The 2020 motile active matter roadmap
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of...
Uložené v:
| Vydané v: | Journal of physics. Condensed matter Ročník 32; číslo 19; s. 193001 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
08.05.2020
|
| ISSN: | 1361-648X, 1361-648X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area. |
|---|---|
| AbstractList | Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area. Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area. |
| Author | Aranson, Igor S Alvarez, Luis Kapral, Raymond Yashunsky, Victor Fischer, Alexander Solon, Alexandre Gaspard, Pierre Gompper, Gerhard Ripoll, Marisol Poon, Wilson C K Golestanian, Ramin Nardini, Cesare Sarkar, Trinish Aryaksama, Thibault DeSimone, Antonio Winkler, Roland G Kaupp, U Benjamin Muiños-Landin, Santiago Yeomans, Julia M Peruani, Fernando Doostmohammadi, Amin Silberzan, Pascal Speck, Thomas Lacroix, Mathilde Kale, Sohan Stark, Holger Söker, Nicola A Löwen, Hartmut Sagues, Francesc Bechinger, Clemens Cichos, Frank Kiørboe, Thomas Duclos, Guillaume Arroyo, Marino Lauga, Eric Hemelrijk, Charlotte K Nedelec, François J |
| Author_xml | – sequence: 1 givenname: Gerhard surname: Gompper fullname: Gompper, Gerhard organization: Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany – sequence: 2 givenname: Roland G surname: Winkler fullname: Winkler, Roland G – sequence: 3 givenname: Thomas surname: Speck fullname: Speck, Thomas – sequence: 4 givenname: Alexandre surname: Solon fullname: Solon, Alexandre – sequence: 5 givenname: Cesare surname: Nardini fullname: Nardini, Cesare – sequence: 6 givenname: Fernando surname: Peruani fullname: Peruani, Fernando – sequence: 7 givenname: Hartmut surname: Löwen fullname: Löwen, Hartmut – sequence: 8 givenname: Ramin surname: Golestanian fullname: Golestanian, Ramin – sequence: 9 givenname: U Benjamin surname: Kaupp fullname: Kaupp, U Benjamin – sequence: 10 givenname: Luis surname: Alvarez fullname: Alvarez, Luis – sequence: 11 givenname: Thomas surname: Kiørboe fullname: Kiørboe, Thomas – sequence: 12 givenname: Eric surname: Lauga fullname: Lauga, Eric – sequence: 13 givenname: Wilson C K surname: Poon fullname: Poon, Wilson C K – sequence: 14 givenname: Antonio surname: DeSimone fullname: DeSimone, Antonio – sequence: 15 givenname: Santiago surname: Muiños-Landin fullname: Muiños-Landin, Santiago – sequence: 16 givenname: Alexander surname: Fischer fullname: Fischer, Alexander – sequence: 17 givenname: Nicola A surname: Söker fullname: Söker, Nicola A – sequence: 18 givenname: Frank surname: Cichos fullname: Cichos, Frank – sequence: 19 givenname: Raymond surname: Kapral fullname: Kapral, Raymond – sequence: 20 givenname: Pierre surname: Gaspard fullname: Gaspard, Pierre – sequence: 21 givenname: Marisol surname: Ripoll fullname: Ripoll, Marisol – sequence: 22 givenname: Francesc surname: Sagues fullname: Sagues, Francesc – sequence: 23 givenname: Amin surname: Doostmohammadi fullname: Doostmohammadi, Amin – sequence: 24 givenname: Julia M surname: Yeomans fullname: Yeomans, Julia M – sequence: 25 givenname: Igor S surname: Aranson fullname: Aranson, Igor S – sequence: 26 givenname: Clemens surname: Bechinger fullname: Bechinger, Clemens – sequence: 27 givenname: Holger surname: Stark fullname: Stark, Holger – sequence: 28 givenname: Charlotte K surname: Hemelrijk fullname: Hemelrijk, Charlotte K – sequence: 29 givenname: François J surname: Nedelec fullname: Nedelec, François J – sequence: 30 givenname: Trinish surname: Sarkar fullname: Sarkar, Trinish – sequence: 31 givenname: Thibault surname: Aryaksama fullname: Aryaksama, Thibault – sequence: 32 givenname: Mathilde surname: Lacroix fullname: Lacroix, Mathilde – sequence: 33 givenname: Guillaume surname: Duclos fullname: Duclos, Guillaume – sequence: 34 givenname: Victor surname: Yashunsky fullname: Yashunsky, Victor – sequence: 35 givenname: Pascal surname: Silberzan fullname: Silberzan, Pascal – sequence: 36 givenname: Marino surname: Arroyo fullname: Arroyo, Marino – sequence: 37 givenname: Sohan surname: Kale fullname: Kale, Sohan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32058979$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA_du5JuBDd18mySpQzjAwbcjOCu3CQ3WGna2ofgv3fAUVydj8PHgbMks6ZtkJBLRm8ZNWbNRMHyQprXNbhCSHNCFn_V7B_PyXIY3iml0gh5RuaCU2WstgtyvX_DjFNOs9SOVY0Z-LH6xCzBOGKf9S2EBN05OY1QD3hxzBV5ud_uN4_57vnhaXO3y72UbMy1szwEKUIMCNZG6aIBCUrz6LXRFhxQdB5lYAdTceoMAyUdZ2i8tJGvyM3Pbte3HxMOY5mqwWNdQ4PtNJRcKGW1pkYd1KujOrmEoez6KkH_Vf5e498ZeFE3 |
| CitedBy_id | crossref_primary_10_1038_s41467_025_61896_7 crossref_primary_10_1103_PhysRevResearch_2_033518 crossref_primary_10_1038_s41598_024_78986_z crossref_primary_10_1103_PhysRevResearch_4_013194 crossref_primary_10_1073_pnas_2214657120 crossref_primary_10_1103_PhysRevResearch_6_013074 crossref_primary_10_1007_s40042_023_00797_8 crossref_primary_10_1063_5_0227364 crossref_primary_10_1093_pnasnexus_pgad245 crossref_primary_10_1103_b9n6_mynw crossref_primary_10_1103_z3gm_32jn crossref_primary_10_1016_j_chempr_2020_08_010 crossref_primary_10_1038_s41567_022_01583_2 crossref_primary_10_1140_epje_s10189_021_00058_1 crossref_primary_10_1016_j_plrev_2025_02_005 crossref_primary_10_1038_s42005_023_01442_3 crossref_primary_10_1103_PhysRevResearch_4_033234 crossref_primary_10_1103_PhysRevResearch_6_033234 crossref_primary_10_1103_PhysRevResearch_3_013100 crossref_primary_10_1103_PhysRevResearch_3_013188 crossref_primary_10_1103_PhysRevX_14_011012 crossref_primary_10_1038_s42005_024_01860_x crossref_primary_10_1098_rsos_232002 crossref_primary_10_1103_PhysRevResearch_4_013187 crossref_primary_10_1088_1742_5468_adbefe crossref_primary_10_1103_3h72_dlyp crossref_primary_10_1002_advs_202305695 crossref_primary_10_1103_dg4n_1f4f crossref_primary_10_1038_s42005_025_02090_5 crossref_primary_10_1103_PhysRevResearch_2_023321 crossref_primary_10_1140_epje_s10189_024_00424_9 crossref_primary_10_1088_1361_648X_ace871 crossref_primary_10_1103_PhysRevResearch_2_043314 crossref_primary_10_1103_PhysRevLett_131_118301 crossref_primary_10_1088_1367_2630_ad1498 crossref_primary_10_1021_acsnano_5c03911 crossref_primary_10_1080_1539445X_2021_1906703 crossref_primary_10_1088_1361_648X_accd36 crossref_primary_10_1002_admt_202200450 crossref_primary_10_1038_s41467_022_34396_1 crossref_primary_10_1103_crj5_bhwv crossref_primary_10_1140_epje_s10189_021_00043_8 crossref_primary_10_1103_n3td_t9lk crossref_primary_10_1002_adfm_202205546 crossref_primary_10_1146_annurev_conmatphys_040821_112149 crossref_primary_10_1103_PhysRevResearch_4_043160 crossref_primary_10_1103_PhysRevX_10_041009 crossref_primary_10_1088_1402_4896_add65c crossref_primary_10_1103_PhysRevResearch_6_L032002 crossref_primary_10_3390_sym13010081 crossref_primary_10_1140_epje_s10189_022_00162_w crossref_primary_10_1088_1361_6633_add278 crossref_primary_10_1088_1742_5468_acdac5 crossref_primary_10_1016_j_isci_2025_111883 crossref_primary_10_1103_m1hl_d18s crossref_primary_10_1137_21M1462039 crossref_primary_10_1038_s41578_020_00272_x crossref_primary_10_1103_PhysRevResearch_3_L042021 crossref_primary_10_1002_adfm_202214893 crossref_primary_10_1088_1367_2630_aceea4 crossref_primary_10_1103_PhysRevE_111_034218 crossref_primary_10_1103_PhysRevResearch_6_L022044 crossref_primary_10_1002_aisy_202200168 crossref_primary_10_1103_PhysRevE_111_015411 crossref_primary_10_1002_adts_202200683 crossref_primary_10_1093_pnasnexus_pgad417 crossref_primary_10_1016_j_cocis_2022_101610 crossref_primary_10_1016_j_physa_2022_127909 crossref_primary_10_1038_s42005_022_00872_9 crossref_primary_10_1103_PhysRevResearch_5_033054 crossref_primary_10_15252_msb_202110822 crossref_primary_10_1017_S0956792523000177 crossref_primary_10_1021_jacs_3c06322 crossref_primary_10_1140_epje_s10189_023_00265_y crossref_primary_10_1038_s41467_025_55820_2 crossref_primary_10_1103_PhysRevResearch_4_043071 crossref_primary_10_1038_s41467_024_45531_5 crossref_primary_10_1016_j_molliq_2022_118692 crossref_primary_10_1038_s41467_021_27870_9 crossref_primary_10_1103_PhysRevResearch_7_013142 crossref_primary_10_1002_smll_202206842 crossref_primary_10_1103_PhysRevLett_130_187102 crossref_primary_10_1002_adfm_202507078 crossref_primary_10_1103_PhysRevResearch_5_L032013 crossref_primary_10_1140_epje_s10189_024_00466_z crossref_primary_10_1073_pnas_2122226119 crossref_primary_10_1002_rpm_20250001 crossref_primary_10_1093_icb_icad075 crossref_primary_10_1103_PhysRevX_13_041043 crossref_primary_10_1103_PhysRevE_111_015424 crossref_primary_10_1103_PhysRevResearch_6_L042039 crossref_primary_10_1038_s41567_022_01836_0 crossref_primary_10_1002_smll_202407832 crossref_primary_10_1088_1751_8121_addb92 crossref_primary_10_3390_molecules25112694 crossref_primary_10_1103_gbg1_lwwt crossref_primary_10_1103_PhysRevResearch_6_013119 crossref_primary_10_3390_e26060439 crossref_primary_10_1103_PhysRevResearch_5_033165 crossref_primary_10_1038_s42005_022_01077_w crossref_primary_10_1007_s11229_023_04192_5 crossref_primary_10_1016_j_cdev_2022_203803 crossref_primary_10_1063_5_0273201 crossref_primary_10_1021_jacs_1c11754 crossref_primary_10_1073_pnas_2009930118 crossref_primary_10_1088_1361_648X_adac98 crossref_primary_10_1103_PhysRevResearch_3_023198 crossref_primary_10_1038_s41467_025_61728_8 crossref_primary_10_1063_5_0227325 crossref_primary_10_1140_epje_s10189_022_00183_5 crossref_primary_10_1080_00268976_2021_1902585 crossref_primary_10_1002_smll_202300817 crossref_primary_10_1073_pnas_2505488122 crossref_primary_10_7566_JPSJ_92_121005 crossref_primary_10_1038_s42005_025_02211_0 crossref_primary_10_3390_e25050817 crossref_primary_10_1002_smll_202300028 crossref_primary_10_1002_cphc_202400747 crossref_primary_10_1103_PhysRevLett_134_207101 crossref_primary_10_3390_e27020112 crossref_primary_10_1103_PhysRevResearch_2_033275 crossref_primary_10_1103_PhysRevX_11_031063 crossref_primary_10_1007_s11433_021_1756_0 crossref_primary_10_1093_pnasnexus_pgad291 crossref_primary_10_1103_PhysRevLett_128_108001 crossref_primary_10_1103_PhysRevLett_128_028005 crossref_primary_10_1109_TRO_2022_3189846 crossref_primary_10_1080_00268976_2024_2396545 crossref_primary_10_1103_PhysRevResearch_2_043359 crossref_primary_10_1088_1402_4896_adcbe8 crossref_primary_10_1002_aisy_202000178 crossref_primary_10_1038_s41586_020_2730_x crossref_primary_10_1080_00018732_2020_1854965 crossref_primary_10_1140_epje_s10189_021_00084_z crossref_primary_10_1088_1367_2630_ad3ea7 crossref_primary_10_1038_s41467_023_42633_4 crossref_primary_10_1073_pnas_2407705121 crossref_primary_10_1103_PhysRevE_104_044613 crossref_primary_10_1016_j_matt_2024_06_037 crossref_primary_10_1073_pnas_2100493118 crossref_primary_10_1103_PhysRevResearch_6_L032044 crossref_primary_10_1140_epjs_s11734_024_01273_5 crossref_primary_10_1038_s42005_021_00522_6 crossref_primary_10_1088_1367_2630_ad50ff crossref_primary_10_7566_JPSJ_92_062001 crossref_primary_10_1103_PhysRevLett_134_148301 crossref_primary_10_1103_PhysRevResearch_6_033016 crossref_primary_10_1088_1367_2630_ad56bd crossref_primary_10_1103_PhysRevResearch_5_L022012 crossref_primary_10_1063_5_0219081 crossref_primary_10_1088_1367_2630_ad4817 crossref_primary_10_1103_PhysRevLett_128_028003 crossref_primary_10_3390_mi13020295 crossref_primary_10_1038_s41566_023_01368_w crossref_primary_10_1038_s41598_022_22056_9 crossref_primary_10_1103_PhysRevResearch_3_023125 crossref_primary_10_1038_s42005_024_01817_0 crossref_primary_10_1103_xrph_vgf3 crossref_primary_10_1103_xx4z_lj5c crossref_primary_10_1103_PhysRevResearch_3_033291 crossref_primary_10_1103_PhysRevX_15_021050 crossref_primary_10_1140_epje_s10189_022_00230_1 crossref_primary_10_1038_s42256_022_00521_4 crossref_primary_10_1073_pnas_2408082121 crossref_primary_10_1103_flzv_lq7x crossref_primary_10_1088_1751_8121_acc498 crossref_primary_10_1103_PhysRevE_111_045405 crossref_primary_10_1103_PhysRevE_107_024701 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-648X/ab6348 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1361-648X |
| ExternalDocumentID | 32058979 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 1JI 4.4 53G 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT ADEQX AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM P2P PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 WH7 XPP YQT ZMT ~02 7X8 AEINN |
| ID | FETCH-LOGICAL-c441t-7b92dd43dfdea99f4bf8a4a572fc7879aba0ebce4d1b92520b81a54b21e8c49f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 411 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524299700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-648X |
| IngestDate | Fri Sep 05 08:02:37 EDT 2025 Mon Jul 21 05:36:20 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-7b92dd43dfdea99f4bf8a4a572fc7879aba0ebce4d1b92520b81a54b21e8c49f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-648X/ab6348/pdf |
| PMID | 32058979 |
| PQID | 2355977085 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2355977085 pubmed_primary_32058979 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-08 |
| PublicationDateYYYYMMDD | 2020-05-08 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of physics. Condensed matter |
| PublicationTitleAlternate | J Phys Condens Matter |
| PublicationYear | 2020 |
| SSID | ssj0004834 |
| Score | 2.72108 |
| Snippet | Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 193001 |
| Title | The 2020 motile active matter roadmap |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32058979 https://www.proquest.com/docview/2355977085 |
| Volume | 32 |
| WOSCitedRecordID | wos000524299700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qKHhxX8aNCnoMM03SLCcRcfDiMAeF3kq2guC043T09_uSdtSLIHjpoTTQvrzla97H-xC6YsYQYVyGuVQOM8odltQIrGTKyiGUaFgXxSbEeCzzXE26A7emo1Uuc2JM1K624Yx8QGgclQYI4Wb2hoNqVOiudhIaq6hHAcoESpfIf0wLl21XmfIUcybzrk0JgTX4ujfQhlMmfweYsdCMtv_7ijtoq4OYyW3rE7toxVd7aCNSPW2zj67BMxIC-C0JPLxXn-iY8pJpnLSZzGvtpnp2gJ5H9093D7gTS8AWEM0CC6OIc4y60nmtVMlMKTXTmSClhaBU2uihN9Yzl8KTGRkameqMGZJ6aZkqySFaq-rKH6OEOxvimFj49YMNkzKTwmjBoYw55pTqo8vl9xfgjKHDoCtfvzfFtwX66Kg1YjFrp2YUlAQFQ6FO_rD6FG0GO0RioTxDvRJC0Z-jdfuxeGnmF3GX4TqePH4CtDivRA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+2020+motile+active+matter+roadmap&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Gompper%2C+Gerhard&rft.au=Winkler%2C+Roland+G&rft.au=Speck%2C+Thomas&rft.au=Solon%2C+Alexandre&rft.date=2020-05-08&rft.eissn=1361-648X&rft.volume=32&rft.issue=19&rft.spage=193001&rft_id=info:doi/10.1088%2F1361-648X%2Fab6348&rft_id=info%3Apmid%2F32058979&rft_id=info%3Apmid%2F32058979&rft.externalDocID=32058979 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-648X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-648X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-648X&client=summon |