Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory
In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 65; číslo 8; s. 1929 - 1944 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
15.04.2017
|
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems and maintains feasibility at each iteration. Convergence to a stationary solution of the original nonconvex optimization is established. Our framework is very general and flexible and unifies several existing successive convex approximation (SCA)-based algorithms. More importantly, and differently from current SCA approaches, it naturally leads to distributed and parallelizable implementations for a large class of nonconvex problems. This Part I is devoted to the description of the framework in its generality. In Part II, we customize our general methods to several (multiagent) optimization problems in communications, networking, and machine learning; the result is a new class of centralized and distributed algorithms that compare favorably to existing ad-hoc (centralized) schemes. |
|---|---|
| AbstractList | In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems and maintains feasibility at each iteration. Convergence to a stationary solution of the original nonconvex optimization is established. Our framework is very general and flexible and unifies several existing successive convex approximation (SCA)-based algorithms. More importantly, and differently from current SCA approaches, it naturally leads to distributed and parallelizable implementations for a large class of nonconvex problems. This Part I is devoted to the description of the framework in its generality. In Part II, we customize our general methods to several (multiagent) optimization problems in communications, networking, and machine learning; the result is a new class of centralized and distributed algorithms that compare favorably to existing ad-hoc (centralized) schemes. |
| Author | Scutari, Gesualdo Facchinei, Francisco Lampariello, Lorenzo |
| Author_xml | – sequence: 1 givenname: Gesualdo surname: Scutari fullname: Scutari, Gesualdo email: gscutari@purdue.edu organization: School of Industrial Engineering and the Cyber Center (Discovery Park), Purdue University, West-Lafayette, IN, USA – sequence: 2 givenname: Francisco surname: Facchinei fullname: Facchinei, Francisco email: facchinei@diag.uniroma1.it organization: Department of Computer, Control, and Management Engineering, University of Rome "La Sapienza", Rome, Italy – sequence: 3 givenname: Lorenzo surname: Lampariello fullname: Lampariello, Lorenzo email: lorenzo.lampariello@uniroma3.it organization: Department of Business Studies, University of RomaTre, Roma, Italy |
| BookMark | eNp9kM1KAzEUhYNUsK3uBTd5gam5TTrpuJP6V6i2YIXuhkxyQyPTpGRGsa58CJ_QJ3FqiwsXru7l3nMOh69DWj54JOQUWA-AZefzx1mvzyDt9VMuOcgD0oZMQMKETFvNzgY8GQzl4oh0quqZMRAiS9tkMVNRlSWWVHlDr1xVR1e81GjoPdbLYCpqQ6Sj4JuHcr65PwSvg3_FNzpd127l3lXtgv_6-GySajq-oPMlhrg5JodWlRWe7GeXPN1cz0d3yWR6Ox5dThItBNSJAF1wYJj2mRxkhilrlbGFZdKwAo3RwDUKgYWWSktuoJFhZosBA8wYcN4l6S5Xx1BVEW2uXf1TaVu4zIHlWz55wyff8sn3fBoj-2NcR7dScfOf5WxncYj4K5dSppkY8m-F83XH |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111700 crossref_primary_10_1109_JSYST_2020_2993048 crossref_primary_10_1109_ACCESS_2019_2926616 crossref_primary_10_1109_TAC_2022_3169179 crossref_primary_10_1109_TSP_2020_2984895 crossref_primary_10_1007_s10898_023_01272_1 crossref_primary_10_1109_JIOT_2020_2965898 crossref_primary_10_1109_JIOT_2024_3361907 crossref_primary_10_1109_TVT_2021_3075018 crossref_primary_10_1109_TVT_2024_3363034 crossref_primary_10_1109_TWC_2022_3169114 crossref_primary_10_1007_s10107_018_01357_w crossref_primary_10_1109_LWC_2019_2913843 crossref_primary_10_1109_ACCESS_2024_3440000 crossref_primary_10_1109_TVT_2024_3500033 crossref_primary_10_1109_TCC_2019_2920979 crossref_primary_10_1109_JIOT_2025_3534848 crossref_primary_10_1109_TAC_2023_3239432 crossref_primary_10_1007_s10898_019_00792_z crossref_primary_10_1109_TVT_2023_3306740 crossref_primary_10_1109_TSP_2018_2879049 crossref_primary_10_1049_iet_com_2019_0865 crossref_primary_10_1109_JSAC_2018_2872361 crossref_primary_10_1016_j_automatica_2025_112198 crossref_primary_10_1109_TGCN_2017_2770215 crossref_primary_10_1109_TWC_2020_3012016 crossref_primary_10_1109_JIOT_2022_3151619 crossref_primary_10_3390_drones7120688 crossref_primary_10_1007_s10107_019_01408_w crossref_primary_10_1109_TSP_2021_3138242 crossref_primary_10_1287_moor_2020_1079 crossref_primary_10_1109_JSAC_2021_3088624 crossref_primary_10_1109_ACCESS_2020_2992613 crossref_primary_10_1109_TCOMM_2021_3058374 crossref_primary_10_1109_TNSE_2023_3342183 crossref_primary_10_1109_JIOT_2023_3336919 crossref_primary_10_1109_TSP_2025_3595590 crossref_primary_10_1109_TVT_2024_3379298 crossref_primary_10_1109_TWC_2025_3528002 crossref_primary_10_1109_TSMC_2020_2968959 crossref_primary_10_1109_LCOMM_2020_3024256 crossref_primary_10_1109_TITS_2024_3449034 crossref_primary_10_1007_s10957_020_01762_2 crossref_primary_10_1109_TCOMM_2020_3007612 crossref_primary_10_1109_TSP_2016_2637314 crossref_primary_10_1109_TSP_2020_3001906 crossref_primary_10_1109_TSIPN_2017_2668142 crossref_primary_10_1007_s10107_018_1235_y crossref_primary_10_1109_TBC_2019_2932339 crossref_primary_10_1109_TCOMM_2024_3450605 crossref_primary_10_1109_TSP_2020_2996374 crossref_primary_10_1109_JIOT_2023_3335937 crossref_primary_10_1109_TWC_2020_3038787 crossref_primary_10_1049_sil2_12012 crossref_primary_10_1007_s11081_020_09585_w crossref_primary_10_1109_ACCESS_2022_3176362 crossref_primary_10_1109_TWC_2017_2702158 crossref_primary_10_1109_TVT_2023_3308589 crossref_primary_10_1109_JIOT_2024_3424782 crossref_primary_10_1109_TVT_2024_3482412 crossref_primary_10_1109_TSIPN_2018_2876754 crossref_primary_10_1016_j_jnca_2020_102781 crossref_primary_10_1109_TMC_2021_3108960 crossref_primary_10_1109_TNET_2020_3035770 crossref_primary_10_1109_ACCESS_2019_2921626 crossref_primary_10_1016_j_frl_2018_08_001 crossref_primary_10_1109_TCOMM_2023_3334810 crossref_primary_10_1109_TSP_2018_2868265 crossref_primary_10_1109_TMC_2024_3437435 crossref_primary_10_1109_TVT_2022_3140833 crossref_primary_10_1109_TWC_2021_3128247 crossref_primary_10_1109_TSP_2017_2684748 crossref_primary_10_1109_JSTSP_2021_3121878 crossref_primary_10_1002_rnc_7341 crossref_primary_10_1109_TNSE_2024_3439744 crossref_primary_10_1109_TSMC_2024_3491595 crossref_primary_10_1109_TSP_2018_2835384 crossref_primary_10_1109_TAC_2024_3522188 crossref_primary_10_1049_cmu2_12120 crossref_primary_10_1007_s10287_023_00492_w crossref_primary_10_1109_TSP_2024_3372252 crossref_primary_10_1109_TSP_2024_3372250 crossref_primary_10_1109_TWC_2021_3122959 crossref_primary_10_1109_LWC_2022_3179028 crossref_primary_10_3390_s19204521 crossref_primary_10_1109_TWC_2020_3006565 crossref_primary_10_1109_TAC_2023_3287218 crossref_primary_10_1109_ACCESS_2024_3507856 crossref_primary_10_1109_JIOT_2022_3231250 crossref_primary_10_1109_TWC_2023_3287549 crossref_primary_10_1109_TNET_2018_2851379 crossref_primary_10_1109_LSP_2020_3005053 crossref_primary_10_1109_TNET_2023_3262482 crossref_primary_10_1109_TWC_2025_3543042 crossref_primary_10_1080_02331934_2024_2407019 crossref_primary_10_1007_s11277_024_11509_1 crossref_primary_10_1109_TNSM_2020_2998175 crossref_primary_10_1109_TWC_2022_3189320 crossref_primary_10_1109_TGCN_2022_3226530 crossref_primary_10_1109_JIOT_2022_3175733 crossref_primary_10_1631_FITEE_1800566 crossref_primary_10_1109_TSP_2022_3185905 crossref_primary_10_1109_JIOT_2019_2893376 crossref_primary_10_1109_JIOT_2019_2957728 crossref_primary_10_1016_j_phycom_2023_102167 crossref_primary_10_1109_MSP_2019_2894391 crossref_primary_10_1109_TSP_2023_3295180 crossref_primary_10_1109_JIOT_2023_3347623 crossref_primary_10_1109_TNET_2019_2900434 crossref_primary_10_1016_j_comnet_2020_107380 crossref_primary_10_1109_TSIPN_2019_2901649 crossref_primary_10_1109_ACCESS_2025_3585551 crossref_primary_10_1109_TAC_2024_3489752 crossref_primary_10_1109_TII_2021_3126813 crossref_primary_10_1109_TVT_2023_3289962 crossref_primary_10_1109_TWC_2024_3514663 crossref_primary_10_1109_TWC_2020_2968431 crossref_primary_10_1109_ACCESS_2018_2879610 crossref_primary_10_1109_TITS_2022_3163804 crossref_primary_10_1109_TVT_2024_3466519 crossref_primary_10_1109_JIOT_2019_2957313 crossref_primary_10_1109_OJCOMS_2024_3522256 crossref_primary_10_1109_TMC_2021_3117511 crossref_primary_10_1016_j_adhoc_2018_10_009 crossref_primary_10_1007_s10589_020_00178_y crossref_primary_10_1007_s11432_022_3667_3 crossref_primary_10_1109_MWC_001_2100196 crossref_primary_10_1109_TVT_2024_3387468 crossref_primary_10_1109_TSP_2017_2736516 crossref_primary_10_1080_02331934_2021_1939336 crossref_primary_10_1109_TSIPN_2021_3070712 crossref_primary_10_1109_TVT_2021_3087181 crossref_primary_10_1109_TSP_2024_3401072 crossref_primary_10_1109_TAC_2021_3077874 crossref_primary_10_1109_TVT_2024_3488956 crossref_primary_10_1155_2017_3610283 crossref_primary_10_1109_TSP_2017_2690386 crossref_primary_10_1109_TSP_2020_2979602 crossref_primary_10_1109_LWC_2017_2696539 crossref_primary_10_1016_j_cja_2020_04_014 crossref_primary_10_1109_TCYB_2025_3583588 crossref_primary_10_1109_JSAC_2023_3236003 crossref_primary_10_1109_TSP_2019_2923141 crossref_primary_10_1137_19M1259973 crossref_primary_10_1109_JIOT_2019_2956409 crossref_primary_10_1109_TSP_2024_3411800 crossref_primary_10_1109_TWC_2022_3208659 crossref_primary_10_1109_TNSE_2023_3298782 crossref_primary_10_1109_TGRS_2018_2870486 crossref_primary_10_1109_TSP_2017_2742984 crossref_primary_10_1109_TCCN_2024_3391329 crossref_primary_10_1109_TGCN_2022_3208819 crossref_primary_10_1007_s11036_023_02265_w crossref_primary_10_1109_TAC_2025_3555375 crossref_primary_10_1287_moor_2022_0193 crossref_primary_10_1109_TSP_2021_3051369 crossref_primary_10_1109_JSAC_2022_3227031 crossref_primary_10_1109_LWC_2022_3189497 crossref_primary_10_1109_LWC_2024_3475734 crossref_primary_10_1109_TSP_2019_2893862 crossref_primary_10_1109_TAC_2021_3091096 crossref_primary_10_1109_TSP_2018_2871998 crossref_primary_10_1631_FITEE_2400465 crossref_primary_10_1109_TSP_2021_3094971 crossref_primary_10_1016_j_parco_2023_102999 |
| Cites_doi | 10.1109/LSP.2013.2297351 10.1109/ICASSP.2014.6853715 10.1016/0362-546X(85)90024-0 10.1109/TSP.2006.872578 10.1137/080716542 10.1109/TIT.2011.2120270 10.1007/s10107-004-0552-5 10.1109/TSP.2008.927460 10.1109/TSP.2012.2218240 10.1109/ICASSP.2016.7472376 10.1109/JPROC.2006.887322 10.1109/TSP.2007.909010 10.1109/TSP.2008.917378 10.1109/TSP.2011.2177824 10.1109/TWC.2007.05960 10.1109/TSP.2016.2637314 10.1109/TSP.2015.2436357 10.1561/9781601985118 10.1137/S1052623495293949 10.1007/BF01637664 10.1287/moor.13.3.421 10.1023/A:1025136421370 10.1109/TSP.2013.2293126 10.1109/JSAC.2013.131131 10.1109/TSP.2015.2399858 10.1007/BF01215992 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s10898-009-9456-5 10.1137/S1052623499362822 10.1007/978-1-4419-8853-9 10.1109/MSRP.2009.933371 10.1109/TSP.2011.2163066 10.1007/0-387-30065-1_8 10.1137/120891009 10.1109/TSP.2014.2315167 10.1109/TSP.2012.2208635 10.1007/978-3-642-54455-2_1 10.1109/TAC.2007.910665 10.1007/978-3-319-06569-4_2 10.1023/A:1014890403681 10.1137/0804047 10.1002/nme.1620240207 10.1287/opre.26.4.681 10.1137/S1052623498344562 10.1007/978-3-642-02431-3 10.1109/SSP.2007.4301310 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSP.2016.2637317 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 1944 |
| ExternalDocumentID | 10_1109_TSP_2016_2637317 7776948 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation; USA National Science Foundation grantid: CIF 1632599; CIF 1564044; CAREER Award 1555850 funderid: 10.13039/100000001 – fundername: Office of Naval Research grantid: N00014-16-1-2244 funderid: 10.13039/100000006 – fundername: MIUR project PLATINO grantid: PON01_01007 funderid: 10.13039/501100003407 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION |
| ID | FETCH-LOGICAL-c441t-41cb310e620759d0affadfbf07d0beddc13ce44ebc7ac73d1075e9fb501e90133 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 221 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395827100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sat Nov 29 04:10:42 EST 2025 Tue Nov 18 22:18:54 EST 2025 Wed Aug 27 08:33:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-41cb310e620759d0affadfbf07d0beddc13ce44ebc7ac73d1075e9fb501e90133 |
| OpenAccessLink | http://hdl.handle.net/11573/937935 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_7776948 crossref_citationtrail_10_1109_TSP_2016_2637317 crossref_primary_10_1109_TSP_2016_2637317 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-April15,-15 2017-4-15 |
| PublicationDateYYYYMMDD | 2017-04-15 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-April15,-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref56 ref12 ref58 ref14 ref52 ref11 ref10 fiacco (ref5) 1968 ref17 ref16 ref19 ref18 bertsekas (ref46) 2003 rockafellar (ref39) 1998 ref45 nesterov (ref44) 2004 ref48 bach (ref47) 2011 ref42 ref49 ref8 ref7 ref9 ref4 vucic (ref24) 2010 ref6 su (ref43) 2010; 1 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 chiang (ref38) 2008 ref2 bertsekas (ref21) 1989 ref1 bertsekas (ref41) 2003 clarke (ref53) 1983 scutari (ref3) 2014 ref23 ref26 scutari (ref54) 2016 ref25 facchinei (ref55) 2003 ref20 ref22 ref28 ref27 le thi (ref51) 2014; 8342 ref29 tibshirani (ref50) 1996; 58 quoc (ref15) 2011 |
| References_xml | – ident: ref30 doi: 10.1109/LSP.2013.2297351 – ident: ref1 doi: 10.1109/ICASSP.2014.6853715 – ident: ref58 doi: 10.1016/0362-546X(85)90024-0 – ident: ref35 doi: 10.1109/TSP.2006.872578 – ident: ref48 doi: 10.1137/080716542 – year: 2003 ident: ref46 publication-title: Convex Analysis and Optimization – ident: ref32 doi: 10.1109/TIT.2011.2120270 – ident: ref45 doi: 10.1007/s10107-004-0552-5 – ident: ref28 doi: 10.1109/TSP.2008.927460 – ident: ref33 doi: 10.1109/TSP.2012.2218240 – ident: ref2 doi: 10.1109/ICASSP.2016.7472376 – ident: ref37 doi: 10.1109/JPROC.2006.887322 – ident: ref36 doi: 10.1109/TSP.2007.909010 – ident: ref27 doi: 10.1109/TSP.2008.917378 – ident: ref23 doi: 10.1109/TSP.2011.2177824 – year: 2016 ident: ref54 article-title: Parallel and distributed methods for constrained nonconvex optimization-Part I: Theory publication-title: Tech Rep – ident: ref25 doi: 10.1109/TWC.2007.05960 – year: 1968 ident: ref5 publication-title: Nonlinear Programming Sequential Unconstrained Minimization Techniques – ident: ref19 doi: 10.1109/TSP.2016.2637314 – ident: ref42 doi: 10.1109/TSP.2015.2436357 – year: 2011 ident: ref47 publication-title: Optimization with Sparsity-Inducing Penalties (Foundations and Trends in Machine Learning) doi: 10.1561/9781601985118 – year: 1989 ident: ref21 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref9 doi: 10.1137/S1052623495293949 – ident: ref16 doi: 10.1007/BF01637664 – ident: ref56 doi: 10.1287/moor.13.3.421 – year: 2003 ident: ref55 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – ident: ref4 doi: 10.1023/A:1025136421370 – ident: ref13 doi: 10.1109/TSP.2013.2293126 – ident: ref34 doi: 10.1109/JSAC.2013.131131 – ident: ref49 doi: 10.1109/TSP.2015.2399858 – ident: ref57 doi: 10.1007/BF01215992 – volume: 58 start-page: 267 year: 1996 ident: ref50 article-title: Regression shrinkage and selection via the lasso publication-title: J Royal Statistical Society Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref11 doi: 10.1007/s10898-009-9456-5 – ident: ref18 doi: 10.1137/S1052623499362822 – start-page: 380 year: 2010 ident: ref24 article-title: DC programming approach for resource allocation in wireless networks publication-title: Proc 3rd Int Symp Model Optim Mobile Ad Hoc Wireless Netw – year: 2011 ident: ref15 article-title: Sequential convex programming methods for solving nonlinear optimization problems with dc constraints – volume: 1 start-page: 35 year: 2010 ident: ref43 article-title: Remarks on the gradient-projection algorithm publication-title: Nonlinear Anal Optim – year: 2004 ident: ref44 publication-title: Introductory Lectures on Convex Optimization A Basic Course (Applied Optimization) doi: 10.1007/978-1-4419-8853-9 – ident: ref29 doi: 10.1109/MSRP.2009.933371 – ident: ref31 doi: 10.1109/TSP.2011.2163066 – ident: ref40 doi: 10.1007/0-387-30065-1_8 – ident: ref12 doi: 10.1137/120891009 – ident: ref14 doi: 10.1109/TSP.2014.2315167 – ident: ref26 doi: 10.1109/TSP.2012.2208635 – volume: 8342 start-page: 1 year: 2014 ident: ref51 article-title: Recent advances in dc programming and DCA publication-title: Trans Comput Intell XIII doi: 10.1007/978-3-642-54455-2_1 – ident: ref20 doi: 10.1109/TAC.2007.910665 – ident: ref52 doi: 10.1007/978-3-319-06569-4_2 – ident: ref8 doi: 10.1023/A:1014890403681 – year: 1983 ident: ref53 publication-title: Optimization and Nonsmooth Analysis – ident: ref7 doi: 10.1137/0804047 – ident: ref17 doi: 10.1002/nme.1620240207 – ident: ref10 doi: 10.1287/opre.26.4.681 – year: 2008 ident: ref38 publication-title: Power Control in Wireless Cellular Networks – ident: ref6 doi: 10.1137/S1052623498344562 – year: 1998 ident: ref39 publication-title: Variational Analysis doi: 10.1007/978-3-642-02431-3 – year: 2014 ident: ref3 article-title: Parallel and distributed methods for nonconvex optimization-Part I: Theory – year: 2003 ident: ref41 publication-title: Convex Analysis and Optimization – ident: ref22 doi: 10.1109/SSP.2007.4301310 |
| SSID | ssj0014496 |
| Score | 2.6484733 |
| Snippet | In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints,... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1929 |
| SubjectTerms | Ad hoc networks Approximation algorithms Convergence Distributed algorithms Linear programming nonconvex optimization Optimization Signal processing algorithms successive convex approximation |
| Title | Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory |
| URI | https://ieeexplore.ieee.org/document/7776948 |
| Volume | 65 |
| WOSCitedRecordID | wos000395827100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKxQEObAVRNvnABYm0TuzEMTcEVHCgVKJIvUVeJhJSSVEXxJGP4Av5EmwnLT0gJG6W5UTJTJJ5zsy8h9CpiAFYGtJA5jwJGE2Vfee0CSASGmSkTCpLsQne7aaDgejV0PmiFwYAfPEZtNzQ5_LNSM_cr7I25zwRLF1BK3ZU9motMgaMeS0uCxdoEKd8ME9JEtHuP_ZcDVfSihLKqZcm-wlBS5oqPqR0Nv93MVtoo4KO-LL09TaqQbGD1pcIBRto0JNjJ44yxLIw-NqR4jo9KzD43itFT7DFqNiJdHppCDvfHRW-8PwdP9iPx0vVlfn18WnPNMV3F7hs3t9FT52b_tVtUGknBNoCnGnAQq0scoMksphAGCLzXJpc5YQbosAYHVINjIHSXGpOjd0FxiByFZMQLESgdA_Vi1EB-wgnJFcsTYAZkzPlEmmScMGBmJCmMVdN1J6bM9MVsbi7iWHmNxhEZNYBmXNAVjmgic4WR7yWpBp_rG042y_WVWY_-H36EK1FLu46Msb4CNWn4xkco1X9Nn2ejE_8E_MN_-_BQw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB1BqAQ9QNuAoBS6h14q1cnau_Z6e0OFKBGQRiKVcrP2YyxVSh2UBMSxP4JfyC9hd20Ch6oSN2u1tuwZ2_N2Z-Y9gC8yReR5zCJViiziLNfumzM2wkQaVIm2uarFJsRwmE8mcrQG31a9MIgYis-w4w9DLt_OzI3fKusKITLJ83XYSDlP4rpba5Uz4DyocTnAwKI0F5OnpCSV3fHVyFdxZZ0kY4IFcbLnIPRCVSUEld7O627nHWw34JGc1N5-D2tYfYC3LygF2zAZqbmXR5kSVVly6mlxvaIVWnIZtKIXxKFU4mU6gziEGx_OqlB6fkd-ut_Hn6Yv8-HvvbvSkgy-k7p9fxd-9c7GP_pRo54QGQdxlhGPjXbYDbPEoQJpqSpLZUtdUmGpRmtNzAxyjtoIZQSzbh2Yoix1SmN0IIGxPWhVswr3gWS01DzPkFtbcu1TaYoKKZDamOWp0AfQfTJnYRpqcf8Q0yIsMagsnAMK74CiccABfF2dcV3TavxnbtvbfjWvMfvHfw9_hs3--PKiuBgMzw9hK_FR2FMzpp-gtZzf4BG8MbfL34v5cXh7HgE2yMSK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+Distributed+Methods+for+Constrained+Nonconvex+Optimization%E2%80%94Part+I%3A+Theory&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Scutari%2C+Gesualdo&rft.au=Facchinei%2C+Francisco&rft.au=Lampariello%2C+Lorenzo&rft.date=2017-04-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=65&rft.issue=8&rft.spage=1929&rft.epage=1944&rft_id=info:doi/10.1109%2FTSP.2016.2637317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2016_2637317 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |