei, Lei
Chen, Yixin
Author_xml – sequence: 1
  givenname: Chuxi
  surname: Xiao
  fullname: Xiao, Chuxi
  email: xcx23@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Yixin
  surname: Chen
  fullname: Chen, Yixin
  email: chenyx19@mails.tsinghua.edu.cn
– sequence: 3
  givenname: Qiuchen
  orcidid: 0000-0001-6013-9475
  surname: Meng
  fullname: Meng, Qiuchen
  email: mqc17@mails.tsinghua.edu.cn
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-1546-6458
  surname: Wei
  fullname: Wei, Lei
  email: weilei92@tsinghua.edu.cn
– sequence: 5
  givenname: Xuegong
  surname: Zhang
  fullname: Zhang, Xuegong
  email: zhangxg@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38493343$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOA9duZeAIIKUk2elspK28QWDgrTrkFd3Z6xKepKU4L83Pd0OOqCrXMh3D-ecew5OYooegKcYvcZI0ksTzKUx2iPJH4AzzIToGOLsZD_3ouOsp6fgvJRrhAgSA34ETunAJKWMnoHVWx_tdtL5e4gbOM1jDV2agi0wxOo3WdeQItTjJuVQt1OB2uZUCiwNH31n_TjCr58XUEcHF6vFEjpd9WPwcK3H4p8c3wvw7f271fJjd_Xlw6fl4qqzjOHaCeMF5pwyQjQxvfHYOOERR2tB-95Jx4UX1HBHpCAMezYYi6zD0g4DY9LRC_DmoLubzeSd9bFmPapdDi3QT5V0UH__xLBVm_RDtd4Y4wI1hZdHhZxuZl-qmkLZh9LRp7koIvlAJCVENPT5PfQ6zTm2fIoihhCn_cAa9exPS3defjfegFcH4LbH7Nd3CEZ7X1S1e6rjPRuN79E21NubtDxh_MfOi8NOmnf_Ff8Fz9CxHQ
CitedBy_id crossref_primary_10_1016_j_isci_2025_112765
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_1016_j_xgen_2025_100848
crossref_primary_10_1038_s43588_024_00689_2
crossref_primary_10_3389_fimmu_2024_1435187
crossref_primary_10_1016_j_crmeth_2025_101167
crossref_primary_10_1016_j_lfs_2025_123949
crossref_primary_10_3389_fcimb_2025_1667802
crossref_primary_10_1016_j_tig_2024_12_009
crossref_primary_10_1093_bfgp_elae044
Cites_doi 10.1016/j.cell.2021.04.048
10.1038/s41591-020-1040-z
10.1038/s41592-019-0619-0
10.1038/s41594-019-0323-x
10.1016/j.cell.2020.09.056
10.1186/s13059-020-1932-8
10.1038/nbt.4096
10.1016/j.cell.2021.10.024
10.1186/s13059-015-0737-7
10.1038/s41576-023-00586-w
10.1038/s41467-021-22368-w
10.1038/s12276-020-00499-2
10.1186/s13059-020-02015-1
10.1038/s41587-022-01284-4
10.1186/s13059-021-02556-z
10.1038/s41587-019-0071-9
10.1038/s41592-023-01909-9
10.1038/s41587-019-0290-0
10.1126/science.aau0730
10.1016/j.cell.2019.05.006
10.1186/s13059-022-02679-x
10.1186/s13059-023-03073-x
10.1093/bioinformatics/btaa443
10.1186/s13059-022-02706-x
10.1016/j.gpb.2022.11.013
10.1038/s41592-020-01050-x
10.1038/s41592-021-01336-8
10.1038/s41587-021-01161-6
10.1038/s41581-021-00463-x
10.1186/s13059-021-02595-6
10.1016/j.cell.2019.05.031
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbae095
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC10944570
38493343
10_1093_bib_bbae095
10.1093/bib/bbae095
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFF1200900
– fundername: National Natural Science Foundation of China
  grantid: 62250005
– fundername: ;
  grantid: 2021YFF1200900
– fundername: ;
  grantid: 62250005; 61721003; 62373210
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c441t-7be71553422a2b6be1bd7e050f7366d9d57e73b5d297241e48bc0cd19c88449d3
IEDL.DBID TOX
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273742800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 17:09:52 EDT 2025
Thu Sep 04 18:45:23 EDT 2025
Fri Oct 03 03:50:34 EDT 2025
Thu Apr 03 07:00:20 EDT 2025
Sat Nov 29 05:43:41 EST 2025
Tue Nov 18 22:20:20 EST 2025
Wed Apr 02 07:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multi-omics
integration
single cell
benchmarking
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7be71553422a2b6be1bd7e050f7366d9d57e73b5d297241e48bc0cd19c88449d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Chuxi Xiao and Yixin Chen contributed equally to this work.
ORCID 0000-0002-1546-6458
0000-0001-6013-9475
OpenAccessLink https://dx.doi.org/10.1093/bib/bbae095
PMID 38493343
PQID 3040053684
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10944570
proquest_miscellaneous_2958293227
proquest_journals_3040053684
pubmed_primary_38493343
crossref_primary_10_1093_bib_bbae095
crossref_citationtrail_10_1093_bib_bbae095
oup_primary_10_1093_bib_bbae095
PublicationCentury 2000
PublicationDate 2024-01-22
PublicationDateYYYYMMDD 2024-01-22
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Singh (2024031710080956000_ref33) 2020
Luecken (2024031710080956000_ref30) 2022; 19
Li (2024031710080956000_ref23) 2022; 23
Lin (2024031710080956000_ref19) 2022; 40
Zhang (2024031710080956000_ref29) 2021; 184
Saelens (2024031710080956000_ref32) 2019; 37
Cao (2024031710080956000_ref20) 2022; 40
Dou (2024031710080956000_ref16) 2022; 23
Korsunsky (2024031710080956000_ref27) 2019; 16
Miao (2024031710080956000_ref8) 2021; 17
Lee (2024031710080956000_ref12) 2023; 24
Gong (2024031710080956000_ref26) 2021; 22
Kashima (2024031710080956000_ref2) 2020; 52
Cao (2024031710080956000_ref5) 2018; 361
Zhang (2024031710080956000_ref18) 2022; 23
Argelaguet (2024031710080956000_ref21) 2020; 21
Hao (2024031710080956000_ref22) 2021; 184
Chen (2024031710080956000_ref4) 2019; 37
Wang (2024031710080956000_ref28) 2020; 26
Jin (2024031710080956000_ref10) 2020; 21
Cao (2024031710080956000_ref13) 2020; 36
Welch (2024031710080956000_ref15) 2019; 177
Ashuach (2024031710080956000_ref25) 2023; 20
Gayoso (2024031710080956000_ref24) 2021; 18
Pott (2024031710080956000_ref3) 2015; 16
Stuart (2024031710080956000_ref17) 2019; 177
Ma (2024031710080956000_ref7) 2020; 183
Muto (2024031710080956000_ref9) 2021; 12
Liu (2024031710080956000_ref14) 2019; 143
Butler (2024031710080956000_ref31) 2018; 36
Stanojevic (2024031710080956000_ref11) 2022; 20
Heumos (2024031710080956000_ref1) 2023; 24
Zhu (2024031710080956000_ref6) 2019; 26
References_xml – volume: 184
  start-page: 3573
  year: 2021
  ident: 2024031710080956000_ref22
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 26
  start-page: 1644
  year: 2020
  ident: 2024031710080956000_ref28
  article-title: Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1040-z
– volume: 16
  start-page: 1289
  year: 2019
  ident: 2024031710080956000_ref27
  article-title: Fast, sensitive and accurate integration of single-cell data with harmony
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 26
  start-page: 1063
  year: 2019
  ident: 2024031710080956000_ref6
  article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-019-0323-x
– volume: 183
  start-page: 1103
  year: 2020
  ident: 2024031710080956000_ref7
  article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.056
– volume: 21
  start-page: 25
  year: 2020
  ident: 2024031710080956000_ref10
  article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-1932-8
– volume: 36
  start-page: 411
  year: 2018
  ident: 2024031710080956000_ref31
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 184
  start-page: 5985
  year: 2021
  ident: 2024031710080956000_ref29
  article-title: A single-cell atlas of chromatin accessibility in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.024
– volume: 16
  start-page: 172
  year: 2015
  ident: 2024031710080956000_ref3
  article-title: Single-cell ATAC-seq: strength in numbers
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0737-7
– volume: 24
  start-page: 550
  year: 2023
  ident: 2024031710080956000_ref1
  article-title: Best practices for single-cell analysis across modalities
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-023-00586-w
– volume: 12
  start-page: 2190
  year: 2021
  ident: 2024031710080956000_ref9
  article-title: Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22368-w
– volume: 143
  start-page: 10
  year: 2019
  ident: 2024031710080956000_ref14
  article-title: Jointly embedding multiple single-cell omics measurements
  publication-title: Algorithms Bioinform
– volume: 52
  start-page: 1419
  year: 2020
  ident: 2024031710080956000_ref2
  article-title: Single-cell sequencing techniques from individual to multiomics analyses
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-020-00499-2
– volume: 21
  start-page: 111
  year: 2020
  ident: 2024031710080956000_ref21
  article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02015-1
– volume: 40
  start-page: 1458
  year: 2022
  ident: 2024031710080956000_ref20
  article-title: Multi-omics single-cell data integration and regulatory inference with graph-linked embedding
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-022-01284-4
– volume: 22
  start-page: 351
  year: 2021
  ident: 2024031710080956000_ref26
  article-title: Cobolt: integrative analysis of multimodal single-cell sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02556-z
– volume: 37
  start-page: 547
  year: 2019
  ident: 2024031710080956000_ref32
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0071-9
– volume: 20
  start-page: 1222
  year: 2023
  ident: 2024031710080956000_ref25
  article-title: MultiVI: deep generative model for the integration of multimodal data
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01909-9
– volume: 37
  start-page: 1452
  year: 2019
  ident: 2024031710080956000_ref4
  article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0290-0
– volume: 361
  start-page: 1380
  year: 2018
  ident: 2024031710080956000_ref5
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
  doi: 10.1126/science.aau0730
– volume: 177
  start-page: 1873
  year: 2019
  ident: 2024031710080956000_ref15
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 23
  start-page: 112
  year: 2022
  ident: 2024031710080956000_ref16
  article-title: Bi-order multimodal integration of single-cell data
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02679-x
– volume: 24
  start-page: 244
  year: 2023
  ident: 2024031710080956000_ref12
  article-title: Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-023-03073-x
– volume: 36
  start-page: i48
  year: 2020
  ident: 2024031710080956000_ref13
  article-title: Unsupervised topological alignment for single-cell multi-omics integration
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa443
– volume: 23
  start-page: 139
  year: 2022
  ident: 2024031710080956000_ref18
  article-title: scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02706-x
– volume: 20
  start-page: 836
  year: 2022
  ident: 2024031710080956000_ref11
  article-title: Computational methods for single-cell multi-omics integration and alignment
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2022.11.013
– volume: 18
  start-page: 272
  year: 2021
  ident: 2024031710080956000_ref24
  article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01050-x
– volume: 19
  start-page: 41
  year: 2022
  ident: 2024031710080956000_ref30
  article-title: Benchmarking atlas-level data integration in single-cell genomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01336-8
– start-page: 1
  volume-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
  year: 2020
  ident: 2024031710080956000_ref33
– volume: 40
  start-page: 703
  year: 2022
  ident: 2024031710080956000_ref19
  article-title: scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01161-6
– volume: 17
  start-page: 710
  year: 2021
  ident: 2024031710080956000_ref8
  article-title: Multi-omics integration in the age of million single-cell data
  publication-title: Nat Rev Nephrol
  doi: 10.1038/s41581-021-00463-x
– volume: 23
  start-page: 20
  year: 2022
  ident: 2024031710080956000_ref23
  article-title: A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02595-6
– volume: 177
  start-page: 1888
  year: 2019
  ident: 2024031710080956000_ref17
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
SSID ssj0020781
Score 2.453624
SecondaryResourceType review_article
Snippet Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,...
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Biological analysis
Cell Cycle
Cellular communication
Data analysis
Data integration
Heterogeneity
Integration
Multiomics
Review
RNA
Software
Title Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
URI https://www.ncbi.nlm.nih.gov/pubmed/38493343
https://www.proquest.com/docview/3040053684
https://www.proquest.com/docview/2958293227
https://pubmed.ncbi.nlm.nih.gov/PMC10944570
Volume 25
WOSCitedRecordID wos001273742800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NNCReGBsfywbFk3hCikhsp7YfOwTaw9ShqZP6FvkrtFJJp6Yg8d9zTtKIIgQ8-6Kc7s7n8_nudwCnBXep4TaL0Xo8XlDQjE3GGQZylnouCpcWdaPwbzEcyvFYXbcFstULT_iKnZupOTdGewwG0NWmmQyDCkZ_xt29KuDVNE1EIg7o7m0b3rNv1w6etWa2JzHl89LIJ2fN1af3crkLO200SQaN-j_DB19-ga1mvuTDHox-og1ObnWdDyd17WAcupArskKJQK0QPbuZL6bLyW1FdM07CfmDmY9DUp_8HQ6ILh0ZjAYXJNST7sO_q8vRxa-4HaMQW4x1lrEwXoTpQJxSTU3f-NQ44ZMsKQTr951ymfCCmcxRJfA891wam1iXKisl58qxA9gs56X_CkQnFr1SeN3zlGuVmJQX3DtWOKa1dj6Cs5WMc9tijIdRF7O8eetmOYopb8UUwWlH_L-B1niZ7ASV9TrF0UqRebsDq5wF75SxvuQR_OiWce8E2enSz--qnCo0JgxgqYjgsNF79x8muWKMswjkmkV0BAGXe32lnE5qfG7kj_NMJN_e5Pw7bFMMkkJKh9Ij2Fwu7vwxfLT3y2m16MGGGMtenSXo1Rb_CHg5_IQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+multi-omics+integration+algorithms+across+single-cell+RNA+and+ATAC+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Xiao%2C+Chuxi&rft.au=Chen%2C+Yixin&rft.au=Meng%2C+Qiuchen&rft.au=Wei%2C+Lei&rft.date=2024-01-22&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=25&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbae095&rft.externalDocID=10.1093%2Fbib%2Fbbae095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon