A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration

Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular rep...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Plant and cell physiology Ročník 59; číslo 4; s. 765 - 777
Hlavní autori: Ikeuchi, Momoko, Shibata, Michitaro, Rymen, Bart, Iwase, Akira, B�gman, Anne-Maarit, Watt, Lewis, Coleman, Duncan, Favero, David S, Takahashi, Tatsuya, Ahnert, Sebastian E, Brady, Siobhan M, Sugimoto, Keiko
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Japan Oxford University Press 01.04.2018
Predmet:
ISSN:0032-0781, 1471-9053, 1471-9053
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.
AbstractList Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.
Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.
Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.
Author Ikeuchi, Momoko
Sugimoto, Keiko
Rymen, Bart
Ahnert, Sebastian E
Brady, Siobhan M
B�gman, Anne-Maarit
Coleman, Duncan
Favero, David S
Iwase, Akira
Takahashi, Tatsuya
Watt, Lewis
Shibata, Michitaro
Author_xml – sequence: 1
  givenname: Momoko
  orcidid: 0000-0001-9474-5131
  surname: Ikeuchi
  fullname: Ikeuchi, Momoko
  email: momoko.ikeuchi@riken.jp
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 2
  givenname: Michitaro
  surname: Shibata
  fullname: Shibata, Michitaro
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 3
  givenname: Bart
  surname: Rymen
  fullname: Rymen, Bart
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 4
  givenname: Akira
  surname: Iwase
  fullname: Iwase, Akira
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 5
  givenname: Anne-Maarit
  surname: B�gman
  fullname: B�gman, Anne-Maarit
  organization: Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
– sequence: 6
  givenname: Lewis
  surname: Watt
  fullname: Watt, Lewis
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 7
  givenname: Duncan
  surname: Coleman
  fullname: Coleman, Duncan
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 8
  givenname: David S
  surname: Favero
  fullname: Favero, David S
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 9
  givenname: Tatsuya
  surname: Takahashi
  fullname: Takahashi, Tatsuya
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
– sequence: 10
  givenname: Sebastian E
  surname: Ahnert
  fullname: Ahnert, Sebastian E
  organization: Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK
– sequence: 11
  givenname: Siobhan M
  surname: Brady
  fullname: Brady, Siobhan M
  organization: Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
– sequence: 12
  givenname: Keiko
  surname: Sugimoto
  fullname: Sugimoto, Keiko
  email: keiko.sugimoto@riken.jp
  organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29462363$$D View this record in MEDLINE/PubMed
BookMark eNo9UE1PwzAMjdAQ-4ALPwDlgsSl4CTt2h6naQzQBAjBOUpTZyq0SUlbof17Mm1gybL1_Gz5vSkZWWeRkEsGtwxycdfqNuQOmDghExanLMohESMyARA8gjRjYzLtuk-A0As4I2Oex3Mu5mJCnhZ0jRbpG26HWvXO7-gz9j_Of1HjPF1iXQfch3nr3darpqnsllaWvtbK9vu1sO1VXzl7Tk6Nqju8ONYZ-bhfvS8fos3L-nG52EQ6jlkfpaLQJcPEZCY2WZzrfWRJydEkRpkcA6Y0iNDyNAFTxLwURoPBPCsKZGJGbg53w0ffA3a9bKpOh0eVRTd0kgeZjIk0mwfq1ZE6FA2WsvVVo_xO_ukPhOsDwQ3t_5SB3Psqg6_y4Kv4BdrhbB4
CitedBy_id crossref_primary_10_1007_s11540_024_09692_6
crossref_primary_10_3390_f11050590
crossref_primary_10_1371_journal_pone_0279627
crossref_primary_10_1002_pld3_70085
crossref_primary_10_1016_j_tplants_2019_07_004
crossref_primary_10_1007_s11427_024_2581_2
crossref_primary_10_3390_genes10121034
crossref_primary_10_3390_f15030473
crossref_primary_10_1186_s12870_023_04220_z
crossref_primary_10_1134_S1062360421040044
crossref_primary_10_1016_j_tplants_2019_06_003
crossref_primary_10_1111_tpj_14940
crossref_primary_10_3390_horticulturae9060674
crossref_primary_10_1007_s00299_020_02577_1
crossref_primary_10_1007_s00709_021_01683_5
crossref_primary_10_1007_s10528_023_10524_4
crossref_primary_10_1093_pcp_pcac128
crossref_primary_10_1016_j_gene_2022_146556
crossref_primary_10_1016_j_hpj_2025_08_005
crossref_primary_10_3389_fpls_2019_00536
crossref_primary_10_1111_nph_19399
crossref_primary_10_1016_j_cub_2025_06_047
crossref_primary_10_1111_tpj_15044
crossref_primary_10_1242_dev_185710
crossref_primary_10_3389_fpls_2019_00077
crossref_primary_10_1186_s13059_023_02890_4
crossref_primary_10_1016_j_cmpb_2020_105473
crossref_primary_10_3390_ijms232416112
crossref_primary_10_3389_fpls_2018_01770
crossref_primary_10_1093_g3journal_jkae274
crossref_primary_10_3389_fgene_2020_00457
crossref_primary_10_3389_fpls_2023_1239133
crossref_primary_10_1093_pcp_pcy066
crossref_primary_10_1093_jxb_erz395
crossref_primary_10_1016_j_cell_2019_03_006
crossref_primary_10_1007_s13562_022_00788_z
crossref_primary_10_1146_annurev_arplant_050718_100434
crossref_primary_10_1186_s12870_022_03801_8
crossref_primary_10_1111_nph_16794
crossref_primary_10_3389_fpls_2019_00240
crossref_primary_10_1088_1742_6596_1879_2_022053
crossref_primary_10_1007_s00018_018_2861_5
crossref_primary_10_1038_s41477_023_01406_z
crossref_primary_10_3389_fpls_2018_01443
crossref_primary_10_3390_ijms21124195
crossref_primary_10_3390_ijms232415950
crossref_primary_10_1016_j_pbi_2020_06_007
crossref_primary_10_1016_j_cub_2019_06_012
crossref_primary_10_1093_plphys_kiab510
crossref_primary_10_1007_s00468_022_02302_3
crossref_primary_10_1134_S1062360424700127
crossref_primary_10_32604_phyton_2024_059402
crossref_primary_10_1007_s42994_023_00121_9
crossref_primary_10_1105_tpc_20_00080
crossref_primary_10_3390_ijms22168554
crossref_primary_10_1016_j_devcel_2021_12_019
crossref_primary_10_1134_S1021443721010106
crossref_primary_10_1186_s13007_022_00895_x
crossref_primary_10_3389_fpls_2021_652570
crossref_primary_10_3390_biom14030381
crossref_primary_10_1038_s41598_020_78324_z
crossref_primary_10_1038_s41587_025_02727_4
crossref_primary_10_1186_s12861_020_00230_4
crossref_primary_10_1371_journal_pone_0231658
crossref_primary_10_3390_ijms22157817
crossref_primary_10_3389_fpls_2022_898786
crossref_primary_10_1111_tpj_15507
crossref_primary_10_3390_ijms24054392
crossref_primary_10_1080_11263504_2020_1762793
crossref_primary_10_1007_s11240_022_02327_z
crossref_primary_10_1016_j_pbi_2018_10_005
crossref_primary_10_1111_nph_19737
crossref_primary_10_1016_j_freeradbiomed_2025_04_048
crossref_primary_10_1126_sciadv_adr1509
crossref_primary_10_3390_cells11111790
crossref_primary_10_1093_jxb_erac508
crossref_primary_10_1007_s00299_023_02983_1
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2018
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/pcp/pcy013
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate Special Focus Issue: Cellular Reprogramming in Plants
EISSN 1471-9053
EndPage 777
ExternalDocumentID 29462363
10.1093/pcp/pcy013
Genre Journal Article
GrantInformation_xml – fundername: RIKEN
  grantid: 201701100428
  funderid: 10.13039/501100006264
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  funderid: 10.13039/501100001700
– fundername: Naito Foundation
  funderid: 10.13039/100007428
– fundername: MEXT
  grantid: 15H05961
  funderid: 10.13039/501100001700
– fundername: Japan Society for the Promotion of Science
  funderid: 10.13039/501100001691
– fundername: JSPS
  grantid: 17K15146; 17J40121; 16J07464; 17K07461; 17H03704
  funderid: 10.13039/501100001691
GroupedDBID ---
-E4
-~X
.2P
.I3
0R~
123
1TH
29O
2WC
4.4
482
48X
5VS
5WD
6P2
70D
A8Z
AAHBH
AAIMJ
AAJKP
AAJQQ
AAKDD
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABMNT
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
ECGQY
EDH
EE~
EJD
EMOBN
ESTFP
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RHF
ROL
ROX
ROZ
RUSNO
RW1
RXO
SV3
TEORI
TLC
TN5
TOX
TUS
TWZ
W8F
X7H
Y6R
YAYTL
YKOAZ
YNT
YSK
YXANX
ZKX
~91
~KM
ABDFA
ABEJV
ABGNP
ABVGC
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABPQP
ABXZS
ADNBA
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c441t-73bcd1e5f8f4f849ccccc85d2ef5faf9e849ac03af92750fb42d3fc0fe98bbe13
IEDL.DBID TOX
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430163300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-0781
1471-9053
IngestDate Sun Nov 09 10:34:11 EST 2025
Wed Feb 19 02:44:01 EST 2025
Wed Sep 11 04:48:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Callus formation
Cellular reprogramming
Regeneration
Wound stress
Auxin
Cytokinin
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-73bcd1e5f8f4f849ccccc85d2ef5faf9e849ac03af92750fb42d3fc0fe98bbe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9474-5131
OpenAccessLink https://dx.doi.org/10.1093/pcp/pcy013
PMID 29462363
PQID 2007113786
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2007113786
pubmed_primary_29462363
oup_primary_10_1093_pcp_pcy013
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Plant and cell physiology
PublicationTitleAlternate Plant Cell Physiol
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 22508267 - Cell Res. 2012 Jul;22(7):1169-80
21931939 - Mol Genet Genomics. 2011 Dec;286(5-6):321-32
8755525 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7623-7
22003076 - Plant Cell. 2011 Oct;23(10):3671-83
26635831 - Front Plant Sci. 2015 Nov 19;6:1004
23503691 - Plant Physiol. 2013 May;162(1):512-21
25352272 - Plant Physiol. 2014 Dec;166(4):1803-20
27797356 - Nat Plants. 2016 Oct 31;2(11):16165
25043187 - Cell Rep. 2014 Jul 24;8(2):622-32
16593964 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40
28576845 - Plant Cell. 2017 Jun;29(6):1373-1387
27255928 - J Exp Bot. 2016 Jul;67(14):4273-84
23620480 - Plant Cell Physiol. 2013 Jul;54(7):1079-92
17989228 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18333-8
28389585 - Plant Cell. 2017 May;29(5):1073-1087
18006545 - Bioinformatics. 2008 Jan 15;24(2):282-4
23903317 - Plant Cell. 2013 Jul;25(7):2444-63
28011694 - Plant Cell. 2017 Jan;29(1):54-69
24663099 - Sci Rep. 2014 Mar 25;4:4385
14735121 - Nat Rev Genet. 2004 Feb;5(2):101-13
12615942 - Plant Cell. 2003 Mar;15(3):694-705
27143753 - Development. 2016 May 1;143(9):1442-51
16648215 - Plant Physiol. 2006 Jun;141(2):620-37
24158907 - Science. 2013 Nov 15;342(6160):860-3
25533953 - Nature. 2015 Jan 29;517(7536):571-5
21908690 - Plant Physiol. 2011 Nov;157(3):1243-54
24076977 - Plant Cell. 2013 Sep;25(9):3159-73
16407444 - Plant Physiol. 2006 Feb;140(2):411-32
12610213 - Plant Cell Physiol. 2003 Feb;44(2):113-21
17259263 - Plant Cell. 2007 Jan;19(1):118-30
17376809 - Development. 2007 May;134(9):1653-62
7919989 - Plant Cell. 1994 Sep;6(9):1211-25
20230752 - Dev Cell. 2010 Mar 16;18(3):463-71
16021341 - Plant Mol Biol. 2005 Jul;58(4):585-96
20171102 - Curr Biol. 2010 Mar 9;20(5):452-7
28673986 - Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5995-E6004
18665917 - Plant J. 2008 Dec;56(5):779-92
28576846 - Plant Cell. 2017 Jun;29(6):1357-1372
18980654 - Plant J. 2009 Feb;57(4):626-44
27499869 - Regeneration (Oxf). 2015 May 19;2(2):72-83
13486467 - Symp Soc Exp Biol. 1957;11:118-30
10639184 - Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):942-7
21700457 - Curr Biol. 2011 Jul 12;21(13):1123-8
28904073 - Plant Physiol. 2017 Nov;175(3):1158-1174
20417101 - Curr Biol. 2010 May 11;20(9):818-23
24642937 - Plant Cell. 2014 Mar;26(3):1081-93
27128468 - Annu Rev Plant Biol. 2016 Apr 29;67:575-94
28439865 - Methods Mol Biol. 2017;1610:187-215
27666516 - Trends Plant Sci. 2017 Jan;22(1):53-65
19182776 - Nature. 2009 Feb 26;457(7233):1150-3
25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30
17056621 - Plant Cell Physiol. 2006 Nov;47(11):1443-56
17183267 - Nature. 2007 Feb 1;445(7127):501-5
22037706 - Nat Methods. 2011 Oct 30;8(12):1053-5
27212234 - Cell. 2016 Jun 16;165(7):1721-1733
27203113 - Cell. 2016 May 19;165(5):1280-1292
21396822 - Curr Biol. 2011 Mar 22;21(6):508-14
23963601 - Mol Biosyst. 2013 Nov;9(11):2681-5
27920338 - Plant Cell. 2016 Dec;28(12):2937-2951
11752375 - Plant Cell. 2001 Dec;13(12):2609-18
17030801 - Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7
14597658 - Genome Res. 2003 Nov;13(11):2498-504
References_xml – reference: 16021341 - Plant Mol Biol. 2005 Jul;58(4):585-96
– reference: 28904073 - Plant Physiol. 2017 Nov;175(3):1158-1174
– reference: 20230752 - Dev Cell. 2010 Mar 16;18(3):463-71
– reference: 12615942 - Plant Cell. 2003 Mar;15(3):694-705
– reference: 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30
– reference: 27128468 - Annu Rev Plant Biol. 2016 Apr 29;67:575-94
– reference: 7919989 - Plant Cell. 1994 Sep;6(9):1211-25
– reference: 22003076 - Plant Cell. 2011 Oct;23(10):3671-83
– reference: 16407444 - Plant Physiol. 2006 Feb;140(2):411-32
– reference: 8755525 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7623-7
– reference: 24642937 - Plant Cell. 2014 Mar;26(3):1081-93
– reference: 21931939 - Mol Genet Genomics. 2011 Dec;286(5-6):321-32
– reference: 23620480 - Plant Cell Physiol. 2013 Jul;54(7):1079-92
– reference: 28389585 - Plant Cell. 2017 May;29(5):1073-1087
– reference: 28576846 - Plant Cell. 2017 Jun;29(6):1357-1372
– reference: 27255928 - J Exp Bot. 2016 Jul;67(14):4273-84
– reference: 17030801 - Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7
– reference: 10639184 - Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):942-7
– reference: 28011694 - Plant Cell. 2017 Jan;29(1):54-69
– reference: 28439865 - Methods Mol Biol. 2017;1610:187-215
– reference: 24158907 - Science. 2013 Nov 15;342(6160):860-3
– reference: 13486467 - Symp Soc Exp Biol. 1957;11:118-30
– reference: 27212234 - Cell. 2016 Jun 16;165(7):1721-1733
– reference: 27143753 - Development. 2016 May 1;143(9):1442-51
– reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504
– reference: 11752375 - Plant Cell. 2001 Dec;13(12):2609-18
– reference: 21700457 - Curr Biol. 2011 Jul 12;21(13):1123-8
– reference: 17376809 - Development. 2007 May;134(9):1653-62
– reference: 23903317 - Plant Cell. 2013 Jul;25(7):2444-63
– reference: 27920338 - Plant Cell. 2016 Dec;28(12):2937-2951
– reference: 12610213 - Plant Cell Physiol. 2003 Feb;44(2):113-21
– reference: 22037706 - Nat Methods. 2011 Oct 30;8(12):1053-5
– reference: 18665917 - Plant J. 2008 Dec;56(5):779-92
– reference: 25533953 - Nature. 2015 Jan 29;517(7536):571-5
– reference: 21396822 - Curr Biol. 2011 Mar 22;21(6):508-14
– reference: 25043187 - Cell Rep. 2014 Jul 24;8(2):622-32
– reference: 16593964 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40
– reference: 14735121 - Nat Rev Genet. 2004 Feb;5(2):101-13
– reference: 27499869 - Regeneration (Oxf). 2015 May 19;2(2):72-83
– reference: 19182776 - Nature. 2009 Feb 26;457(7233):1150-3
– reference: 27666516 - Trends Plant Sci. 2017 Jan;22(1):53-65
– reference: 17056621 - Plant Cell Physiol. 2006 Nov;47(11):1443-56
– reference: 23503691 - Plant Physiol. 2013 May;162(1):512-21
– reference: 25352272 - Plant Physiol. 2014 Dec;166(4):1803-20
– reference: 27797356 - Nat Plants. 2016 Oct 31;2(11):16165
– reference: 17989228 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18333-8
– reference: 18980654 - Plant J. 2009 Feb;57(4):626-44
– reference: 27203113 - Cell. 2016 May 19;165(5):1280-1292
– reference: 28673986 - Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5995-E6004
– reference: 24076977 - Plant Cell. 2013 Sep;25(9):3159-73
– reference: 28576845 - Plant Cell. 2017 Jun;29(6):1373-1387
– reference: 23963601 - Mol Biosyst. 2013 Nov;9(11):2681-5
– reference: 22508267 - Cell Res. 2012 Jul;22(7):1169-80
– reference: 17259263 - Plant Cell. 2007 Jan;19(1):118-30
– reference: 20417101 - Curr Biol. 2010 May 11;20(9):818-23
– reference: 24663099 - Sci Rep. 2014 Mar 25;4:4385
– reference: 20171102 - Curr Biol. 2010 Mar 9;20(5):452-7
– reference: 18006545 - Bioinformatics. 2008 Jan 15;24(2):282-4
– reference: 26635831 - Front Plant Sci. 2015 Nov 19;6:1004
– reference: 16648215 - Plant Physiol. 2006 Jun;141(2):620-37
– reference: 17183267 - Nature. 2007 Feb 1;445(7127):501-5
– reference: 21908690 - Plant Physiol. 2011 Nov;157(3):1243-54
SSID ssj0007830
Score 2.5218096
Snippet Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their...
Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative...
SourceID proquest
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 765
SubjectTerms Arabidopsis Proteins - metabolism
Cellular Reprogramming - drug effects
Cellular Reprogramming - genetics
Cytokinins - pharmacology
Gene Regulatory Networks - drug effects
Genes, Plant
Indoleacetic Acids - pharmacology
Plant Cells - metabolism
Plants - genetics
Promoter Regions, Genetic
Regeneration - drug effects
Regeneration - genetics
Transcription Factors - metabolism
Title A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/29462363
https://www.proquest.com/docview/2007113786
Volume 59
WOSCitedRecordID wos000430163300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7omOCLl3mblxHB12K7NGvyOIcignXIhL6VJk1gMNuxi7B_70nTDbyAFlpKS0I559B8yTn5PoAbEUm7bIwzVRzfvTALmCd5T3m-ljIPOM-ENpXYRBTHPEnEsC6imf-Swhf0dqqmeK78Sps2YNxG8-gl2fxvI05r8kVbR8mDNQnpl6bf9q_9gJHVcPKw_88POYC9Gi-SvnPwIWzpogU7TkFy1YLmXYnobnUET31iGaTJq9OWL2crErsKb4KwlAz0ZGILTvF9XZH1jmMWGRfEqhYtbLOKf9q66RjeHu5Hg0ev1knwFIKZhRdRqfJAM8NNaHgolD04y7vaMJMZofFZpnyKt5bN3ciwm1OjfKMFl1IH9AQaRVnoMyAs00wwo7XdDyvDXPg5D6lmCp2IM0Hahg6aMZ06JozUZbBpipZJnWXacL22cIqBarMPWaHL5dzqXUZBQCPea8OpM_2mn64IEYb16Plf3V_ALiIW7kpnLqGxmC31FTTVx2I8n3VgO0o4XuPhc6eKkU_pirbJ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Gene+Regulatory+Network+for+Cellular+Reprogramming+in+Plant+Regeneration&rft.jtitle=Plant+and+cell+physiology&rft.au=Ikeuchi%2C+Momoko&rft.au=Shibata%2C+Michitaro&rft.au=Rymen%2C+Bart&rft.au=Iwase%2C+Akira&rft.date=2018-04-01&rft.pub=Oxford+University+Press&rft.issn=0032-0781&rft.eissn=1471-9053&rft.volume=59&rft.issue=4&rft.spage=765&rft.epage=777&rft_id=info:doi/10.1093%2Fpcp%2Fpcy013&rft.externalDocID=10.1093%2Fpcp%2Fpcy013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0781&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0781&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0781&client=summon