A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration
Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular rep...
Uložené v:
| Vydané v: | Plant and cell physiology Ročník 59; číslo 4; s. 765 - 777 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Japan
Oxford University Press
01.04.2018
|
| Predmet: | |
| ISSN: | 0032-0781, 1471-9053, 1471-9053 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies. |
|---|---|
| AbstractList | Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies. Abstract Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies. Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies. |
| Author | Ikeuchi, Momoko Sugimoto, Keiko Rymen, Bart Ahnert, Sebastian E Brady, Siobhan M B�gman, Anne-Maarit Coleman, Duncan Favero, David S Iwase, Akira Takahashi, Tatsuya Watt, Lewis Shibata, Michitaro |
| Author_xml | – sequence: 1 givenname: Momoko orcidid: 0000-0001-9474-5131 surname: Ikeuchi fullname: Ikeuchi, Momoko email: momoko.ikeuchi@riken.jp organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 2 givenname: Michitaro surname: Shibata fullname: Shibata, Michitaro organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 3 givenname: Bart surname: Rymen fullname: Rymen, Bart organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 4 givenname: Akira surname: Iwase fullname: Iwase, Akira organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 5 givenname: Anne-Maarit surname: B�gman fullname: B�gman, Anne-Maarit organization: Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA – sequence: 6 givenname: Lewis surname: Watt fullname: Watt, Lewis organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 7 givenname: Duncan surname: Coleman fullname: Coleman, Duncan organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 8 givenname: David S surname: Favero fullname: Favero, David S organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 9 givenname: Tatsuya surname: Takahashi fullname: Takahashi, Tatsuya organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan – sequence: 10 givenname: Sebastian E surname: Ahnert fullname: Ahnert, Sebastian E organization: Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR UK – sequence: 11 givenname: Siobhan M surname: Brady fullname: Brady, Siobhan M organization: Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA – sequence: 12 givenname: Keiko surname: Sugimoto fullname: Sugimoto, Keiko email: keiko.sugimoto@riken.jp organization: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29462363$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9UE1PwzAMjdAQ-4ALPwDlgsSl4CTt2h6naQzQBAjBOUpTZyq0SUlbof17Mm1gybL1_Gz5vSkZWWeRkEsGtwxycdfqNuQOmDghExanLMohESMyARA8gjRjYzLtuk-A0As4I2Oex3Mu5mJCnhZ0jRbpG26HWvXO7-gz9j_Of1HjPF1iXQfch3nr3darpqnsllaWvtbK9vu1sO1VXzl7Tk6Nqju8ONYZ-bhfvS8fos3L-nG52EQ6jlkfpaLQJcPEZCY2WZzrfWRJydEkRpkcA6Y0iNDyNAFTxLwURoPBPCsKZGJGbg53w0ffA3a9bKpOh0eVRTd0kgeZjIk0mwfq1ZE6FA2WsvVVo_xO_ukPhOsDwQ3t_5SB3Psqg6_y4Kv4BdrhbB4 |
| CitedBy_id | crossref_primary_10_1007_s11540_024_09692_6 crossref_primary_10_3390_f11050590 crossref_primary_10_1371_journal_pone_0279627 crossref_primary_10_1002_pld3_70085 crossref_primary_10_1016_j_tplants_2019_07_004 crossref_primary_10_1007_s11427_024_2581_2 crossref_primary_10_3390_genes10121034 crossref_primary_10_3390_f15030473 crossref_primary_10_1186_s12870_023_04220_z crossref_primary_10_1134_S1062360421040044 crossref_primary_10_1016_j_tplants_2019_06_003 crossref_primary_10_1111_tpj_14940 crossref_primary_10_3390_horticulturae9060674 crossref_primary_10_1007_s00299_020_02577_1 crossref_primary_10_1007_s00709_021_01683_5 crossref_primary_10_1007_s10528_023_10524_4 crossref_primary_10_1093_pcp_pcac128 crossref_primary_10_1016_j_gene_2022_146556 crossref_primary_10_1016_j_hpj_2025_08_005 crossref_primary_10_3389_fpls_2019_00536 crossref_primary_10_1111_nph_19399 crossref_primary_10_1016_j_cub_2025_06_047 crossref_primary_10_1111_tpj_15044 crossref_primary_10_1242_dev_185710 crossref_primary_10_3389_fpls_2019_00077 crossref_primary_10_1186_s13059_023_02890_4 crossref_primary_10_1016_j_cmpb_2020_105473 crossref_primary_10_3390_ijms232416112 crossref_primary_10_3389_fpls_2018_01770 crossref_primary_10_1093_g3journal_jkae274 crossref_primary_10_3389_fgene_2020_00457 crossref_primary_10_3389_fpls_2023_1239133 crossref_primary_10_1093_pcp_pcy066 crossref_primary_10_1093_jxb_erz395 crossref_primary_10_1016_j_cell_2019_03_006 crossref_primary_10_1007_s13562_022_00788_z crossref_primary_10_1146_annurev_arplant_050718_100434 crossref_primary_10_1186_s12870_022_03801_8 crossref_primary_10_1111_nph_16794 crossref_primary_10_3389_fpls_2019_00240 crossref_primary_10_1088_1742_6596_1879_2_022053 crossref_primary_10_1007_s00018_018_2861_5 crossref_primary_10_1038_s41477_023_01406_z crossref_primary_10_3389_fpls_2018_01443 crossref_primary_10_3390_ijms21124195 crossref_primary_10_3390_ijms232415950 crossref_primary_10_1016_j_pbi_2020_06_007 crossref_primary_10_1016_j_cub_2019_06_012 crossref_primary_10_1093_plphys_kiab510 crossref_primary_10_1007_s00468_022_02302_3 crossref_primary_10_1134_S1062360424700127 crossref_primary_10_32604_phyton_2024_059402 crossref_primary_10_1007_s42994_023_00121_9 crossref_primary_10_1105_tpc_20_00080 crossref_primary_10_3390_ijms22168554 crossref_primary_10_1016_j_devcel_2021_12_019 crossref_primary_10_1134_S1021443721010106 crossref_primary_10_1186_s13007_022_00895_x crossref_primary_10_3389_fpls_2021_652570 crossref_primary_10_3390_biom14030381 crossref_primary_10_1038_s41598_020_78324_z crossref_primary_10_1038_s41587_025_02727_4 crossref_primary_10_1186_s12861_020_00230_4 crossref_primary_10_1371_journal_pone_0231658 crossref_primary_10_3390_ijms22157817 crossref_primary_10_3389_fpls_2022_898786 crossref_primary_10_1111_tpj_15507 crossref_primary_10_3390_ijms24054392 crossref_primary_10_1080_11263504_2020_1762793 crossref_primary_10_1007_s11240_022_02327_z crossref_primary_10_1016_j_pbi_2018_10_005 crossref_primary_10_1111_nph_19737 crossref_primary_10_1016_j_freeradbiomed_2025_04_048 crossref_primary_10_1126_sciadv_adr1509 crossref_primary_10_3390_cells11111790 crossref_primary_10_1093_jxb_erac508 crossref_primary_10_1007_s00299_023_02983_1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2018 |
| Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. 2018 |
| DBID | TOX CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/pcp/pcy013 |
| DatabaseName | Oxford Journals Open Access Collection Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Botany |
| DocumentTitleAlternate | Special Focus Issue: Cellular Reprogramming in Plants |
| EISSN | 1471-9053 |
| EndPage | 777 |
| ExternalDocumentID | 29462363 10.1093/pcp/pcy013 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: RIKEN grantid: 201701100428 funderid: 10.13039/501100006264 – fundername: Ministry of Education, Culture, Sports, Science and Technology funderid: 10.13039/501100001700 – fundername: Naito Foundation funderid: 10.13039/100007428 – fundername: MEXT grantid: 15H05961 funderid: 10.13039/501100001700 – fundername: Japan Society for the Promotion of Science funderid: 10.13039/501100001691 – fundername: JSPS grantid: 17K15146; 17J40121; 16J07464; 17K07461; 17H03704 funderid: 10.13039/501100001691 |
| GroupedDBID | --- -E4 -~X .2P .I3 0R~ 123 1TH 29O 2WC 4.4 482 48X 5VS 5WD 6P2 70D A8Z AAHBH AAIMJ AAJKP AAJQQ AAKDD AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABMNT ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS ECGQY EDH EE~ EJD EMOBN ESTFP ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RHF ROL ROX ROZ RUSNO RW1 RXO SV3 TEORI TLC TN5 TOX TUS TWZ W8F X7H Y6R YAYTL YKOAZ YNT YSK YXANX ZKX ~91 ~KM ABDFA ABEJV ABGNP ABVGC ACUHS CGR CUY CVF ECM EIF NPM 7X8 ABPQP ABXZS ADNBA AJBYB AJNCP ALXQX |
| ID | FETCH-LOGICAL-c441t-73bcd1e5f8f4f849ccccc85d2ef5faf9e849ac03af92750fb42d3fc0fe98bbe13 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430163300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-0781 1471-9053 |
| IngestDate | Sun Nov 09 10:34:11 EST 2025 Wed Feb 19 02:44:01 EST 2025 Wed Sep 11 04:48:07 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Callus formation Cellular reprogramming Regeneration Wound stress Auxin Cytokinin |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-73bcd1e5f8f4f849ccccc85d2ef5faf9e849ac03af92750fb42d3fc0fe98bbe13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9474-5131 |
| OpenAccessLink | https://dx.doi.org/10.1093/pcp/pcy013 |
| PMID | 29462363 |
| PQID | 2007113786 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2007113786 pubmed_primary_29462363 oup_primary_10_1093_pcp_pcy013 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | Plant and cell physiology |
| PublicationTitleAlternate | Plant Cell Physiol |
| PublicationYear | 2018 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | 22508267 - Cell Res. 2012 Jul;22(7):1169-80 21931939 - Mol Genet Genomics. 2011 Dec;286(5-6):321-32 8755525 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7623-7 22003076 - Plant Cell. 2011 Oct;23(10):3671-83 26635831 - Front Plant Sci. 2015 Nov 19;6:1004 23503691 - Plant Physiol. 2013 May;162(1):512-21 25352272 - Plant Physiol. 2014 Dec;166(4):1803-20 27797356 - Nat Plants. 2016 Oct 31;2(11):16165 25043187 - Cell Rep. 2014 Jul 24;8(2):622-32 16593964 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40 28576845 - Plant Cell. 2017 Jun;29(6):1373-1387 27255928 - J Exp Bot. 2016 Jul;67(14):4273-84 23620480 - Plant Cell Physiol. 2013 Jul;54(7):1079-92 17989228 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18333-8 28389585 - Plant Cell. 2017 May;29(5):1073-1087 18006545 - Bioinformatics. 2008 Jan 15;24(2):282-4 23903317 - Plant Cell. 2013 Jul;25(7):2444-63 28011694 - Plant Cell. 2017 Jan;29(1):54-69 24663099 - Sci Rep. 2014 Mar 25;4:4385 14735121 - Nat Rev Genet. 2004 Feb;5(2):101-13 12615942 - Plant Cell. 2003 Mar;15(3):694-705 27143753 - Development. 2016 May 1;143(9):1442-51 16648215 - Plant Physiol. 2006 Jun;141(2):620-37 24158907 - Science. 2013 Nov 15;342(6160):860-3 25533953 - Nature. 2015 Jan 29;517(7536):571-5 21908690 - Plant Physiol. 2011 Nov;157(3):1243-54 24076977 - Plant Cell. 2013 Sep;25(9):3159-73 16407444 - Plant Physiol. 2006 Feb;140(2):411-32 12610213 - Plant Cell Physiol. 2003 Feb;44(2):113-21 17259263 - Plant Cell. 2007 Jan;19(1):118-30 17376809 - Development. 2007 May;134(9):1653-62 7919989 - Plant Cell. 1994 Sep;6(9):1211-25 20230752 - Dev Cell. 2010 Mar 16;18(3):463-71 16021341 - Plant Mol Biol. 2005 Jul;58(4):585-96 20171102 - Curr Biol. 2010 Mar 9;20(5):452-7 28673986 - Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5995-E6004 18665917 - Plant J. 2008 Dec;56(5):779-92 28576846 - Plant Cell. 2017 Jun;29(6):1357-1372 18980654 - Plant J. 2009 Feb;57(4):626-44 27499869 - Regeneration (Oxf). 2015 May 19;2(2):72-83 13486467 - Symp Soc Exp Biol. 1957;11:118-30 10639184 - Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):942-7 21700457 - Curr Biol. 2011 Jul 12;21(13):1123-8 28904073 - Plant Physiol. 2017 Nov;175(3):1158-1174 20417101 - Curr Biol. 2010 May 11;20(9):818-23 24642937 - Plant Cell. 2014 Mar;26(3):1081-93 27128468 - Annu Rev Plant Biol. 2016 Apr 29;67:575-94 28439865 - Methods Mol Biol. 2017;1610:187-215 27666516 - Trends Plant Sci. 2017 Jan;22(1):53-65 19182776 - Nature. 2009 Feb 26;457(7233):1150-3 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30 17056621 - Plant Cell Physiol. 2006 Nov;47(11):1443-56 17183267 - Nature. 2007 Feb 1;445(7127):501-5 22037706 - Nat Methods. 2011 Oct 30;8(12):1053-5 27212234 - Cell. 2016 Jun 16;165(7):1721-1733 27203113 - Cell. 2016 May 19;165(5):1280-1292 21396822 - Curr Biol. 2011 Mar 22;21(6):508-14 23963601 - Mol Biosyst. 2013 Nov;9(11):2681-5 27920338 - Plant Cell. 2016 Dec;28(12):2937-2951 11752375 - Plant Cell. 2001 Dec;13(12):2609-18 17030801 - Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7 14597658 - Genome Res. 2003 Nov;13(11):2498-504 |
| References_xml | – reference: 16021341 - Plant Mol Biol. 2005 Jul;58(4):585-96 – reference: 28904073 - Plant Physiol. 2017 Nov;175(3):1158-1174 – reference: 20230752 - Dev Cell. 2010 Mar 16;18(3):463-71 – reference: 12615942 - Plant Cell. 2003 Mar;15(3):694-705 – reference: 25819565 - Curr Biol. 2015 Apr 20;25(8):1017-30 – reference: 27128468 - Annu Rev Plant Biol. 2016 Apr 29;67:575-94 – reference: 7919989 - Plant Cell. 1994 Sep;6(9):1211-25 – reference: 22003076 - Plant Cell. 2011 Oct;23(10):3671-83 – reference: 16407444 - Plant Physiol. 2006 Feb;140(2):411-32 – reference: 8755525 - Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7623-7 – reference: 24642937 - Plant Cell. 2014 Mar;26(3):1081-93 – reference: 21931939 - Mol Genet Genomics. 2011 Dec;286(5-6):321-32 – reference: 23620480 - Plant Cell Physiol. 2013 Jul;54(7):1079-92 – reference: 28389585 - Plant Cell. 2017 May;29(5):1073-1087 – reference: 28576846 - Plant Cell. 2017 Jun;29(6):1357-1372 – reference: 27255928 - J Exp Bot. 2016 Jul;67(14):4273-84 – reference: 17030801 - Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7 – reference: 10639184 - Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):942-7 – reference: 28011694 - Plant Cell. 2017 Jan;29(1):54-69 – reference: 28439865 - Methods Mol Biol. 2017;1610:187-215 – reference: 24158907 - Science. 2013 Nov 15;342(6160):860-3 – reference: 13486467 - Symp Soc Exp Biol. 1957;11:118-30 – reference: 27212234 - Cell. 2016 Jun 16;165(7):1721-1733 – reference: 27143753 - Development. 2016 May 1;143(9):1442-51 – reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504 – reference: 11752375 - Plant Cell. 2001 Dec;13(12):2609-18 – reference: 21700457 - Curr Biol. 2011 Jul 12;21(13):1123-8 – reference: 17376809 - Development. 2007 May;134(9):1653-62 – reference: 23903317 - Plant Cell. 2013 Jul;25(7):2444-63 – reference: 27920338 - Plant Cell. 2016 Dec;28(12):2937-2951 – reference: 12610213 - Plant Cell Physiol. 2003 Feb;44(2):113-21 – reference: 22037706 - Nat Methods. 2011 Oct 30;8(12):1053-5 – reference: 18665917 - Plant J. 2008 Dec;56(5):779-92 – reference: 25533953 - Nature. 2015 Jan 29;517(7536):571-5 – reference: 21396822 - Curr Biol. 2011 Mar 22;21(6):508-14 – reference: 25043187 - Cell Rep. 2014 Jul 24;8(2):622-32 – reference: 16593964 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536-40 – reference: 14735121 - Nat Rev Genet. 2004 Feb;5(2):101-13 – reference: 27499869 - Regeneration (Oxf). 2015 May 19;2(2):72-83 – reference: 19182776 - Nature. 2009 Feb 26;457(7233):1150-3 – reference: 27666516 - Trends Plant Sci. 2017 Jan;22(1):53-65 – reference: 17056621 - Plant Cell Physiol. 2006 Nov;47(11):1443-56 – reference: 23503691 - Plant Physiol. 2013 May;162(1):512-21 – reference: 25352272 - Plant Physiol. 2014 Dec;166(4):1803-20 – reference: 27797356 - Nat Plants. 2016 Oct 31;2(11):16165 – reference: 17989228 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18333-8 – reference: 18980654 - Plant J. 2009 Feb;57(4):626-44 – reference: 27203113 - Cell. 2016 May 19;165(5):1280-1292 – reference: 28673986 - Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5995-E6004 – reference: 24076977 - Plant Cell. 2013 Sep;25(9):3159-73 – reference: 28576845 - Plant Cell. 2017 Jun;29(6):1373-1387 – reference: 23963601 - Mol Biosyst. 2013 Nov;9(11):2681-5 – reference: 22508267 - Cell Res. 2012 Jul;22(7):1169-80 – reference: 17259263 - Plant Cell. 2007 Jan;19(1):118-30 – reference: 20417101 - Curr Biol. 2010 May 11;20(9):818-23 – reference: 24663099 - Sci Rep. 2014 Mar 25;4:4385 – reference: 20171102 - Curr Biol. 2010 Mar 9;20(5):452-7 – reference: 18006545 - Bioinformatics. 2008 Jan 15;24(2):282-4 – reference: 26635831 - Front Plant Sci. 2015 Nov 19;6:1004 – reference: 16648215 - Plant Physiol. 2006 Jun;141(2):620-37 – reference: 17183267 - Nature. 2007 Feb 1;445(7127):501-5 – reference: 21908690 - Plant Physiol. 2011 Nov;157(3):1243-54 |
| SSID | ssj0007830 |
| Score | 2.5218096 |
| Snippet | Abstract
Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their... Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative... |
| SourceID | proquest pubmed oup |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 765 |
| SubjectTerms | Arabidopsis Proteins - metabolism Cellular Reprogramming - drug effects Cellular Reprogramming - genetics Cytokinins - pharmacology Gene Regulatory Networks - drug effects Genes, Plant Indoleacetic Acids - pharmacology Plant Cells - metabolism Plants - genetics Promoter Regions, Genetic Regeneration - drug effects Regeneration - genetics Transcription Factors - metabolism |
| Title | A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29462363 https://www.proquest.com/docview/2007113786 |
| Volume | 59 |
| WOSCitedRecordID | wos000430163300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7omOCLl3mblxHB12K7NGvyOIcignXIhL6VJk1gMNuxi7B_70nTDbyAFlpKS0I559B8yTn5PoAbEUm7bIwzVRzfvTALmCd5T3m-ljIPOM-ENpXYRBTHPEnEsC6imf-Swhf0dqqmeK78Sps2YNxG8-gl2fxvI05r8kVbR8mDNQnpl6bf9q_9gJHVcPKw_88POYC9Gi-SvnPwIWzpogU7TkFy1YLmXYnobnUET31iGaTJq9OWL2crErsKb4KwlAz0ZGILTvF9XZH1jmMWGRfEqhYtbLOKf9q66RjeHu5Hg0ev1knwFIKZhRdRqfJAM8NNaHgolD04y7vaMJMZofFZpnyKt5bN3ciwm1OjfKMFl1IH9AQaRVnoMyAs00wwo7XdDyvDXPg5D6lmCp2IM0Hahg6aMZ06JozUZbBpipZJnWXacL22cIqBarMPWaHL5dzqXUZBQCPea8OpM_2mn64IEYb16Plf3V_ALiIW7kpnLqGxmC31FTTVx2I8n3VgO0o4XuPhc6eKkU_pirbJ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Gene+Regulatory+Network+for+Cellular+Reprogramming+in+Plant+Regeneration&rft.jtitle=Plant+and+cell+physiology&rft.au=Ikeuchi%2C+Momoko&rft.au=Shibata%2C+Michitaro&rft.au=Rymen%2C+Bart&rft.au=Iwase%2C+Akira&rft.date=2018-04-01&rft.pub=Oxford+University+Press&rft.issn=0032-0781&rft.eissn=1471-9053&rft.volume=59&rft.issue=4&rft.spage=765&rft.epage=777&rft_id=info:doi/10.1093%2Fpcp%2Fpcy013&rft.externalDocID=10.1093%2Fpcp%2Fpcy013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0781&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0781&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0781&client=summon |