Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural

The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Carbohydrate research Ročník 446-447; s. 1 - 6
Hlavní autoři: van Putten, Robert-Jan, van der Waal, Jan C., de Jong, Ed, Heeres, Hero J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier Ltd 29.06.2017
Témata:
ISSN:0008-6215, 1873-426X, 1873-426X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol. [Display omitted] •Hydroxyl group orientation on C3 and C4 determines ketose reactivity in dehydration.•This suggests a reaction mechanism with cyclic intermediates.•Psicose would be the most favourable substrate for HMF production.•The orientation of the C4 hydroxyl is key in 2-hydroxyacetylfuran formation.•The reactivity of psicose and tagatose affects their application as sweeteners.
AbstractList The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol. [Display omitted] •Hydroxyl group orientation on C3 and C4 determines ketose reactivity in dehydration.•This suggests a reaction mechanism with cyclic intermediates.•Psicose would be the most favourable substrate for HMF production.•The orientation of the C4 hydroxyl is key in 2-hydroxyacetylfuran formation.•The reactivity of psicose and tagatose affects their application as sweeteners.
The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol.The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol.
The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3-C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol.
The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H SO , 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol.
Author de Jong, Ed
Heeres, Hero J.
van der Waal, Jan C.
van Putten, Robert-Jan
Author_xml – sequence: 1
  givenname: Robert-Jan
  orcidid: 0000-0003-1021-577X
  surname: van Putten
  fullname: van Putten, Robert-Jan
  email: robert-jan.vanputten@avantium.com
  organization: Avantium Chemicals B.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands
– sequence: 2
  givenname: Jan C.
  orcidid: 0000-0002-9830-6109
  surname: van der Waal
  fullname: van der Waal, Jan C.
  organization: Avantium Chemicals B.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands
– sequence: 3
  givenname: Ed
  orcidid: 0000-0001-5300-4230
  surname: de Jong
  fullname: de Jong, Ed
  organization: Avantium Chemicals B.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands
– sequence: 4
  givenname: Hero J.
  surname: Heeres
  fullname: Heeres, Hero J.
  email: h.j.heeres@rug.nl
  organization: Department of Chemical Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28458081$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEcxYNYdLX9D6Tk2MtMk8mPyfQgFOkvEApFwVvIJt9ls85M1iRjnbP_eLOuXjxUCITkvc87vHeCDscwAkJnlNSUUPl5U1sTI6S6IbStCa8J6Q7QgqqWVbyRN4doQQhRlWyoOEYnKW3Kk8hWHqHjRnGhiKIL9PgHjM3-3ucZpzw5Dwn7Ef81GSIOI85rwMZ6V1mTTT8ncNjBenbRZF_ksMLb5G1IgG0YtiYWPQccChbxLeSwhoci7jLLt6h2ZHiYB8jruV9NsRzTv0fvVqZP8OH5PkXX379dXfysLn__-HXx9bKynNNccdcQLpmhSwsKWsMZA7CSu84xZZ0DKoSQRJLGCAHSdZSDXEoAxYFRsWSn6NM-dxvD3QQp68EnC31vRghT0k3ph5X62vZNK1Ud61rSKV6sH5-t03IAp7fRDybO-qXjYviyN9gYUoqw0tbnp_pyNL7XlOjdoHqj94Pq3aCacF0GLTB_Bb_kv4Gd7zEofd57iDpZD6MF5yPYrF3w_w_4B2APvzU
CitedBy_id crossref_primary_10_1002_jctb_7496
crossref_primary_10_1016_j_comptc_2020_113009
crossref_primary_10_3389_fchem_2020_00569
crossref_primary_10_1016_j_biombioe_2024_107453
crossref_primary_10_1016_j_fuel_2023_128271
crossref_primary_10_1016_j_carres_2022_108672
crossref_primary_10_1016_j_jcat_2022_12_029
crossref_primary_10_1002_cssc_201901115
crossref_primary_10_1039_C8RE00300A
crossref_primary_10_1007_s10562_019_02835_2
crossref_primary_10_1039_D0RA03892J
crossref_primary_10_1002_jsfa_9432
crossref_primary_10_1016_j_chroma_2025_466345
Cites_doi 10.1002/bbb.1360
10.1039/c2ee02480b
10.1205/cherd05038
10.1021/ja00403a051
10.1002/macp.201400316
10.1002/mame.201400376
10.1021/cr300182k
10.1002/cssc.201600252
10.1016/j.cej.2016.04.039
10.1016/S0040-4039(01)94436-3
10.1021/ja01140a528
10.1016/0009-8981(73)90315-X
10.1039/b518176c
10.1039/b923961h
10.1002/cssc.201300345
10.1021/ma5000199
10.1021/bk-2012-1105.ch001
10.1016/j.catcom.2015.05.024
10.1039/b922014c
10.1002/cssc.201300332
10.1021/ie061186z
10.1002/jlac.19707330117
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier Ltd.
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carres.2017.04.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-426X
EndPage 6
ExternalDocumentID 28458081
10_1016_j_carres_2017_04_009
S0008621517301520
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M2Z
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
YK3
~02
~G-
.55
.GJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMS
HVGLF
HZ~
H~9
MVM
R2-
SCB
SEW
SOC
WUQ
X7M
XPP
Y6R
ZXP
~HD
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-4d20463a1bce8e7a433eec64d9d38cdde155560602a55e6d914e6b6ee84e315b3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404702700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-6215
1873-426X
IngestDate Sat Sep 27 21:50:04 EDT 2025
Sun Sep 28 08:47:33 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Tue Nov 18 22:23:24 EST 2025
Sat Nov 29 03:55:00 EST 2025
Fri Feb 23 02:33:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sugar dehydration
Psicose
5-Hydroxymethylfurfural
Ketose
Language English
License Copyright © 2017. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-4d20463a1bce8e7a433eec64d9d38cdde155560602a55e6d914e6b6ee84e315b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-1021-577X
0000-0001-5300-4230
0000-0002-9830-6109
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0008621517301520-fx1_lrg.jpg
PMID 28458081
PQID 1893970984
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000387377
proquest_miscellaneous_1893970984
pubmed_primary_28458081
crossref_citationtrail_10_1016_j_carres_2017_04_009
crossref_primary_10_1016_j_carres_2017_04_009
elsevier_sciencedirect_doi_10_1016_j_carres_2017_04_009
PublicationCentury 2000
PublicationDate 2017-06-29
PublicationDateYYYYMMDD 2017-06-29
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-29
  day: 29
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Carbohydrate research
PublicationTitleAlternate Carbohydr Res
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Girisuta, Janssen, Heeres (bib10) 2006; 84
De Jong, Higson, Walsh, Wellisch (bib3) 2012; 6
Codou, Guigo, van Berkel, de Jong, Sbirrazzuoli (bib6) 2014; 215
van Zandvoort, Wang, Rasrendra, van Eck, Bruijnincx, Heeres, Weckhuysen (bib12) 2013; 6
Rapp, Mandery, Heimann (bib23) 1983; 22
Wertz, Garver, Anderson (bib24) 1981; 103
Girisuta, Janssen, Heeres (bib9) 2006; 8
Girisuta, Janssen, Heeres (bib11) 2007; 46
De Jong, Dam, Sipos, Gruter (bib7) 2012
Miller, Cantor (bib21) 1952; 74
van Berkel, Guigo, Kolstad, Sipos, Wang, Dam, Sbirrazzuoli (bib8) 2015; 300
Heyns, Hauber (bib20) 1970; 733
Bozell, Petersen (bib2) 2010; 12
Burgess, Leisen, Kraftschik, Mubarak, Kriegel, Koros (bib5) 2014; 47
Eerhart, Faaij, Patel (bib4) 2012; 5
van der Waal, de Jong (bib13) 2016
Zhang, Su, Song, Li, Cheng (bib14) 2015; 69
Van Putten, Soetedjo, Pidko, Van der Waal, Hensen, De Jong, Heeres (bib17) 2013; 6
Harris, Feather (bib19) 1972; 13
Van Putten, Van der Waal, De Jong, Rasrendra, Heeres, De Vries (bib1) 2013; 113
Binder, Cefali, Blank, Raines (bib16) 2010; 3
Van Putten, Van der Waal, Harmse, Van de Bovenkamp, De Jong, Heeres (bib18) 2016; 9
Chen, Liang, Feng, Xian, Zhang, Liu, Du (bib15) 2016; 300
Jellum, Børresen, Eldjarn (bib22) 1973; 47
van Berkel (10.1016/j.carres.2017.04.009_bib8) 2015; 300
Wertz (10.1016/j.carres.2017.04.009_bib24) 1981; 103
De Jong (10.1016/j.carres.2017.04.009_bib3) 2012; 6
Harris (10.1016/j.carres.2017.04.009_bib19) 1972; 13
Eerhart (10.1016/j.carres.2017.04.009_bib4) 2012; 5
Binder (10.1016/j.carres.2017.04.009_bib16) 2010; 3
Bozell (10.1016/j.carres.2017.04.009_bib2) 2010; 12
van Zandvoort (10.1016/j.carres.2017.04.009_bib12) 2013; 6
Van Putten (10.1016/j.carres.2017.04.009_bib17) 2013; 6
van der Waal (10.1016/j.carres.2017.04.009_bib13) 2016
Burgess (10.1016/j.carres.2017.04.009_bib5) 2014; 47
Girisuta (10.1016/j.carres.2017.04.009_bib11) 2007; 46
Zhang (10.1016/j.carres.2017.04.009_bib14) 2015; 69
Girisuta (10.1016/j.carres.2017.04.009_bib9) 2006; 8
Chen (10.1016/j.carres.2017.04.009_bib15) 2016; 300
Rapp (10.1016/j.carres.2017.04.009_bib23) 1983; 22
Van Putten (10.1016/j.carres.2017.04.009_bib1) 2013; 113
Jellum (10.1016/j.carres.2017.04.009_bib22) 1973; 47
De Jong (10.1016/j.carres.2017.04.009_bib7) 2012
Van Putten (10.1016/j.carres.2017.04.009_bib18) 2016; 9
Codou (10.1016/j.carres.2017.04.009_bib6) 2014; 215
Girisuta (10.1016/j.carres.2017.04.009_bib10) 2006; 84
Miller (10.1016/j.carres.2017.04.009_bib21) 1952; 74
Heyns (10.1016/j.carres.2017.04.009_bib20) 1970; 733
References_xml – volume: 300
  start-page: 466
  year: 2015
  end-page: 474
  ident: bib8
  publication-title: Macromol. Mater. Eng.
– volume: 84
  start-page: 339
  year: 2006
  end-page: 349
  ident: bib10
  publication-title: Chem. Eng. Res. Des.
– volume: 6
  start-page: 1681
  year: 2013
  end-page: 1687
  ident: bib17
  publication-title: ChemSusChem
– volume: 47
  start-page: 191
  year: 1973
  end-page: 201
  ident: bib22
  publication-title: Clin. Chim. Acta
– volume: 733
  start-page: 159
  year: 1970
  end-page: 169
  ident: bib20
  publication-title: Liebigs Ann. Chem.
– volume: 47
  start-page: 1383
  year: 2014
  end-page: 1391
  ident: bib5
  publication-title: Macromolecules
– volume: 6
  start-page: 1745
  year: 2013
  end-page: 1758
  ident: bib12
  publication-title: ChemSusChem
– volume: 3
  start-page: 765
  year: 2010
  end-page: 771
  ident: bib16
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1827
  year: 2016
  end-page: 1834
  ident: bib18
  publication-title: ChemSusChem
– start-page: 97
  year: 2016
  end-page: 120
  ident: bib13
  publication-title: Industrial Biorenewables, A Practical Viewpoint
– volume: 69
  start-page: 76
  year: 2015
  end-page: 80
  ident: bib14
  publication-title: Catal. Commun.
– volume: 22
  start-page: 387
  year: 1983
  end-page: 394
  ident: bib23
  publication-title: Vitis
– volume: 6
  start-page: 606
  year: 2012
  end-page: 624
  ident: bib3
  publication-title: Biofuels Bioprod. Biorefin.
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  ident: bib1
  publication-title: Chem. Rev.
– volume: 5
  start-page: 6407
  year: 2012
  end-page: 6422
  ident: bib4
  publication-title: Energy Environ. Sci.
– volume: 74
  start-page: 5236
  year: 1952
  end-page: 5237
  ident: bib21
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 539
  year: 2010
  end-page: 554
  ident: bib2
  publication-title: Green Chem.
– volume: 46
  start-page: 1696
  year: 2007
  end-page: 1708
  ident: bib11
  publication-title: Ind. Eng. Chem. Res.
– volume: 300
  start-page: 177
  year: 2016
  end-page: 184
  ident: bib15
  publication-title: Chem. Eng. J.
– volume: 103
  start-page: 3916
  year: 1981
  end-page: 3922
  ident: bib24
  publication-title: J. Am. Chem. Soc.
– volume: 215
  start-page: 2065
  year: 2014
  end-page: 2074
  ident: bib6
  publication-title: Macromol. Chem. Phys.
– start-page: 1
  year: 2012
  end-page: 13
  ident: bib7
  publication-title: ACS Symp. Ser.
– volume: 8
  start-page: 701
  year: 2006
  end-page: 709
  ident: bib9
  publication-title: Green Chem.
– volume: 13
  start-page: 4813
  year: 1972
  end-page: 4816
  ident: bib19
  publication-title: Tetrahedron Lett.
– volume: 6
  start-page: 606
  year: 2012
  ident: 10.1016/j.carres.2017.04.009_bib3
  publication-title: Biofuels Bioprod. Biorefin.
  doi: 10.1002/bbb.1360
– volume: 5
  start-page: 6407
  year: 2012
  ident: 10.1016/j.carres.2017.04.009_bib4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02480b
– volume: 84
  start-page: 339
  year: 2006
  ident: 10.1016/j.carres.2017.04.009_bib10
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd05038
– volume: 103
  start-page: 3916
  year: 1981
  ident: 10.1016/j.carres.2017.04.009_bib24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00403a051
– volume: 215
  start-page: 2065
  year: 2014
  ident: 10.1016/j.carres.2017.04.009_bib6
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201400316
– volume: 300
  start-page: 466
  year: 2015
  ident: 10.1016/j.carres.2017.04.009_bib8
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201400376
– volume: 113
  start-page: 1499
  year: 2013
  ident: 10.1016/j.carres.2017.04.009_bib1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300182k
– volume: 9
  start-page: 1827
  year: 2016
  ident: 10.1016/j.carres.2017.04.009_bib18
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600252
– volume: 300
  start-page: 177
  year: 2016
  ident: 10.1016/j.carres.2017.04.009_bib15
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.039
– volume: 13
  start-page: 4813
  year: 1972
  ident: 10.1016/j.carres.2017.04.009_bib19
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)94436-3
– volume: 74
  start-page: 5236
  year: 1952
  ident: 10.1016/j.carres.2017.04.009_bib21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01140a528
– volume: 47
  start-page: 191
  year: 1973
  ident: 10.1016/j.carres.2017.04.009_bib22
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(73)90315-X
– volume: 8
  start-page: 701
  year: 2006
  ident: 10.1016/j.carres.2017.04.009_bib9
  publication-title: Green Chem.
  doi: 10.1039/b518176c
– volume: 3
  start-page: 765
  year: 2010
  ident: 10.1016/j.carres.2017.04.009_bib16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b923961h
– volume: 6
  start-page: 1681
  year: 2013
  ident: 10.1016/j.carres.2017.04.009_bib17
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300345
– volume: 47
  start-page: 1383
  year: 2014
  ident: 10.1016/j.carres.2017.04.009_bib5
  publication-title: Macromolecules
  doi: 10.1021/ma5000199
– start-page: 1
  year: 2012
  ident: 10.1016/j.carres.2017.04.009_bib7
  doi: 10.1021/bk-2012-1105.ch001
– volume: 69
  start-page: 76
  year: 2015
  ident: 10.1016/j.carres.2017.04.009_bib14
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2015.05.024
– volume: 12
  start-page: 539
  year: 2010
  ident: 10.1016/j.carres.2017.04.009_bib2
  publication-title: Green Chem.
  doi: 10.1039/b922014c
– volume: 6
  start-page: 1745
  year: 2013
  ident: 10.1016/j.carres.2017.04.009_bib12
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300332
– volume: 46
  start-page: 1696
  year: 2007
  ident: 10.1016/j.carres.2017.04.009_bib11
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061186z
– start-page: 97
  year: 2016
  ident: 10.1016/j.carres.2017.04.009_bib13
– volume: 733
  start-page: 159
  year: 1970
  ident: 10.1016/j.carres.2017.04.009_bib20
  publication-title: Liebigs Ann. Chem.
  doi: 10.1002/jlac.19707330117
– volume: 22
  start-page: 387
  year: 1983
  ident: 10.1016/j.carres.2017.04.009_bib23
  publication-title: Vitis
SSID ssj0000676
Score 2.3025672
Snippet The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms 5-Hydroxymethylfurfural
Catalysis
catalysts
fructose
Fructose - chemistry
Furaldehyde - analogs & derivatives
Furaldehyde - chemistry
Hydrogen-Ion Concentration
hydroxymethylfurfural
Ketose
methanol
Methanol - chemistry
Psicose
sorbose
Sugar dehydration
sulfuric acid
tagatose
Water - chemistry
Title Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural
URI https://dx.doi.org/10.1016/j.carres.2017.04.009
https://www.ncbi.nlm.nih.gov/pubmed/28458081
https://www.proquest.com/docview/1893970984
https://www.proquest.com/docview/2000387377
Volume 446-447
WOSCitedRecordID wos000404702700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-426X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000676
  issn: 0008-6215
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO9hexu7LLkWDvRWBbcmW_VhCRteHUkbH8mZkS6bpUjs4Tpc895f0n-7o4svYQreHvZhEspWQ78s5R0fngtBHxkDrh5STjNKIsCyhJPEEAJIHhQplJILQNpvgZ2fxbJacj0Z3bS7MzYKXZbzZJMv_CjWMAdg6dfYf4O4WhQF4DaDDFWCH618B_0XpXAXTEmJlgwS1T-OH0NUQ7cnAkcjnkhjHzXYFBqdUl1tZd7bjEoCzUewuPB3MU5OndfRdNdWl2sCkXhOGQ6KfrDZb3Yh6uyjWdaHLeAwt3omos8qurzu0DJxnLnnqXLfKLvsob3LaE1bP62IX34Swrmp437l1pU5qs6JqKnufrqqt5DtRdeUOvZxXwzcheM71oawkjjklYD7MhqIa9q6E2QqdTuD6f1QD1iNxBVt83eFEB_BxU9DWVGJoBiRYXhsWgI4OdQuSXil2oYrt1B46CHiYgOA8OP48nZ0O1X3U5mSawMHfP1RXnHbL7DJ_dm1vjJlz8QQ9dvsTfGx59RSNVPkMPZy0bQGfo9ueX9jxC89LbPiFqxIDUfCv_MIDfuGqwI5fuOUXbips-IUH_MKaX3gHv16gr5-mF5MT4jp5kBzM7YYwGejKdMLPchUrLhilSuURk4mkcQ4aFqxaML0jLxBhqCKZ-ExFWaRUzBT1w4y-RPtlVarXCEeF0EX3kowHBROSxx6XOQ1yGfgqCT0xRrT9gdPclbnX3VYWaRvPeJVahFKNUOqxFBAaI9I9tbRlXu65n7fYpc5UtSZoChS858kPLdQpIKeP50SpqvUq9WHrkHAvidnuewJzlM8p52P0yvKk-74txd7snHmLHvX_tXdov6nX6j16kN8081V9iPb4LD509P4Jz5rWpQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity+studies+in+water+on+the+acid-catalysed+dehydration+of+psicose+compared+to+other+ketohexoses+into+5-hydroxymethylfurfural&rft.jtitle=Carbohydrate+research&rft.au=van+Putten%2C+Robert-Jan&rft.au=van+der+Waal%2C+Jan+C&rft.au=de+Jong%2C+Ed&rft.au=Heeres%2C+Hero+J&rft.date=2017-06-29&rft.eissn=1873-426X&rft.volume=446-447&rft.spage=1&rft_id=info:doi/10.1016%2Fj.carres.2017.04.009&rft_id=info%3Apmid%2F28458081&rft.externalDocID=28458081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6215&client=summon