Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater
•38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effl...
Uloženo v:
| Vydáno v: | Water research (Oxford) Ročník 212; s. 118122 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.04.2022
|
| Témata: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effluent.
The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.
[Display omitted] |
|---|---|
| AbstractList | •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle fraction.•Load of 6-PPD and TPs in municipal wastewater peaked during rainfall and snowmelt.•6-PPD and 6-PPDQ of minor importance in WWTP effluent.
The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.
[Display omitted] The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment. The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment. The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment. |
| ArticleNumber | 118122 |
| Author | Seiwert, Bettina Weyrauch, Steffen Nihemaiti, Maolida Troussier, Mareva Reemtsma, Thorsten |
| Author_xml | – sequence: 1 givenname: Bettina surname: Seiwert fullname: Seiwert, Bettina organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany – sequence: 2 givenname: Maolida surname: Nihemaiti fullname: Nihemaiti, Maolida organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany – sequence: 3 givenname: Mareva surname: Troussier fullname: Troussier, Mareva organization: Sigma Clermont, Department of Chemistry, 23 Rue Roche Genès, 63170 Aubière, France – sequence: 4 givenname: Steffen surname: Weyrauch fullname: Weyrauch, Steffen organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany – sequence: 5 givenname: Thorsten surname: Reemtsma fullname: Reemtsma, Thorsten email: thorsten.reemtsma@ufz.de organization: Helmholtz-Centre for Environmental Research – UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35101694$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctu1DAUhi1URKeFN0DISzYZfM2FBVJVWkCqRBewthznWHiU2FPb6ZR34WFxmoEFC2BlW-f7j47Pd4ZOfPCA0EtKtpTQ-s1ue9A5QtoywtiW0pYy9gRtaNt0FROiPUEbQgSvKJfiFJ2ltCOkkLx7hk65XFp0YoN-XPQuZGdweHCDzu4ecI7aJxviVJ7B42BxXd3evsfaD8fb3eyWYbCNYcLZlSEei8GYOUbwBpZQ_gYu4n0Mw2xyws7j5MNhzcyx1x7HoIc1WYrT7J1xez3ig04Zyt8gPkdPrR4TvDie5-jr9dWXy4_VzecPny4vbiojBM1Vba1toQHggnOgrJcdM7JtNNhWcmoaaVrRNrWQYGlvTcvAaKlpbSWRRDN-jl6vfcu0dzOkrCaXDIyj9hDmpFjNayEkod1_oEzUshOMFvTVEZ37CQa1j27S8bv6tfwCiBUwMaQUwf5GKFELo3ZqdawWx2p1XGJv_4gZlx9dFXNu_Ff43RqGss97B1El4xZlQ9FoshqC-3uDn5wxxeU |
| CitedBy_id | crossref_primary_10_1016_j_jglr_2024_102298 crossref_primary_10_1016_j_cbpc_2025_110356 crossref_primary_10_1007_s10661_025_13757_5 crossref_primary_10_1016_j_envpol_2023_121937 crossref_primary_10_1016_j_tox_2025_154091 crossref_primary_10_1016_j_scitotenv_2022_157144 crossref_primary_10_1016_j_envpol_2022_120206 crossref_primary_10_1016_j_watres_2025_124366 crossref_primary_10_1016_j_scitotenv_2024_171678 crossref_primary_10_1002_em_22560 crossref_primary_10_1016_j_watres_2025_123272 crossref_primary_10_1039_D5EM00053J crossref_primary_10_3390_su151512029 crossref_primary_10_1016_j_cbpc_2024_110062 crossref_primary_10_1016_j_jhazmat_2024_136155 crossref_primary_10_1016_j_jwpe_2025_108464 crossref_primary_10_1039_D5EM00088B crossref_primary_10_1016_j_jhazmat_2024_137000 crossref_primary_10_3389_fmars_2025_1668826 crossref_primary_10_1021_acs_est_5c02701 crossref_primary_10_1021_acs_chas_3c00076 crossref_primary_10_1016_j_watres_2024_122210 crossref_primary_10_1021_acs_estlett_5c00783 crossref_primary_10_1016_j_envint_2024_109004 crossref_primary_10_1016_j_ecoenv_2024_117226 crossref_primary_10_1016_j_jhazmat_2024_136184 crossref_primary_10_1016_j_jece_2025_118858 crossref_primary_10_1016_j_watres_2024_122240 crossref_primary_10_1039_D5SU00170F crossref_primary_10_1016_j_watres_2023_121070 crossref_primary_10_1021_acsestair_5c00017 crossref_primary_10_1016_j_envint_2022_107374 crossref_primary_10_1016_j_envpol_2025_126489 crossref_primary_10_1016_j_jhazmat_2025_137687 crossref_primary_10_1016_j_envpol_2024_124600 crossref_primary_10_1016_j_psep_2024_01_080 crossref_primary_10_1002_jat_4892 crossref_primary_10_1021_envhealth_3c00205 crossref_primary_10_5572_KOSAE_2025_41_1_026 crossref_primary_10_1016_j_envint_2025_109532 crossref_primary_10_1016_j_scitotenv_2024_175592 crossref_primary_10_1016_j_watres_2025_123629 crossref_primary_10_3390_antiox14081019 crossref_primary_10_3389_fenvs_2023_1219248 crossref_primary_10_1016_j_cej_2025_159307 crossref_primary_10_1016_j_trac_2024_118059 crossref_primary_10_1021_acs_est_4c12896 crossref_primary_10_1021_acsestwater_3c00589 crossref_primary_10_1093_ismeco_ycaf050 crossref_primary_10_1016_j_chemosphere_2024_142830 crossref_primary_10_1016_j_chroma_2024_465195 crossref_primary_10_1016_j_scitotenv_2023_161836 crossref_primary_10_1093_etojnl_vgaf062 crossref_primary_10_1016_j_envpol_2025_126352 crossref_primary_10_1016_j_envpol_2025_126114 crossref_primary_10_1021_acs_est_5c02072 crossref_primary_10_1016_j_envpol_2023_122828 crossref_primary_10_1016_j_watres_2025_124044 crossref_primary_10_1093_etojnl_vgaf189 crossref_primary_10_1002_etc_5392 crossref_primary_10_1016_j_envpol_2024_124969 crossref_primary_10_1016_j_envint_2024_108609 crossref_primary_10_1016_j_jhazmat_2025_138822 crossref_primary_10_1016_j_scitotenv_2022_156013 crossref_primary_10_1016_j_seppur_2024_128904 crossref_primary_10_1021_acs_estlett_5c00477 crossref_primary_10_1016_j_jhazmat_2024_135718 crossref_primary_10_1016_j_foodchem_2022_133640 crossref_primary_10_1016_j_jhazmat_2025_137184 crossref_primary_10_1016_j_scitotenv_2024_170045 crossref_primary_10_1016_j_envint_2025_109438 crossref_primary_10_1016_j_envpol_2024_125155 crossref_primary_10_1016_j_scitotenv_2024_175736 crossref_primary_10_1016_j_cbpc_2025_110161 crossref_primary_10_1016_j_ecoenv_2024_116689 crossref_primary_10_1016_j_scitotenv_2024_171495 crossref_primary_10_1016_j_scitotenv_2024_170046 crossref_primary_10_1016_j_cbpc_2025_110166 crossref_primary_10_1016_j_envint_2024_109139 crossref_primary_10_1038_s44221_024_00236_3 crossref_primary_10_3390_urbansci9060228 crossref_primary_10_1016_j_scitotenv_2024_171928 crossref_primary_10_1016_j_jhazmat_2025_139008 crossref_primary_10_1016_j_watres_2022_119528 crossref_primary_10_3390_toxics12060394 crossref_primary_10_1016_j_talanta_2023_125072 crossref_primary_10_1021_acs_est_5c03958 crossref_primary_10_3390_w16081128 crossref_primary_10_1016_j_envint_2025_109329 crossref_primary_10_1016_j_scitotenv_2024_171220 crossref_primary_10_1016_j_chemosphere_2024_141402 crossref_primary_10_1016_j_chemosphere_2024_142975 crossref_primary_10_1016_j_envpol_2025_126572 crossref_primary_10_1016_j_jhazmat_2023_132265 crossref_primary_10_1016_j_trac_2025_118449 crossref_primary_10_1039_D2EW00933A crossref_primary_10_1016_j_envint_2024_109042 crossref_primary_10_1016_j_scitotenv_2024_172306 crossref_primary_10_1016_j_scitotenv_2024_175036 crossref_primary_10_1016_j_scitotenv_2024_176123 crossref_primary_10_1021_acs_est_5c10705 crossref_primary_10_1016_j_envres_2024_119492 crossref_primary_10_1016_j_jhazmat_2024_135042 crossref_primary_10_1016_j_scitotenv_2025_179240 crossref_primary_10_1016_j_atmosenv_2025_121527 crossref_primary_10_1016_j_jece_2025_119231 crossref_primary_10_3390_su17094080 crossref_primary_10_1016_j_envres_2024_120485 crossref_primary_10_1016_j_envres_2024_119817 crossref_primary_10_1016_j_jhazmat_2024_133427 crossref_primary_10_1016_j_marpolbul_2025_118482 crossref_primary_10_1016_j_ese_2025_100567 crossref_primary_10_1021_acs_est_4c12384 crossref_primary_10_1016_j_chemosphere_2025_144418 crossref_primary_10_1016_j_envint_2024_109189 crossref_primary_10_1016_j_jhazmat_2025_137373 crossref_primary_10_1016_j_jhazmat_2023_132127 crossref_primary_10_3389_fenvs_2024_1384506 crossref_primary_10_3390_toxics13070544 crossref_primary_10_1016_j_scitotenv_2022_160150 crossref_primary_10_1016_j_scitotenv_2024_174449 crossref_primary_10_1039_D4VA00407H crossref_primary_10_1016_j_scitotenv_2024_170760 crossref_primary_10_1093_etojnl_vgaf151 crossref_primary_10_1021_acsestwater_5c00582 crossref_primary_10_1016_j_scitotenv_2024_171291 crossref_primary_10_1016_j_jhazmat_2025_137821 crossref_primary_10_1016_j_rsma_2025_104291 crossref_primary_10_1016_j_jhazmat_2024_134818 crossref_primary_10_1016_j_jclepro_2024_141115 crossref_primary_10_1016_j_scitotenv_2024_177248 crossref_primary_10_1016_j_envc_2025_101228 crossref_primary_10_1016_j_jhazmat_2025_137951 crossref_primary_10_3389_fenvs_2023_1206449 crossref_primary_10_1016_j_jhazmat_2024_134165 crossref_primary_10_1002_etc_5934 crossref_primary_10_1016_j_watres_2024_122408 crossref_primary_10_1016_j_envpol_2024_124313 crossref_primary_10_1016_j_envpol_2023_122649 crossref_primary_10_1016_j_jhazmat_2023_131495 crossref_primary_10_1016_j_jhazmat_2025_138805 crossref_primary_10_1016_j_marpolbul_2025_118311 crossref_primary_10_1016_j_envres_2025_121386 crossref_primary_10_1016_j_jhazmat_2023_133312 crossref_primary_10_1016_j_arabjc_2023_104856 crossref_primary_10_1016_j_jhazmat_2024_136694 crossref_primary_10_1021_acs_est_5c07576 crossref_primary_10_1016_j_watres_2024_121669 crossref_primary_10_1016_j_apr_2022_101533 crossref_primary_10_1016_j_cej_2022_139978 crossref_primary_10_1016_j_trac_2022_116756 crossref_primary_10_1016_j_scitotenv_2023_163595 crossref_primary_10_3390_su152015141 crossref_primary_10_3390_toxics12100733 crossref_primary_10_1016_j_envpol_2025_125785 crossref_primary_10_1002_jat_4920 crossref_primary_10_1016_j_chemosphere_2024_142675 crossref_primary_10_1016_j_jes_2024_09_023 crossref_primary_10_1016_j_scitotenv_2022_160591 crossref_primary_10_1016_j_watres_2024_121322 crossref_primary_10_1016_j_jhazmat_2025_138432 crossref_primary_10_1016_j_chemosphere_2023_137913 crossref_primary_10_1039_D5EM00153F crossref_primary_10_1016_j_jhazmat_2023_131245 crossref_primary_10_1016_j_chemosphere_2024_142319 crossref_primary_10_1016_j_scitotenv_2024_170679 crossref_primary_10_1016_j_scitotenv_2024_171622 crossref_primary_10_3390_toxics12120891 crossref_primary_10_1016_j_enceco_2025_05_021 crossref_primary_10_1016_j_envpol_2025_126737 crossref_primary_10_1007_s11356_025_35893_8 crossref_primary_10_1016_j_jhazmat_2024_136420 crossref_primary_10_1016_j_cbi_2025_111739 crossref_primary_10_1016_j_scitotenv_2023_166679 crossref_primary_10_1016_j_trac_2024_118095 crossref_primary_10_1016_j_jhazmat_2025_139300 crossref_primary_10_1016_j_biortech_2024_131847 crossref_primary_10_1016_j_jclepro_2023_140039 crossref_primary_10_1016_j_aca_2024_343123 crossref_primary_10_1016_j_jhazmat_2024_136099 crossref_primary_10_1016_j_envres_2024_118201 crossref_primary_10_1016_j_cbpc_2025_110300 crossref_primary_10_1002_ldr_5243 crossref_primary_10_1021_acs_est_5c06843 crossref_primary_10_1016_j_scitotenv_2023_165698 crossref_primary_10_1016_j_jhazmat_2024_134598 crossref_primary_10_3390_atmos15101208 crossref_primary_10_1016_j_jhazmat_2024_134357 crossref_primary_10_1016_j_watres_2025_124235 crossref_primary_10_1016_j_envres_2022_114721 crossref_primary_10_1007_s10646_024_02836_x crossref_primary_10_3390_ijerph192114595 crossref_primary_10_1016_j_aca_2025_344638 crossref_primary_10_1016_j_jhazmat_2023_133409 |
| Cites_doi | 10.1080/01919519908547239 10.1016/j.cej.2020.128381 10.1016/j.watres.2020.116602 10.5254/1.3538136 10.1080/01919510902740477 10.1021/acs.est.1c03569 10.1021/acs.estlett.1c00453 10.5254/1.3538264 10.1021/acs.est.8b03287 10.1021/acs.estlett.1c00910 10.1016/0141-3910(90)90033-4 10.1016/j.jhazmat.2018.07.063 10.1021/es5002105 10.1016/j.scitotenv.2015.06.053 10.1007/s00216-020-02653-1 10.1021/acs.estlett.1c00148 10.1021/acs.estlett.1c00682 10.1126/science.abd6951 10.1111/j.1467-2494.1987.tb00470.x 10.1021/acs.est.1c02723 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2022.118122 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 35101694 10_1016_j_watres_2022_118122 S0043135422000859 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c441t-6fff8e7ee3433e12b592c587aef8531c75c8487645ef1bfc82eca5a16f5050a23 |
| ISICitedReferencesCount | 261 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758836300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sun Sep 28 01:29:31 EDT 2025 Sat Sep 27 21:43:40 EDT 2025 Wed Feb 19 02:05:00 EST 2025 Tue Nov 18 21:47:44 EST 2025 Sat Nov 29 07:29:45 EST 2025 Fri Feb 23 02:40:26 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 6PPD quinone TRWPs Snowmelt Road runoff 6PPDQ Urban runoff |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022. Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c441t-6fff8e7ee3433e12b592c587aef8531c75c8487645ef1bfc82eca5a16f5050a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.watres.2022.118122 |
| PMID | 35101694 |
| PQID | 2624659421 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636445019 proquest_miscellaneous_2624659421 pubmed_primary_35101694 crossref_primary_10_1016_j_watres_2022_118122 crossref_citationtrail_10_1016_j_watres_2022_118122 elsevier_sciencedirect_doi_10_1016_j_watres_2022_118122 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 2022-Apr-01 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | ECHA 2021b ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine; endpoint summary, Hydrolysis, ECHA Khanna, Tewari, Josh, Singh (bib0014) 1987; 9 Klöckner, Seiwert, Wagner, Reemtsma (bib0015) 2021; 55 Müller, Hübner, Huppertsberg, Knepper, Zahn (bib0019) 2021; 802 Johannessen, Helm, Lashuk, Yargeau, Metcalfe (bib0013) 2021 Zhang, Zhang, Zhang, Sverko, Smyth, Li (bib0029) 2021; 189 Unice, Bare, Kreider, Panko (bib0027) 2015; 533 Datta, Datta, Talma (bib0003) 2004; 57 Hiki, Asahina, Kato, Yamagishi, Omagari, Iwasaki, Watanabe, Yamamoto (bib0010) 2021; 8 Lattimer, Hooser, Layer, Rhee (bib0016) 1983; 56 Wagner, Klöckner, Reemtsma (bib0028) 2021; 288 ECHA 2021c ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, monitoring data Seiwert, Weidauer, Hirte, Reemtsma (bib0024) 2016 McIntyre, Prat, Cameron, Wetzel, Mudrock, Peter, Tian, Mackenzie, Lundin, Stark, King, Davis, Kolodziej, Scholz (bib0018) 2021; 55 Elovitz, von Gunten (bib0008) 1999; 21 Haddad, Luek, Scott, Saari, Burket, Kristofco, Corrales, Rasmussen, Chambliss, Luers, Rogers, Brooks (bib0009) 2018; 359 Huang, Shi, Huang, Deng, Tang, Liu, Chen (bib0011) 2021; 8 Huntink, N.M. 2003 Durability of rubber products, Phd thesis, University of Twente, Enschede, The Netherlands ECHA 2021a ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, endpoint summary, Studies with PPDs (6PPD, 7PPD, 77PD, 44PD) (Allmendinger 2012), ECHA Tian, Gonzalez, Rideout, Zhao, Hu, Wetzel, Mudrock, James, McIntyre, Kolodziej (bib0025) 2022 Schymanski, Jeon, Gulde, Fenner, Ruff, Singer, Hollender (bib0022) 2014; 48 Ramseier, Gunten (bib0021) 2009; 31 . Seiwert, Klöckner, Wagner, Reemtsma (bib0023) 2020; 412 Challis, Popick, Prajapati, Harder, Giesy, McPhedran, Brinkmann (bib0001) 2021; 8 Duchacek, Kuta (bib0004) 1990; 29 Cheng, Kim, Kim, Choi, Fai Tsang, Baek (bib0002) 2021; 410 Tian, Zhao, Peter, Gonzalez, Wetzel, Wu, Hu, Prat, Mudrock, Hettinger, Cortina, Biswas, Kock, Soong, Jenne, Du, Hou, He, Lundeen, Gilbreath, Sutton, Scholz, Davis, Dodd, Simpson, McIntyre, Kolodziej (bib0026) 2021; 371 Peter, Tian, Wu, Lin, White, Du, McIntyre, Scholz, Kolodziej (bib0020) 2018; 52 Layer, Lattimer (bib0017) 1990 Layer (10.1016/j.watres.2022.118122_bib0017) 1990 Seiwert (10.1016/j.watres.2022.118122_bib0023) 2020; 412 Cheng (10.1016/j.watres.2022.118122_bib0002) 2021; 410 Hiki (10.1016/j.watres.2022.118122_bib0010) 2021; 8 Johannessen (10.1016/j.watres.2022.118122_bib0013) 2021 Haddad (10.1016/j.watres.2022.118122_bib0009) 2018; 359 Challis (10.1016/j.watres.2022.118122_bib0001) 2021; 8 McIntyre (10.1016/j.watres.2022.118122_bib0018) 2021; 55 Datta (10.1016/j.watres.2022.118122_bib0003) 2004; 57 Müller (10.1016/j.watres.2022.118122_bib0019) 2021; 802 Tian (10.1016/j.watres.2022.118122_bib0026) 2021; 371 Unice (10.1016/j.watres.2022.118122_bib0027) 2015; 533 Lattimer (10.1016/j.watres.2022.118122_bib0016) 1983; 56 Zhang (10.1016/j.watres.2022.118122_bib0029) 2021; 189 10.1016/j.watres.2022.118122_bib0007 Ramseier (10.1016/j.watres.2022.118122_bib0021) 2009; 31 Schymanski (10.1016/j.watres.2022.118122_bib0022) 2014; 48 Khanna (10.1016/j.watres.2022.118122_bib0014) 1987; 9 Seiwert (10.1016/j.watres.2022.118122_bib0024) 2016 10.1016/j.watres.2022.118122_bib0005 10.1016/j.watres.2022.118122_bib0006 Tian (10.1016/j.watres.2022.118122_bib0025) 2022 10.1016/j.watres.2022.118122_bib0012 Duchacek (10.1016/j.watres.2022.118122_bib0004) 1990; 29 Klöckner (10.1016/j.watres.2022.118122_bib0015) 2021; 55 Wagner (10.1016/j.watres.2022.118122_bib0028) 2021; 288 Elovitz (10.1016/j.watres.2022.118122_bib0008) 1999; 21 Huang (10.1016/j.watres.2022.118122_bib0011) 2021; 8 Peter (10.1016/j.watres.2022.118122_bib0020) 2018; 52 |
| References_xml | – volume: 57 start-page: 109 year: 2004 end-page: 115 ident: bib0003 article-title: Mechanistic studies in squalene model system publication-title: Kautsch. Gummi Kunstst. – reference: ECHA 2021a ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, endpoint summary, Studies with PPDs (6PPD, 7PPD, 77PD, 44PD) (Allmendinger 2012), ECHA, – volume: 288 year: 2021 ident: bib0028 article-title: Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact publication-title: Chemosphere – reference: Huntink, N.M. 2003 Durability of rubber products, Phd thesis, University of Twente, Enschede, The Netherlands, – volume: 21 start-page: 239 year: 1999 end-page: 260 ident: bib0008 article-title: Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept publication-title: Ozone Sci. Eng. – volume: 8 start-page: 779 year: 2021 end-page: 784 ident: bib0010 article-title: Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species publication-title: Environ. Sci. Technol. Lett. – start-page: 426 year: 1990 end-page: 450 ident: bib0017 article-title: Protection of rubber against ozone publication-title: Rubber Chem. Technol. – volume: 48 start-page: 2097 year: 2014 end-page: 2098 ident: bib0022 article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence publication-title: Environ. Sci. Technol. – volume: 29 start-page: 217 year: 1990 end-page: 231 ident: bib0004 article-title: Antioxidants and stabilizers: part CXII*–influence of 1-phenylamino-4-(sec-alkylamino)-3,6-bis(4-phenylaminophenylimino)-l,4-cyclohexadiene on the vulcanization and ageing of natural rubber publication-title: Polym. Degrad. Stab. – volume: 55 start-page: 11723 year: 2021 end-page: 11732 ident: bib0015 article-title: Organic markers of tire and road wear particles in sediments and soils: transformation products of major antiozonants as promising candidates publication-title: Environ. Sci. Technol. – year: 2022 ident: bib0025 article-title: 6PPD-Quinone: revised toxicity assessment and quantification with a commercial standard publication-title: Environ. Sci. Technol. Lett. – volume: 533 start-page: 476 year: 2015 end-page: 487 ident: bib0027 article-title: Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: application to tire and road wear particles publication-title: Sci. Total Environ. – volume: 31 start-page: 201 year: 2009 end-page: 215 ident: bib0021 article-title: Mechanisms of phenol ozonation—kinetics of formation of primary and secondary reaction products publication-title: Ozone Sci. Eng. – volume: 189 year: 2021 ident: bib0029 article-title: Diphenylamine antioxidants in wastewater influent, effluent, biosolids and landfill leachate: contribution to environmental releases publication-title: Water Res. – volume: 410 year: 2021 ident: bib0002 article-title: Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review publication-title: Chem. Eng. J. – year: 2021 ident: bib0013 article-title: The tire wear compounds 6PPD-quinone and 1,3-diphenylguanidine in an urban watershed publication-title: Arch. Environ. Contam. Toxicol. – volume: 52 start-page: 10317 year: 2018 end-page: 10327 ident: bib0020 article-title: Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in coho salmon publication-title: Environ. Sci. Technol. – volume: 9 start-page: 137 year: 1987 end-page: 147 ident: bib0014 article-title: Studies on the skin uptake and efflux kinetics of N-phenyI-p-phenylenediamine: an aromatic amine intermediate publication-title: Int. J. Cosmet. Sci. – volume: 412 start-page: 4909 year: 2020 end-page: 4919 ident: bib0023 article-title: Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters publication-title: Anal. Bioanal. Chem. – reference: . – volume: 56 start-page: 431 year: 1983 end-page: 439 ident: bib0016 article-title: Mechanisms of ozonation of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine publication-title: Rubber Chem. Technol. – reference: ECHA 2021c ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, monitoring data, – volume: 802 year: 2021 ident: bib0019 article-title: Probing the chemical complexity of tires: identification of potential tire-borne water contaminants with high-resolution mass spectrometry publication-title: Sci. Total Environ. – volume: 8 start-page: 961 year: 2021 end-page: 967 ident: bib0001 article-title: Occurrences of tire rubber-derived contaminants in cold-climate urban runoff publication-title: Environ. Sci. Technol. Lett. – volume: 371 start-page: 185 year: 2021 end-page: 189 ident: bib0026 article-title: A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon publication-title: Science – reference: ECHA 2021b ECHA registration-dossier N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine; endpoint summary, Hydrolysis, ECHA, – volume: 359 start-page: 231 year: 2018 end-page: 240 ident: bib0009 article-title: Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt publication-title: J. Hazard. Mater. – volume: 8 start-page: 381 year: 2021 end-page: 385 ident: bib0011 article-title: Occurrence of substituted p-phenylenediamine antioxidants in dusts publication-title: Environ. Sci. Technol. Lett. – start-page: 67 year: 2016 end-page: 84 ident: bib0024 article-title: Lab-based approaches to support the screening and identification of transformation products by LC-HRMS publication-title: Assessing Transformation Products of Chemicals by Non-Target and Suspect Screening − Strategies and Workflows. – volume: 55 start-page: 11767 year: 2021 end-page: 11774 ident: bib0018 article-title: Treading water: tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum salmon publication-title: Environ. Sci. Technol. – volume: 21 start-page: 239 year: 1999 ident: 10.1016/j.watres.2022.118122_bib0008 article-title: Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept publication-title: Ozone Sci. Eng. doi: 10.1080/01919519908547239 – volume: 410 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0002 article-title: Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128381 – volume: 189 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0029 article-title: Diphenylamine antioxidants in wastewater influent, effluent, biosolids and landfill leachate: contribution to environmental releases publication-title: Water Res. doi: 10.1016/j.watres.2020.116602 – ident: 10.1016/j.watres.2022.118122_bib0005 – ident: 10.1016/j.watres.2022.118122_bib0007 – volume: 56 start-page: 431 issue: 2 year: 1983 ident: 10.1016/j.watres.2022.118122_bib0016 article-title: Mechanisms of ozonation of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine publication-title: Rubber Chem. Technol. doi: 10.5254/1.3538136 – volume: 31 start-page: 201 issue: 3 year: 2009 ident: 10.1016/j.watres.2022.118122_bib0021 article-title: Mechanisms of phenol ozonation—kinetics of formation of primary and secondary reaction products publication-title: Ozone Sci. Eng. doi: 10.1080/01919510902740477 – volume: 55 start-page: 11767 issue: 17 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0018 article-title: Treading water: tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum salmon publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03569 – volume: 8 start-page: 779 issue: 9 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0010 article-title: Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00453 – volume: 288 issue: Pt 2 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0028 article-title: Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact publication-title: Chemosphere – ident: 10.1016/j.watres.2022.118122_bib0012 – start-page: 426 issue: 63 year: 1990 ident: 10.1016/j.watres.2022.118122_bib0017 article-title: Protection of rubber against ozone publication-title: Rubber Chem. Technol. doi: 10.5254/1.3538264 – volume: 52 start-page: 10317 issue: 18 year: 2018 ident: 10.1016/j.watres.2022.118122_bib0020 article-title: Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in coho salmon publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03287 – start-page: 67 year: 2016 ident: 10.1016/j.watres.2022.118122_bib0024 article-title: Lab-based approaches to support the screening and identification of transformation products by LC-HRMS – year: 2022 ident: 10.1016/j.watres.2022.118122_bib0025 article-title: 6PPD-Quinone: revised toxicity assessment and quantification with a commercial standard publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00910 – volume: 29 start-page: 217 year: 1990 ident: 10.1016/j.watres.2022.118122_bib0004 article-title: Antioxidants and stabilizers: part CXII*–influence of 1-phenylamino-4-(sec-alkylamino)-3,6-bis(4-phenylaminophenylimino)-l,4-cyclohexadiene on the vulcanization and ageing of natural rubber publication-title: Polym. Degrad. Stab. doi: 10.1016/0141-3910(90)90033-4 – volume: 359 start-page: 231 year: 2018 ident: 10.1016/j.watres.2022.118122_bib0009 article-title: Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.07.063 – volume: 48 start-page: 2097 issue: 4 year: 2014 ident: 10.1016/j.watres.2022.118122_bib0022 article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence publication-title: Environ. Sci. Technol. doi: 10.1021/es5002105 – ident: 10.1016/j.watres.2022.118122_bib0006 – volume: 533 start-page: 476 year: 2015 ident: 10.1016/j.watres.2022.118122_bib0027 article-title: Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: application to tire and road wear particles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.06.053 – volume: 412 start-page: 4909 issue: 20 year: 2020 ident: 10.1016/j.watres.2022.118122_bib0023 article-title: Source-related smart suspect screening in the aqueous environment: search for tire-derived persistent and mobile trace organic contaminants in surface waters publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02653-1 – year: 2021 ident: 10.1016/j.watres.2022.118122_bib0013 article-title: The tire wear compounds 6PPD-quinone and 1,3-diphenylguanidine in an urban watershed publication-title: Arch. Environ. Contam. Toxicol. – volume: 8 start-page: 381 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0011 article-title: Occurrence of substituted p-phenylenediamine antioxidants in dusts publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00148 – volume: 8 start-page: 961 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0001 article-title: Occurrences of tire rubber-derived contaminants in cold-climate urban runoff publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00682 – volume: 371 start-page: 185 issue: 6525 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0026 article-title: A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon publication-title: Science doi: 10.1126/science.abd6951 – volume: 9 start-page: 137 year: 1987 ident: 10.1016/j.watres.2022.118122_bib0014 article-title: Studies on the skin uptake and efflux kinetics of N-phenyI-p-phenylenediamine: an aromatic amine intermediate publication-title: Int. J. Cosmet. Sci. doi: 10.1111/j.1467-2494.1987.tb00470.x – volume: 55 start-page: 11723 issue: 17 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0015 article-title: Organic markers of tire and road wear particles in sediments and soils: transformation products of major antiozonants as promising candidates publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02723 – volume: 57 start-page: 109 year: 2004 ident: 10.1016/j.watres.2022.118122_bib0003 article-title: Mechanistic studies in squalene model system publication-title: Kautsch. Gummi Kunstst. – volume: 802 year: 2021 ident: 10.1016/j.watres.2022.118122_bib0019 article-title: Probing the chemical complexity of tires: identification of potential tire-borne water contaminants with high-resolution mass spectrometry publication-title: Sci. Total Environ. |
| SSID | ssj0002239 |
| Score | 2.70818 |
| Snippet | •38 oxidation products were tentatively identified from tire-derived 6-PPD in the lab.•Most of them were also found in snow from roads, primarily in particle... The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear... The antiozonant N-phenyl-N’-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118122 |
| SubjectTerms | 6PPD quinone 6PPDQ Benzoquinones liquid chromatography municipal wastewater Oncorhynchus kisutch Oxidative Stress ozonation Phenylenediamines quinones rain Road runoff runoff Snow Snowmelt spectroscopy surface water toxicity TRWPs Urban runoff Wastewater - analysis wastewater treatment Water Pollutants, Chemical - analysis |
| Title | Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater |
| URI | https://dx.doi.org/10.1016/j.watres.2022.118122 https://www.ncbi.nlm.nih.gov/pubmed/35101694 https://www.proquest.com/docview/2624659421 https://www.proquest.com/docview/2636445019 |
| Volume | 212 |
| WOSCitedRecordID | wos000758836300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZjtMwFLU6HYSGB8ROWUZG4g2lalY7jwUGAWKqSlNQ36LUtYWrkpR0mfIv_A0_xvWWFKoy8MBLFMVxtntin2vfe4zQcwIcVMRJ5DERES8iwdSj0E15aS8EchpTQnVu1acPZDCg43E6bLV-uFyYzZwUBd1u08V_NTUcA2Or1Nl_MHd9UTgA-2B02ILZYftXhu9PZKlUWMutnBpV79UOOTX0MPGGw9d63sDsfV3LogS6aZJNoBU0ys0lY1q-iblQAlmpgC4lEavDaJcqkU7XWVcTaCiqMp8urZ7TC513IhcAgct8qYboXCDwzC08o_QZrdjQZy17ujWR9vXYxAWXlzan6CVXAdp1HzKQSmxWmliE87ycy2ZkYVSVa_jTDRbP84pvmq6Hf6vytVn96mKlYlmK3WEP8JibaBlummpK1NyQ0el0bXlgY7JNa6ySak3W815HYcYsZl14eXjRrrpDd_90sOzii8ZJqNquxKzH_JtAtys6QscBiVPaRsf9d2fj9zUhAAaWuqxNHVq4f9MTdN1d5hBBOuQAaSI0uoVuWg8G9w3ybqMWL-6gGzu6lnfRd4tBXGMQ_4pBXAqskYcBLHbPYhArPGGNQV3YYFBV0hjEDoNYFlhh0NTRGMQag7omFNYYxA0G76GPb85Gr956dhkQjwFXX3mJEIJywnkYhSH3g0mcBgxakZwL4Jo-IzGj4HYnUcyFPxGMBpzlce4nAth9Lw_C-6itnv8hwiF8ahLxnmDgiMdT4MoJj1IBLosaCae9Dgrdt8-Y1chXS7XMMxcMOcuM8TJlvMwYr4O8utbCaMRccT5xZs0szzX8NQN0XlHzmUNBBt2AmtvLCw4_VRYkQZTEaRT4fzonBO8nBqeugx4YCNXP69D36GDJY3TS_IdPUHtVrflTdI1tVnJZnaIjMqanFvk_Adfy5_I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+oxidative+transformation+of+6-PPD+and+6-PPD+quinone+from+tires+and+occurrence+of+their+products+in+snow+from+urban+roads+and+in+municipal+wastewater&rft.jtitle=Water+research+%28Oxford%29&rft.au=Seiwert%2C+Bettina&rft.au=Nihemaiti%2C+Maolida&rft.au=Troussier%2C+Mareva&rft.au=Weyrauch%2C+Steffen&rft.date=2022-04-01&rft.eissn=1879-2448&rft.volume=212&rft.spage=118122&rft_id=info:doi/10.1016%2Fj.watres.2022.118122&rft_id=info%3Apmid%2F35101694&rft.externalDocID=35101694 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |