Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater

•38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water research (Oxford) Ročník 212; s. 118122
Hlavní autoři: Seiwert, Bettina, Nihemaiti, Maolida, Troussier, Mareva, Weyrauch, Steffen, Reemtsma, Thorsten
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.04.2022
Témata:
ISSN:0043-1354, 1879-2448, 1879-2448
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effluent. The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment. [Display omitted]
AbstractList •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effluent. The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment. [Display omitted]
The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.
The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.
The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.
ArticleNumber 118122
Author Seiwert, Bettina
Weyrauch, Steffen
Nihemaiti, Maolida
Troussier, Mareva
Reemtsma, Thorsten
Author_xml – sequence: 1
  givenname: Bettina
  surname: Seiwert
  fullname: Seiwert, Bettina
  organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 2
  givenname: Maolida
  surname: Nihemaiti
  fullname: Nihemaiti, Maolida
  organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 3
  givenname: Mareva
  surname: Troussier
  fullname: Troussier, Mareva
  organization: Sigma Clermont, Department of Chemistry, 23 Rue Roche Genès, 63170 Aubière, France
– sequence: 4
  givenname: Steffen
  surname: Weyrauch
  fullname: Weyrauch, Steffen
  organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 5
  givenname: Thorsten
  surname: Reemtsma
  fullname: Reemtsma, Thorsten
  email: thorsten.reemtsma@ufz.de
  organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35101694$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFN0DISzYZfM2FBVJVWkCqRBewthznWHiU2FPb6ZR34WFxmoEFC2BlW-f7j47Pd4ZOfPCA0EtKtpTQ-s1ue9A5QtoywtiW0pYy9gRtaNt0FROiPUEbQgSvKJfiFJ2ltCOkkLx7hk65XFp0YoN-XPQuZGdweHCDzu4ecI7aJxviVJ7B42BxXd3evsfaD8fb3eyWYbCNYcLZlSEei8GYOUbwBpZQ_gYu4n0Mw2xyws7j5MNhzcyx1x7HoIc1WYrT7J1xez3ig04Zyt8gPkdPrR4TvDie5-jr9dWXy4_VzecPny4vbiojBM1Vba1toQHggnOgrJcdM7JtNNhWcmoaaVrRNrWQYGlvTcvAaKlpbSWRRDN-jl6vfcu0dzOkrCaXDIyj9hDmpFjNayEkod1_oEzUshOMFvTVEZ37CQa1j27S8bv6tfwCiBUwMaQUwf5GKFELo3ZqdawWx2p1XGJv_4gZlx9dFXNu_Ff43RqGss97B1El4xZlQ9FoshqC-3uDn5wxxeU
CitedBy_id crossref_primary_10_1016_j_jglr_2024_102298
crossref_primary_10_1016_j_cbpc_2025_110356
crossref_primary_10_1007_s10661_025_13757_5
crossref_primary_10_1016_j_envpol_2023_121937
crossref_primary_10_1016_j_tox_2025_154091
crossref_primary_10_1016_j_scitotenv_2022_157144
crossref_primary_10_1016_j_envpol_2022_120206
crossref_primary_10_1016_j_watres_2025_124366
crossref_primary_10_1016_j_scitotenv_2024_171678
crossref_primary_10_1002_em_22560
crossref_primary_10_1016_j_watres_2025_123272
crossref_primary_10_1039_D5EM00053J
crossref_primary_10_3390_su151512029
crossref_primary_10_1016_j_cbpc_2024_110062
crossref_primary_10_1016_j_jhazmat_2024_136155
crossref_primary_10_1016_j_jwpe_2025_108464
crossref_primary_10_1039_D5EM00088B
crossref_primary_10_1016_j_jhazmat_2024_137000
crossref_primary_10_3389_fmars_2025_1668826
crossref_primary_10_1021_acs_est_5c02701
crossref_primary_10_1021_acs_chas_3c00076
crossref_primary_10_1016_j_watres_2024_122210
crossref_primary_10_1021_acs_estlett_5c00783
crossref_primary_10_1016_j_envint_2024_109004
crossref_primary_10_1016_j_ecoenv_2024_117226
crossref_primary_10_1016_j_jhazmat_2024_136184
crossref_primary_10_1016_j_jece_2025_118858
crossref_primary_10_1016_j_watres_2024_122240
crossref_primary_10_1039_D5SU00170F
crossref_primary_10_1016_j_watres_2023_121070
crossref_primary_10_1021_acsestair_5c00017
crossref_primary_10_1016_j_envint_2022_107374
crossref_primary_10_1016_j_envpol_2025_126489
crossref_primary_10_1016_j_jhazmat_2025_137687
crossref_primary_10_1016_j_envpol_2024_124600
crossref_primary_10_1016_j_psep_2024_01_080
crossref_primary_10_1002_jat_4892
crossref_primary_10_1021_envhealth_3c00205
crossref_primary_10_5572_KOSAE_2025_41_1_026
crossref_primary_10_1016_j_envint_2025_109532
crossref_primary_10_1016_j_scitotenv_2024_175592
crossref_primary_10_1016_j_watres_2025_123629
crossref_primary_10_3390_antiox14081019
crossref_primary_10_3389_fenvs_2023_1219248
crossref_primary_10_1016_j_cej_2025_159307
crossref_primary_10_1016_j_trac_2024_118059
crossref_primary_10_1021_acs_est_4c12896
crossref_primary_10_1021_acsestwater_3c00589
crossref_primary_10_1093_ismeco_ycaf050
crossref_primary_10_1016_j_chemosphere_2024_142830
crossref_primary_10_1016_j_chroma_2024_465195
crossref_primary_10_1016_j_scitotenv_2023_161836
crossref_primary_10_1093_etojnl_vgaf062
crossref_primary_10_1016_j_envpol_2025_126352
crossref_primary_10_1016_j_envpol_2025_126114
crossref_primary_10_1021_acs_est_5c02072
crossref_primary_10_1016_j_envpol_2023_122828
crossref_primary_10_1016_j_watres_2025_124044
crossref_primary_10_1093_etojnl_vgaf189
crossref_primary_10_1002_etc_5392
crossref_primary_10_1016_j_envpol_2024_124969
crossref_primary_10_1016_j_envint_2024_108609
crossref_primary_10_1016_j_jhazmat_2025_138822
crossref_primary_10_1016_j_scitotenv_2022_156013
crossref_primary_10_1016_j_seppur_2024_128904
crossref_primary_10_1021_acs_estlett_5c00477
crossref_primary_10_1016_j_jhazmat_2024_135718
crossref_primary_10_1016_j_foodchem_2022_133640
crossref_primary_10_1016_j_jhazmat_2025_137184
crossref_primary_10_1016_j_scitotenv_2024_170045
crossref_primary_10_1016_j_envint_2025_109438
crossref_primary_10_1016_j_envpol_2024_125155
crossref_primary_10_1016_j_scitotenv_2024_175736
crossref_primary_10_1016_j_cbpc_2025_110161
crossref_primary_10_1016_j_ecoenv_2024_116689
crossref_primary_10_1016_j_scitotenv_2024_171495
crossref_primary_10_1016_j_scitotenv_2024_170046
crossref_primary_10_1016_j_cbpc_2025_110166
crossref_primary_10_1016_j_envint_2024_109139
crossref_primary_10_1038_s44221_024_00236_3
crossref_primary_10_3390_urbansci9060228
crossref_primary_10_1016_j_scitotenv_2024_171928
crossref_primary_10_1016_j_jhazmat_2025_139008
crossref_primary_10_1016_j_watres_2022_119528
crossref_primary_10_3390_toxics12060394
crossref_primary_10_1016_j_talanta_2023_125072
crossref_primary_10_1021_acs_est_5c03958
crossref_primary_10_3390_w16081128
crossref_primary_10_1016_j_envint_2025_109329
crossref_primary_10_1016_j_scitotenv_2024_171220
crossref_primary_10_1016_j_chemosphere_2024_141402
crossref_primary_10_1016_j_chemosphere_2024_142975
crossref_primary_10_1016_j_envpol_2025_126572
crossref_primary_10_1016_j_jhazmat_2023_132265
crossref_primary_10_1016_j_trac_2025_118449
crossref_primary_10_1039_D2EW00933A
crossref_primary_10_1016_j_envint_2024_109042
crossref_primary_10_1016_j_scitotenv_2024_172306
crossref_primary_10_1016_j_scitotenv_2024_175036
crossref_primary_10_1016_j_scitotenv_2024_176123
crossref_primary_10_1021_acs_est_5c10705
crossref_primary_10_1016_j_envres_2024_119492
crossref_primary_10_1016_j_jhazmat_2024_135042
crossref_primary_10_1016_j_scitotenv_2025_179240
crossref_primary_10_1016_j_atmosenv_2025_121527
crossref_primary_10_1016_j_jece_2025_119231
crossref_primary_10_3390_su17094080
crossref_primary_10_1016_j_envres_2024_120485
crossref_primary_10_1016_j_envres_2024_119817
crossref_primary_10_1016_j_jhazmat_2024_133427
crossref_primary_10_1016_j_marpolbul_2025_118482
crossref_primary_10_1016_j_ese_2025_100567
crossref_primary_10_1021_acs_est_4c12384
crossref_primary_10_1016_j_chemosphere_2025_144418
crossref_primary_10_1016_j_envint_2024_109189
crossref_primary_10_1016_j_jhazmat_2025_137373
crossref_primary_10_1016_j_jhazmat_2023_132127
crossref_primary_10_3389_fenvs_2024_1384506
crossref_primary_10_3390_toxics13070544
crossref_primary_10_1016_j_scitotenv_2022_160150
crossref_primary_10_1016_j_scitotenv_2024_174449
crossref_primary_10_1039_D4VA00407H
crossref_primary_10_1016_j_scitotenv_2024_170760
crossref_primary_10_1093_etojnl_vgaf151
crossref_primary_10_1021_acsestwater_5c00582
crossref_primary_10_1016_j_scitotenv_2024_171291
crossref_primary_10_1016_j_jhazmat_2025_137821
crossref_primary_10_1016_j_rsma_2025_104291
crossref_primary_10_1016_j_jhazmat_2024_134818
crossref_primary_10_1016_j_jclepro_2024_141115
crossref_primary_10_1016_j_scitotenv_2024_177248
crossref_primary_10_1016_j_envc_2025_101228
crossref_primary_10_1016_j_jhazmat_2025_137951
crossref_primary_10_3389_fenvs_2023_1206449
crossref_primary_10_1016_j_jhazmat_2024_134165
crossref_primary_10_1002_etc_5934
crossref_primary_10_1016_j_watres_2024_122408
crossref_primary_10_1016_j_envpol_2024_124313
crossref_primary_10_1016_j_envpol_2023_122649
crossref_primary_10_1016_j_jhazmat_2023_131495
crossref_primary_10_1016_j_jhazmat_2025_138805
crossref_primary_10_1016_j_marpolbul_2025_118311
crossref_primary_10_1016_j_envres_2025_121386
crossref_primary_10_1016_j_jhazmat_2023_133312
crossref_primary_10_1016_j_arabjc_2023_104856
crossref_primary_10_1016_j_jhazmat_2024_136694
crossref_primary_10_1021_acs_est_5c07576
crossref_primary_10_1016_j_watres_2024_121669
crossref_primary_10_1016_j_apr_2022_101533
crossref_primary_10_1016_j_cej_2022_139978
crossref_primary_10_1016_j_trac_2022_116756
crossref_primary_10_1016_j_scitotenv_2023_163595
crossref_primary_10_3390_su152015141
crossref_primary_10_3390_toxics12100733
crossref_primary_10_1016_j_envpol_2025_125785
crossref_primary_10_1002_jat_4920
crossref_primary_10_1016_j_chemosphere_2024_142675
crossref_primary_10_1016_j_jes_2024_09_023
crossref_primary_10_1016_j_scitotenv_2022_160591
crossref_primary_10_1016_j_watres_2024_121322
crossref_primary_10_1016_j_jhazmat_2025_138432
crossref_primary_10_1016_j_chemosphere_2023_137913
crossref_primary_10_1039_D5EM00153F
crossref_primary_10_1016_j_jhazmat_2023_131245
crossref_primary_10_1016_j_chemosphere_2024_142319
crossref_primary_10_1016_j_scitotenv_2024_170679
crossref_primary_10_1016_j_scitotenv_2024_171622
crossref_primary_10_3390_toxics12120891
crossref_primary_10_1016_j_enceco_2025_05_021
crossref_primary_10_1016_j_envpol_2025_126737
crossref_primary_10_1007_s11356_025_35893_8
crossref_primary_10_1016_j_jhazmat_2024_136420
crossref_primary_10_1016_j_cbi_2025_111739
crossref_primary_10_1016_j_scitotenv_2023_166679
crossref_primary_10_1016_j_trac_2024_118095
crossref_primary_10_1016_j_jhazmat_2025_139300
crossref_primary_10_1016_j_biortech_2024_131847
crossref_primary_10_1016_j_jclepro_2023_140039
crossref_primary_10_1016_j_aca_2024_343123
crossref_primary_10_1016_j_jhazmat_2024_136099
crossref_primary_10_1016_j_envres_2024_118201
crossref_primary_10_1016_j_cbpc_2025_110300
crossref_primary_10_1002_ldr_5243
crossref_primary_10_1021_acs_est_5c06843
crossref_primary_10_1016_j_scitotenv_2023_165698
crossref_primary_10_1016_j_jhazmat_2024_134598
crossref_primary_10_3390_atmos15101208
crossref_primary_10_1016_j_jhazmat_2024_134357
crossref_primary_10_1016_j_watres_2025_124235
crossref_primary_10_1016_j_envres_2022_114721
crossref_primary_10_1007_s10646_024_02836_x
crossref_primary_10_3390_ijerph192114595
crossref_primary_10_1016_j_aca_2025_344638
crossref_primary_10_1016_j_jhazmat_2023_133409
Cites_doi 10.1080/01919519908547239
10.1016/j.cej.2020.128381
10.1016/j.watres.2020.116602
10.5254/1.3538136
10.1080/01919510902740477
10.1021/acs.est.1c03569
10.1021/acs.estlett.1c00453
10.5254/1.3538264
10.1021/acs.est.8b03287
10.1021/acs.estlett.1c00910
10.1016/0141-3910(90)90033-4
10.1016/j.jhazmat.2018.07.063
10.1021/es5002105
10.1016/j.scitotenv.2015.06.053
10.1007/s00216-020-02653-1
10.1021/acs.estlett.1c00148
10.1021/acs.estlett.1c00682
10.1126/science.abd6951
10.1111/j.1467-2494.1987.tb00470.x
10.1021/acs.est.1c02723
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Ltd.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2022.118122
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 35101694
10_1016_j_watres_2022_118122
S0043135422000859
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-6fff8e7ee3433e12b592c587aef8531c75c8487645ef1bfc82eca5a16f5050a23
ISICitedReferencesCount 261
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758836300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sun Sep 28 01:29:31 EDT 2025
Sat Sep 27 21:43:40 EDT 2025
Wed Feb 19 02:05:00 EST 2025
Tue Nov 18 21:47:44 EST 2025
Sat Nov 29 07:29:45 EST 2025
Fri Feb 23 02:40:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 6PPD quinone
TRWPs
Snowmelt
Road runoff
6PPDQ
Urban runoff
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-6fff8e7ee3433e12b592c587aef8531c75c8487645ef1bfc82eca5a16f5050a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.watres.2022.118122
PMID 35101694
PQID 2624659421
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636445019
proquest_miscellaneous_2624659421
pubmed_primary_35101694
crossref_primary_10_1016_j_watres_2022_118122
crossref_citationtrail_10_1016_j_watres_2022_118122
elsevier_sciencedirect_doi_10_1016_j_watres_2022_118122
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
2022-Apr-01
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References ECHA 2021b ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine; endpoint summary, Hydrolysis, ECHA
Khanna, Tewari, Josh, Singh (bib0014) 1987; 9
Klöckner, Seiwert, Wagner, Reemtsma (bib0015) 2021; 55
Müller, Hübner, Huppertsberg, Knepper, Zahn (bib0019) 2021; 802
Johannessen, Helm, Lashuk, Yargeau, Metcalfe (bib0013) 2021
Zhang, Zhang, Zhang, Sverko, Smyth, Li (bib0029) 2021; 189
Unice, Bare, Kreider, Panko (bib0027) 2015; 533
Datta, Datta, Talma (bib0003) 2004; 57
Hiki, Asahina, Kato, Yamagishi, Omagari, Iwasaki, Watanabe, Yamamoto (bib0010) 2021; 8
Lattimer, Hooser, Layer, Rhee (bib0016) 1983; 56
Wagner, Klöckner, Reemtsma (bib0028) 2021; 288
ECHA 2021c ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, monitoring data
Seiwert, Weidauer, Hirte, Reemtsma (bib0024) 2016
McIntyre, Prat, Cameron, Wetzel, Mudrock, Peter, Tian, Mackenzie, Lundin, Stark, King, Davis, Kolodziej, Scholz (bib0018) 2021; 55
Elovitz, von Gunten (bib0008) 1999; 21
Haddad, Luek, Scott, Saari, Burket, Kristofco, Corrales, Rasmussen, Chambliss, Luers, Rogers, Brooks (bib0009) 2018; 359
Huang, Shi, Huang, Deng, Tang, Liu, Chen (bib0011) 2021; 8
Huntink, N.M. 2003 Durability of rubber products, Phd thesis, University of Twente, Enschede, The Netherlands
ECHA 2021a ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, endpoint summary, Studies with PPDs (6PPD, 7PPD, 77PD, 44PD) (Allmendinger 2012), ECHA
Tian, Gonzalez, Rideout, Zhao, Hu, Wetzel, Mudrock, James, McIntyre, Kolodziej (bib0025) 2022
Schymanski, Jeon, Gulde, Fenner, Ruff, Singer, Hollender (bib0022) 2014; 48
Ramseier, Gunten (bib0021) 2009; 31
.
Seiwert, Klöckner, Wagner, Reemtsma (bib0023) 2020; 412
Challis, Popick, Prajapati, Harder, Giesy, McPhedran, Brinkmann (bib0001) 2021; 8
Duchacek, Kuta (bib0004) 1990; 29
Cheng, Kim, Kim, Choi, Fai Tsang, Baek (bib0002) 2021; 410
Tian, Zhao, Peter, Gonzalez, Wetzel, Wu, Hu, Prat, Mudrock, Hettinger, Cortina, Biswas, Kock, Soong, Jenne, Du, Hou, He, Lundeen, Gilbreath, Sutton, Scholz, Davis, Dodd, Simpson, McIntyre, Kolodziej (bib0026) 2021; 371
Peter, Tian, Wu, Lin, White, Du, McIntyre, Scholz, Kolodziej (bib0020) 2018; 52
Layer, Lattimer (bib0017) 1990
Layer (10.1016/j.watres.2022.118122_bib0017) 1990
Seiwert (10.1016/j.watres.2022.118122_bib0023) 2020; 412
Cheng (10.1016/j.watres.2022.118122_bib0002) 2021; 410
Hiki (10.1016/j.watres.2022.118122_bib0010) 2021; 8
Johannessen (10.1016/j.watres.2022.118122_bib0013) 2021
Haddad (10.1016/j.watres.2022.118122_bib0009) 2018; 359
Challis (10.1016/j.watres.2022.118122_bib0001) 2021; 8
McIntyre (10.1016/j.watres.2022.118122_bib0018) 2021; 55
Datta (10.1016/j.watres.2022.118122_bib0003) 2004; 57
Müller (10.1016/j.watres.2022.118122_bib0019) 2021; 802
Tian (10.1016/j.watres.2022.118122_bib0026) 2021; 371
Unice (10.1016/j.watres.2022.118122_bib0027) 2015; 533
Lattimer (10.1016/j.watres.2022.118122_bib0016) 1983; 56
Zhang (10.1016/j.watres.2022.118122_bib0029) 2021; 189
10.1016/j.watres.2022.118122_bib0007
Ramseier (10.1016/j.watres.2022.118122_bib0021) 2009; 31
Schymanski (10.1016/j.watres.2022.118122_bib0022) 2014; 48
Khanna (10.1016/j.watres.2022.118122_bib0014) 1987; 9
Seiwert (10.1016/j.watres.2022.118122_bib0024) 2016
10.1016/j.watres.2022.118122_bib0005
10.1016/j.watres.2022.118122_bib0006
Tian (10.1016/j.watres.2022.118122_bib0025) 2022
10.1016/j.watres.2022.118122_bib0012
Duchacek (10.1016/j.watres.2022.118122_bib0004) 1990; 29
Klöckner (10.1016/j.watres.2022.118122_bib0015) 2021; 55
Wagner (10.1016/j.watres.2022.118122_bib0028) 2021; 288
Elovitz (10.1016/j.watres.2022.118122_bib0008) 1999; 21
Huang (10.1016/j.watres.2022.118122_bib0011) 2021; 8
Peter (10.1016/j.watres.2022.118122_bib0020) 2018; 52
References_xml – volume: 57
  start-page: 109
  year: 2004
  end-page: 115
  ident: bib0003
  article-title: Mechanistic studies in squalene model system
  publication-title: Kautsch. Gummi Kunstst.
– reference: ECHA 2021a ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, endpoint summary, Studies with PPDs (6PPD, 7PPD, 77PD, 44PD) (Allmendinger 2012), ECHA,
– volume: 288
  year: 2021
  ident: bib0028
  article-title: Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact
  publication-title: Chemosphere
– reference: Huntink, N.M. 2003 Durability of rubber products, Phd thesis, University of Twente, Enschede, The Netherlands,
– volume: 21
  start-page: 239
  year: 1999
  end-page: 260
  ident: bib0008
  article-title: Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept
  publication-title: Ozone Sci. Eng.
– volume: 8
  start-page: 779
  year: 2021
  end-page: 784
  ident: bib0010
  article-title: Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species
  publication-title: Environ. Sci. Technol. Lett.
– start-page: 426
  year: 1990
  end-page: 450
  ident: bib0017
  article-title: Protection of rubber against ozone
  publication-title: Rubber Chem. Technol.
– volume: 48
  start-page: 2097
  year: 2014
  end-page: 2098
  ident: bib0022
  article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 217
  year: 1990
  end-page: 231
  ident: bib0004
  article-title: Antioxidants and stabilizers: part CXII*–influence of 1-phenylamino-4-(sec-alkylamino)-3,6-bis(4-phenylaminophenylimino)-l,4-cyclohexadiene on the vulcanization and ageing of natural rubber
  publication-title: Polym. Degrad. Stab.
– volume: 55
  start-page: 11723
  year: 2021
  end-page: 11732
  ident: bib0015
  article-title: Organic markers of tire and road wear particles in sediments and soils: transformation products of major antiozonants as promising candidates
  publication-title: Environ. Sci. Technol.
– year: 2022
  ident: bib0025
  article-title: 6PPD-Quinone: revised toxicity assessment and quantification with a commercial standard
  publication-title: Environ. Sci. Technol. Lett.
– volume: 533
  start-page: 476
  year: 2015
  end-page: 487
  ident: bib0027
  article-title: Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: application to tire and road wear particles
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 201
  year: 2009
  end-page: 215
  ident: bib0021
  article-title: Mechanisms of phenol ozonation—kinetics of formation of primary and secondary reaction products
  publication-title: Ozone Sci. Eng.
– volume: 189
  year: 2021
  ident: bib0029
  article-title: Diphenylamine antioxidants in wastewater influent, effluent, biosolids and landfill leachate: contribution to environmental releases
  publication-title: Water Res.
– volume: 410
  year: 2021
  ident: bib0002
  article-title: Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review
  publication-title: Chem. Eng. J.
– year: 2021
  ident: bib0013
  article-title: The tire wear compounds 6PPD-quinone and 1,3-diphenylguanidine in an urban watershed
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 52
  start-page: 10317
  year: 2018
  end-page: 10327
  ident: bib0020
  article-title: Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in coho salmon
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 137
  year: 1987
  end-page: 147
  ident: bib0014
  article-title: Studies on the skin uptake and efflux kinetics of N-phenyI-p-phenylenediamine: an aromatic amine intermediate
  publication-title: Int. J. Cosmet. Sci.
– volume: 412
  start-page: 4909
  year: 2020
  end-page: 4919
  ident: bib0023
  article-title: Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters
  publication-title: Anal. Bioanal. Chem.
– reference: .
– volume: 56
  start-page: 431
  year: 1983
  end-page: 439
  ident: bib0016
  article-title: Mechanisms of ozonation of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine
  publication-title: Rubber Chem. Technol.
– reference: ECHA 2021c ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, monitoring data,
– volume: 802
  year: 2021
  ident: bib0019
  article-title: Probing the chemical complexity of tires: identification of potential tire-borne water contaminants with high-resolution mass spectrometry
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 961
  year: 2021
  end-page: 967
  ident: bib0001
  article-title: Occurrences of tire rubber-derived contaminants in cold-climate urban runoff
  publication-title: Environ. Sci. Technol. Lett.
– volume: 371
  start-page: 185
  year: 2021
  end-page: 189
  ident: bib0026
  article-title: A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon
  publication-title: Science
– reference: ECHA 2021b ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine; endpoint summary, Hydrolysis, ECHA,
– volume: 359
  start-page: 231
  year: 2018
  end-page: 240
  ident: bib0009
  article-title: Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 381
  year: 2021
  end-page: 385
  ident: bib0011
  article-title: Occurrence of substituted p-phenylenediamine antioxidants in dusts
  publication-title: Environ. Sci. Technol. Lett.
– start-page: 67
  year: 2016
  end-page: 84
  ident: bib0024
  article-title: Lab-based approaches to support the screening and identification of transformation products by LC-HRMS
  publication-title: Assessing Transformation Products of Chemicals by Non-Target and Suspect Screening − Strategies and Workflows.
– volume: 55
  start-page: 11767
  year: 2021
  end-page: 11774
  ident: bib0018
  article-title: Treading water: tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum salmon
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 239
  year: 1999
  ident: 10.1016/j.watres.2022.118122_bib0008
  article-title: Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919519908547239
– volume: 410
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0002
  article-title: Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128381
– volume: 189
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0029
  article-title: Diphenylamine antioxidants in wastewater influent, effluent, biosolids and landfill leachate: contribution to environmental releases
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116602
– ident: 10.1016/j.watres.2022.118122_bib0005
– ident: 10.1016/j.watres.2022.118122_bib0007
– volume: 56
  start-page: 431
  issue: 2
  year: 1983
  ident: 10.1016/j.watres.2022.118122_bib0016
  article-title: Mechanisms of ozonation of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3538136
– volume: 31
  start-page: 201
  issue: 3
  year: 2009
  ident: 10.1016/j.watres.2022.118122_bib0021
  article-title: Mechanisms of phenol ozonation—kinetics of formation of primary and secondary reaction products
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919510902740477
– volume: 55
  start-page: 11767
  issue: 17
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0018
  article-title: Treading water: tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum salmon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03569
– volume: 8
  start-page: 779
  issue: 9
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0010
  article-title: Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00453
– volume: 288
  issue: Pt 2
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0028
  article-title: Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact
  publication-title: Chemosphere
– ident: 10.1016/j.watres.2022.118122_bib0012
– start-page: 426
  issue: 63
  year: 1990
  ident: 10.1016/j.watres.2022.118122_bib0017
  article-title: Protection of rubber against ozone
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3538264
– volume: 52
  start-page: 10317
  issue: 18
  year: 2018
  ident: 10.1016/j.watres.2022.118122_bib0020
  article-title: Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in coho salmon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03287
– start-page: 67
  year: 2016
  ident: 10.1016/j.watres.2022.118122_bib0024
  article-title: Lab-based approaches to support the screening and identification of transformation products by LC-HRMS
– year: 2022
  ident: 10.1016/j.watres.2022.118122_bib0025
  article-title: 6PPD-Quinone: revised toxicity assessment and quantification with a commercial standard
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00910
– volume: 29
  start-page: 217
  year: 1990
  ident: 10.1016/j.watres.2022.118122_bib0004
  article-title: Antioxidants and stabilizers: part CXII*–influence of 1-phenylamino-4-(sec-alkylamino)-3,6-bis(4-phenylaminophenylimino)-l,4-cyclohexadiene on the vulcanization and ageing of natural rubber
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/0141-3910(90)90033-4
– volume: 359
  start-page: 231
  year: 2018
  ident: 10.1016/j.watres.2022.118122_bib0009
  article-title: Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.07.063
– volume: 48
  start-page: 2097
  issue: 4
  year: 2014
  ident: 10.1016/j.watres.2022.118122_bib0022
  article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5002105
– ident: 10.1016/j.watres.2022.118122_bib0006
– volume: 533
  start-page: 476
  year: 2015
  ident: 10.1016/j.watres.2022.118122_bib0027
  article-title: Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: application to tire and road wear particles
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.06.053
– volume: 412
  start-page: 4909
  issue: 20
  year: 2020
  ident: 10.1016/j.watres.2022.118122_bib0023
  article-title: Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-02653-1
– year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0013
  article-title: The tire wear compounds 6PPD-quinone and 1,3-diphenylguanidine in an urban watershed
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 8
  start-page: 381
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0011
  article-title: Occurrence of substituted p-phenylenediamine antioxidants in dusts
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00148
– volume: 8
  start-page: 961
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0001
  article-title: Occurrences of tire rubber-derived contaminants in cold-climate urban runoff
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00682
– volume: 371
  start-page: 185
  issue: 6525
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0026
  article-title: A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon
  publication-title: Science
  doi: 10.1126/science.abd6951
– volume: 9
  start-page: 137
  year: 1987
  ident: 10.1016/j.watres.2022.118122_bib0014
  article-title: Studies on the skin uptake and efflux kinetics of N-phenyI-p-phenylenediamine: an aromatic amine intermediate
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/j.1467-2494.1987.tb00470.x
– volume: 55
  start-page: 11723
  issue: 17
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0015
  article-title: Organic markers of tire and road wear particles in sediments and soils: transformation products of major antiozonants as promising candidates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02723
– volume: 57
  start-page: 109
  year: 2004
  ident: 10.1016/j.watres.2022.118122_bib0003
  article-title: Mechanistic studies in squalene model system
  publication-title: Kautsch. Gummi Kunstst.
– volume: 802
  year: 2021
  ident: 10.1016/j.watres.2022.118122_bib0019
  article-title: Probing the chemical complexity of tires: identification of potential tire-borne water contaminants with high-resolution mass spectrometry
  publication-title: Sci. Total Environ.
SSID ssj0002239
Score 2.70818
Snippet •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle...
The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear...
The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118122
SubjectTerms 6PPD quinone
6PPDQ
Benzoquinones
liquid chromatography
municipal wastewater
Oncorhynchus kisutch
Oxidative Stress
ozonation
Phenylenediamines
quinones
rain
Road runoff
runoff
Snow
Snowmelt
spectroscopy
surface water
toxicity
TRWPs
Urban runoff
Wastewater - analysis
wastewater treatment
Water Pollutants, Chemical - analysis
Title Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater
URI https://dx.doi.org/10.1016/j.watres.2022.118122
https://www.ncbi.nlm.nih.gov/pubmed/35101694
https://www.proquest.com/docview/2624659421
https://www.proquest.com/docview/2636445019
Volume 212
WOSCitedRecordID wos000758836300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZjtMwFLU6HYSGB8ROWUZG4g2lalY7jwUGAWKqSlNQ36LUtYWrkpR0mfIv_A0_xvWWFKoy8MBLFMVxtntin2vfe4zQcwIcVMRJ5DERES8iwdSj0E15aS8EchpTQnVu1acPZDCg43E6bLV-uFyYzZwUBd1u08V_NTUcA2Or1Nl_MHd9UTgA-2B02ILZYftXhu9PZKlUWMutnBpV79UOOTX0MPGGw9d63sDsfV3LogS6aZJNoBU0ys0lY1q-iblQAlmpgC4lEavDaJcqkU7XWVcTaCiqMp8urZ7TC513IhcAgct8qYboXCDwzC08o_QZrdjQZy17ujWR9vXYxAWXlzan6CVXAdp1HzKQSmxWmliE87ycy2ZkYVSVa_jTDRbP84pvmq6Hf6vytVn96mKlYlmK3WEP8JibaBlummpK1NyQ0el0bXlgY7JNa6ySak3W815HYcYsZl14eXjRrrpDd_90sOzii8ZJqNquxKzH_JtAtys6QscBiVPaRsf9d2fj9zUhAAaWuqxNHVq4f9MTdN1d5hBBOuQAaSI0uoVuWg8G9w3ybqMWL-6gGzu6lnfRd4tBXGMQ_4pBXAqskYcBLHbPYhArPGGNQV3YYFBV0hjEDoNYFlhh0NTRGMQag7omFNYYxA0G76GPb85Gr956dhkQjwFXX3mJEIJywnkYhSH3g0mcBgxakZwL4Jo-IzGj4HYnUcyFPxGMBpzlce4nAth9Lw_C-6itnv8hwiF8ahLxnmDgiMdT4MoJj1IBLosaCae9Dgrdt8-Y1chXS7XMMxcMOcuM8TJlvMwYr4O8utbCaMRccT5xZs0szzX8NQN0XlHzmUNBBt2AmtvLCw4_VRYkQZTEaRT4fzonBO8nBqeugx4YCNXP69D36GDJY3TS_IdPUHtVrflTdI1tVnJZnaIjMqanFvk_Adfy5_I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+oxidative+transformation+of+6-PPD+and+6-PPD+quinone+from+tires+and+occurrence+of+their+products+in+snow+from+urban+roads+and+in+municipal+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=Seiwert%2C+Bettina&rft.au=Nihemaiti%2C+Maolida&rft.au=Troussier%2C+Mareva&rft.au=Weyrauch%2C+Steffen&rft.date=2022-04-01&rft.eissn=1879-2448&rft.volume=212&rft.spage=118122&rft_id=info:doi/10.1016%2Fj.watres.2022.118122&rft_id=info%3Apmid%2F35101694&rft.externalDocID=35101694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon