Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehen...
Uložené v:
| Vydané v: | Briefings in bioinformatics Ročník 25; číslo 2 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
22.01.2024
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration. |
|---|---|
| AbstractList | Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration. Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration. Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single-cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration. |
| Author | Meng, Qiuchen Zhang, Xuegong Xiao, Chuxi Wei, Lei Chen, Yixin |
| Author_xml | – sequence: 1 givenname: Chuxi surname: Xiao fullname: Xiao, Chuxi email: xcx23@mails.tsinghua.edu.cn – sequence: 2 givenname: Yixin surname: Chen fullname: Chen, Yixin email: chenyx19@mails.tsinghua.edu.cn – sequence: 3 givenname: Qiuchen orcidid: 0000-0001-6013-9475 surname: Meng fullname: Meng, Qiuchen email: mqc17@mails.tsinghua.edu.cn – sequence: 4 givenname: Lei orcidid: 0000-0002-1546-6458 surname: Wei fullname: Wei, Lei email: weilei92@tsinghua.edu.cn – sequence: 5 givenname: Xuegong surname: Zhang fullname: Zhang, Xuegong email: zhangxg@tsinghua.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38493343$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUuLFDEUhYOMOA9duZeAIIKUk2elspK28QWDgrTrkFd3Z6xKepKU4L83Pd0OOqCrXMh3D-ecew5OYooegKcYvcZI0ksTzKUx2iPJH4AzzIToGOLsZD_3ouOsp6fgvJRrhAgSA34ETunAJKWMnoHVWx_tdtL5e4gbOM1jDV2agi0wxOo3WdeQItTjJuVQt1OB2uZUCiwNH31n_TjCr58XUEcHF6vFEjpd9WPwcK3H4p8c3wvw7f271fJjd_Xlw6fl4qqzjOHaCeMF5pwyQjQxvfHYOOERR2tB-95Jx4UX1HBHpCAMezYYi6zD0g4DY9LRC_DmoLubzeSd9bFmPapdDi3QT5V0UH__xLBVm_RDtd4Y4wI1hZdHhZxuZl-qmkLZh9LRp7koIvlAJCVENPT5PfQ6zTm2fIoihhCn_cAa9exPS3defjfegFcH4LbH7Nd3CEZ7X1S1e6rjPRuN79E21NubtDxh_MfOi8NOmnf_Ff8Fz9CxHQ |
| CitedBy_id | crossref_primary_10_1016_j_isci_2025_112765 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_1016_j_xgen_2025_100848 crossref_primary_10_1038_s43588_024_00689_2 crossref_primary_10_3389_fimmu_2024_1435187 crossref_primary_10_1016_j_crmeth_2025_101167 crossref_primary_10_1016_j_lfs_2025_123949 crossref_primary_10_3389_fcimb_2025_1667802 crossref_primary_10_1016_j_tig_2024_12_009 crossref_primary_10_1093_bfgp_elae044 |
| Cites_doi | 10.1016/j.cell.2021.04.048 10.1038/s41591-020-1040-z 10.1038/s41592-019-0619-0 10.1038/s41594-019-0323-x 10.1016/j.cell.2020.09.056 10.1186/s13059-020-1932-8 10.1038/nbt.4096 10.1016/j.cell.2021.10.024 10.1186/s13059-015-0737-7 10.1038/s41576-023-00586-w 10.1038/s41467-021-22368-w 10.1038/s12276-020-00499-2 10.1186/s13059-020-02015-1 10.1038/s41587-022-01284-4 10.1186/s13059-021-02556-z 10.1038/s41587-019-0071-9 10.1038/s41592-023-01909-9 10.1038/s41587-019-0290-0 10.1126/science.aau0730 10.1016/j.cell.2019.05.006 10.1186/s13059-022-02679-x 10.1186/s13059-023-03073-x 10.1093/bioinformatics/btaa443 10.1186/s13059-022-02706-x 10.1016/j.gpb.2022.11.013 10.1038/s41592-020-01050-x 10.1038/s41592-021-01336-8 10.1038/s41587-021-01161-6 10.1038/s41581-021-00463-x 10.1186/s13059-021-02595-6 10.1016/j.cell.2019.05.031 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1093/bib/bbae095 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | PMC10944570 38493343 10_1093_bib_bbae095 10.1093/bib/bbae095 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFF1200900 – fundername: National Natural Science Foundation of China grantid: 62250005 – fundername: ; grantid: 2021YFF1200900 – fundername: ; grantid: 62250005; 61721003; 62373210 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c441t-7be71553422a2b6be1bd7e050f7366d9d57e73b5d297241e48bc0cd19c88449d3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273742800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 17:09:52 EDT 2025 Thu Sep 04 18:45:23 EDT 2025 Fri Oct 03 03:50:34 EDT 2025 Thu Apr 03 07:00:20 EDT 2025 Sat Nov 29 05:43:41 EST 2025 Tue Nov 18 22:20:20 EST 2025 Wed Apr 02 07:03:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | multi-omics integration single cell benchmarking |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-7be71553422a2b6be1bd7e050f7366d9d57e73b5d297241e48bc0cd19c88449d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Chuxi Xiao and Yixin Chen contributed equally to this work. |
| ORCID | 0000-0002-1546-6458 0000-0001-6013-9475 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbae095 |
| PMID | 38493343 |
| PQID | 3040053684 |
| PQPubID | 26846 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10944570 proquest_miscellaneous_2958293227 proquest_journals_3040053684 pubmed_primary_38493343 crossref_primary_10_1093_bib_bbae095 crossref_citationtrail_10_1093_bib_bbae095 oup_primary_10_1093_bib_bbae095 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-22 |
| PublicationDateYYYYMMDD | 2024-01-22 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2024 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Singh (2024031710080956000_ref33) 2020 Luecken (2024031710080956000_ref30) 2022; 19 Li (2024031710080956000_ref23) 2022; 23 Lin (2024031710080956000_ref19) 2022; 40 Zhang (2024031710080956000_ref29) 2021; 184 Saelens (2024031710080956000_ref32) 2019; 37 Cao (2024031710080956000_ref20) 2022; 40 Dou (2024031710080956000_ref16) 2022; 23 Korsunsky (2024031710080956000_ref27) 2019; 16 Miao (2024031710080956000_ref8) 2021; 17 Lee (2024031710080956000_ref12) 2023; 24 Gong (2024031710080956000_ref26) 2021; 22 Kashima (2024031710080956000_ref2) 2020; 52 Cao (2024031710080956000_ref5) 2018; 361 Zhang (2024031710080956000_ref18) 2022; 23 Argelaguet (2024031710080956000_ref21) 2020; 21 Hao (2024031710080956000_ref22) 2021; 184 Chen (2024031710080956000_ref4) 2019; 37 Wang (2024031710080956000_ref28) 2020; 26 Jin (2024031710080956000_ref10) 2020; 21 Cao (2024031710080956000_ref13) 2020; 36 Welch (2024031710080956000_ref15) 2019; 177 Ashuach (2024031710080956000_ref25) 2023; 20 Gayoso (2024031710080956000_ref24) 2021; 18 Pott (2024031710080956000_ref3) 2015; 16 Stuart (2024031710080956000_ref17) 2019; 177 Ma (2024031710080956000_ref7) 2020; 183 Muto (2024031710080956000_ref9) 2021; 12 Liu (2024031710080956000_ref14) 2019; 143 Butler (2024031710080956000_ref31) 2018; 36 Stanojevic (2024031710080956000_ref11) 2022; 20 Heumos (2024031710080956000_ref1) 2023; 24 Zhu (2024031710080956000_ref6) 2019; 26 |
| References_xml | – volume: 184 start-page: 3573 year: 2021 ident: 2024031710080956000_ref22 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 26 start-page: 1644 year: 2020 ident: 2024031710080956000_ref28 article-title: Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle publication-title: Nat Med doi: 10.1038/s41591-020-1040-z – volume: 16 start-page: 1289 year: 2019 ident: 2024031710080956000_ref27 article-title: Fast, sensitive and accurate integration of single-cell data with harmony publication-title: Nat Methods doi: 10.1038/s41592-019-0619-0 – volume: 26 start-page: 1063 year: 2019 ident: 2024031710080956000_ref6 article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome publication-title: Nat Struct Mol Biol doi: 10.1038/s41594-019-0323-x – volume: 183 start-page: 1103 year: 2020 ident: 2024031710080956000_ref7 article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin publication-title: Cell doi: 10.1016/j.cell.2020.09.056 – volume: 21 start-page: 25 year: 2020 ident: 2024031710080956000_ref10 article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles publication-title: Genome Biol doi: 10.1186/s13059-020-1932-8 – volume: 36 start-page: 411 year: 2018 ident: 2024031710080956000_ref31 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 184 start-page: 5985 year: 2021 ident: 2024031710080956000_ref29 article-title: A single-cell atlas of chromatin accessibility in the human genome publication-title: Cell doi: 10.1016/j.cell.2021.10.024 – volume: 16 start-page: 172 year: 2015 ident: 2024031710080956000_ref3 article-title: Single-cell ATAC-seq: strength in numbers publication-title: Genome Biol doi: 10.1186/s13059-015-0737-7 – volume: 24 start-page: 550 year: 2023 ident: 2024031710080956000_ref1 article-title: Best practices for single-cell analysis across modalities publication-title: Nat Rev Genet doi: 10.1038/s41576-023-00586-w – volume: 12 start-page: 2190 year: 2021 ident: 2024031710080956000_ref9 article-title: Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney publication-title: Nat Commun doi: 10.1038/s41467-021-22368-w – volume: 143 start-page: 10 year: 2019 ident: 2024031710080956000_ref14 article-title: Jointly embedding multiple single-cell omics measurements publication-title: Algorithms Bioinform – volume: 52 start-page: 1419 year: 2020 ident: 2024031710080956000_ref2 article-title: Single-cell sequencing techniques from individual to multiomics analyses publication-title: Exp Mol Med doi: 10.1038/s12276-020-00499-2 – volume: 21 start-page: 111 year: 2020 ident: 2024031710080956000_ref21 article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data publication-title: Genome Biol doi: 10.1186/s13059-020-02015-1 – volume: 40 start-page: 1458 year: 2022 ident: 2024031710080956000_ref20 article-title: Multi-omics single-cell data integration and regulatory inference with graph-linked embedding publication-title: Nat Biotechnol doi: 10.1038/s41587-022-01284-4 – volume: 22 start-page: 351 year: 2021 ident: 2024031710080956000_ref26 article-title: Cobolt: integrative analysis of multimodal single-cell sequencing data publication-title: Genome Biol doi: 10.1186/s13059-021-02556-z – volume: 37 start-page: 547 year: 2019 ident: 2024031710080956000_ref32 article-title: A comparison of single-cell trajectory inference methods publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0071-9 – volume: 20 start-page: 1222 year: 2023 ident: 2024031710080956000_ref25 article-title: MultiVI: deep generative model for the integration of multimodal data publication-title: Nat Methods doi: 10.1038/s41592-023-01909-9 – volume: 37 start-page: 1452 year: 2019 ident: 2024031710080956000_ref4 article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0290-0 – volume: 361 start-page: 1380 year: 2018 ident: 2024031710080956000_ref5 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science doi: 10.1126/science.aau0730 – volume: 177 start-page: 1873 year: 2019 ident: 2024031710080956000_ref15 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 23 start-page: 112 year: 2022 ident: 2024031710080956000_ref16 article-title: Bi-order multimodal integration of single-cell data publication-title: Genome Biol doi: 10.1186/s13059-022-02679-x – volume: 24 start-page: 244 year: 2023 ident: 2024031710080956000_ref12 article-title: Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data publication-title: Genome Biol doi: 10.1186/s13059-023-03073-x – volume: 36 start-page: i48 year: 2020 ident: 2024031710080956000_ref13 article-title: Unsupervised topological alignment for single-cell multi-omics integration publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa443 – volume: 23 start-page: 139 year: 2022 ident: 2024031710080956000_ref18 article-title: scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously publication-title: Genome Biol doi: 10.1186/s13059-022-02706-x – volume: 20 start-page: 836 year: 2022 ident: 2024031710080956000_ref11 article-title: Computational methods for single-cell multi-omics integration and alignment publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2022.11.013 – volume: 18 start-page: 272 year: 2021 ident: 2024031710080956000_ref24 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI publication-title: Nat Methods doi: 10.1038/s41592-020-01050-x – volume: 19 start-page: 41 year: 2022 ident: 2024031710080956000_ref30 article-title: Benchmarking atlas-level data integration in single-cell genomics publication-title: Nat Methods doi: 10.1038/s41592-021-01336-8 – start-page: 1 volume-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics year: 2020 ident: 2024031710080956000_ref33 – volume: 40 start-page: 703 year: 2022 ident: 2024031710080956000_ref19 article-title: scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning publication-title: Nat Biotechnol doi: 10.1038/s41587-021-01161-6 – volume: 17 start-page: 710 year: 2021 ident: 2024031710080956000_ref8 article-title: Multi-omics integration in the age of million single-cell data publication-title: Nat Rev Nephrol doi: 10.1038/s41581-021-00463-x – volume: 23 start-page: 20 year: 2022 ident: 2024031710080956000_ref23 article-title: A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data publication-title: Genome Biol doi: 10.1186/s13059-021-02595-6 – volume: 177 start-page: 1888 year: 2019 ident: 2024031710080956000_ref17 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 |
| SSID | ssj0020781 |
| Score | 2.453624 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,... Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Biological analysis Cell Cycle Cellular communication Data analysis Data integration Heterogeneity Integration Multiomics Review RNA Software |
| Title | Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38493343 https://www.proquest.com/docview/3040053684 https://www.proquest.com/docview/2958293227 https://pubmed.ncbi.nlm.nih.gov/PMC10944570 |
| Volume | 25 |
| WOSCitedRecordID | wos001273742800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NNCReGBsfywbFk3hCikhsp7YfOwTaw9ShqZP6FvkrtFJJp6Yg8d9zTtKIIgQ8-6Kc7s7n8_nudwCnBXep4TaL0Xo8XlDQjE3GGQZylnouCpcWdaPwbzEcyvFYXbcFstULT_iKnZupOTdGewwG0NWmmQyDCkZ_xt29KuDVNE1EIg7o7m0b3rNv1w6etWa2JzHl89LIJ2fN1af3crkLO200SQaN-j_DB19-ga1mvuTDHox-og1ObnWdDyd17WAcupArskKJQK0QPbuZL6bLyW1FdM07CfmDmY9DUp_8HQ6ILh0ZjAYXJNST7sO_q8vRxa-4HaMQW4x1lrEwXoTpQJxSTU3f-NQ44ZMsKQTr951ymfCCmcxRJfA891wam1iXKisl58qxA9gs56X_CkQnFr1SeN3zlGuVmJQX3DtWOKa1dj6Cs5WMc9tijIdRF7O8eetmOYopb8UUwWlH_L-B1niZ7ASV9TrF0UqRebsDq5wF75SxvuQR_OiWce8E2enSz--qnCo0JgxgqYjgsNF79x8muWKMswjkmkV0BAGXe32lnE5qfG7kj_NMJN_e5Pw7bFMMkkJKh9Ij2Fwu7vwxfLT3y2m16MGGGMtenSXo1Rb_CHg5_IQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+multi-omics+integration+algorithms+across+single-cell+RNA+and+ATAC+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Xiao%2C+Chuxi&rft.au=Chen%2C+Yixin&rft.au=Meng%2C+Qiuchen&rft.au=Wei%2C+Lei&rft.date=2024-01-22&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=25&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbae095&rft.externalDocID=10.1093%2Fbib%2Fbbae095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |