Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory

In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 65; číslo 8; s. 1929 - 1944
Hlavní autori: Scutari, Gesualdo, Facchinei, Francisco, Lampariello, Lorenzo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 15.04.2017
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems and maintains feasibility at each iteration. Convergence to a stationary solution of the original nonconvex optimization is established. Our framework is very general and flexible and unifies several existing successive convex approximation (SCA)-based algorithms. More importantly, and differently from current SCA approaches, it naturally leads to distributed and parallelizable implementations for a large class of nonconvex problems. This Part I is devoted to the description of the framework in its generality. In Part II, we customize our general methods to several (multiagent) optimization problems in communications, networking, and machine learning; the result is a new class of centralized and distributed algorithms that compare favorably to existing ad-hoc (centralized) schemes.
AbstractList In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints, and also consider extensions to some structured, nonsmooth problems. The algorithm solves a sequence of (separable) strongly convex problems and maintains feasibility at each iteration. Convergence to a stationary solution of the original nonconvex optimization is established. Our framework is very general and flexible and unifies several existing successive convex approximation (SCA)-based algorithms. More importantly, and differently from current SCA approaches, it naturally leads to distributed and parallelizable implementations for a large class of nonconvex problems. This Part I is devoted to the description of the framework in its generality. In Part II, we customize our general methods to several (multiagent) optimization problems in communications, networking, and machine learning; the result is a new class of centralized and distributed algorithms that compare favorably to existing ad-hoc (centralized) schemes.
Author Scutari, Gesualdo
Facchinei, Francisco
Lampariello, Lorenzo
Author_xml – sequence: 1
  givenname: Gesualdo
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gscutari@purdue.edu
  organization: School of Industrial Engineering and the Cyber Center (Discovery Park), Purdue University, West-Lafayette, IN, USA
– sequence: 2
  givenname: Francisco
  surname: Facchinei
  fullname: Facchinei, Francisco
  email: facchinei@diag.uniroma1.it
  organization: Department of Computer, Control, and Management Engineering, University of Rome "La Sapienza", Rome, Italy
– sequence: 3
  givenname: Lorenzo
  surname: Lampariello
  fullname: Lampariello, Lorenzo
  email: lorenzo.lampariello@uniroma3.it
  organization: Department of Business Studies, University of RomaTre, Roma, Italy
BookMark eNp9kM1KAzEUhYNUsK3uBTd5gam5TTrpuJP6V6i2YIXuhkxyQyPTpGRGsa58CJ_QJ3FqiwsXru7l3nMOh69DWj54JOQUWA-AZefzx1mvzyDt9VMuOcgD0oZMQMKETFvNzgY8GQzl4oh0quqZMRAiS9tkMVNRlSWWVHlDr1xVR1e81GjoPdbLYCpqQ6Sj4JuHcr65PwSvg3_FNzpd127l3lXtgv_6-GySajq-oPMlhrg5JodWlRWe7GeXPN1cz0d3yWR6Ox5dThItBNSJAF1wYJj2mRxkhilrlbGFZdKwAo3RwDUKgYWWSktuoJFhZosBA8wYcN4l6S5Xx1BVEW2uXf1TaVu4zIHlWz55wyff8sn3fBoj-2NcR7dScfOf5WxncYj4K5dSppkY8m-F83XH
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111700
crossref_primary_10_1109_JSYST_2020_2993048
crossref_primary_10_1109_ACCESS_2019_2926616
crossref_primary_10_1109_TAC_2022_3169179
crossref_primary_10_1109_TSP_2020_2984895
crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1109_JIOT_2020_2965898
crossref_primary_10_1109_JIOT_2024_3361907
crossref_primary_10_1109_TVT_2021_3075018
crossref_primary_10_1109_TVT_2024_3363034
crossref_primary_10_1109_TWC_2022_3169114
crossref_primary_10_1007_s10107_018_01357_w
crossref_primary_10_1109_LWC_2019_2913843
crossref_primary_10_1109_ACCESS_2024_3440000
crossref_primary_10_1109_TVT_2024_3500033
crossref_primary_10_1109_TCC_2019_2920979
crossref_primary_10_1109_JIOT_2025_3534848
crossref_primary_10_1109_TAC_2023_3239432
crossref_primary_10_1007_s10898_019_00792_z
crossref_primary_10_1109_TVT_2023_3306740
crossref_primary_10_1109_TSP_2018_2879049
crossref_primary_10_1049_iet_com_2019_0865
crossref_primary_10_1109_JSAC_2018_2872361
crossref_primary_10_1016_j_automatica_2025_112198
crossref_primary_10_1109_TGCN_2017_2770215
crossref_primary_10_1109_TWC_2020_3012016
crossref_primary_10_1109_JIOT_2022_3151619
crossref_primary_10_3390_drones7120688
crossref_primary_10_1007_s10107_019_01408_w
crossref_primary_10_1109_TSP_2021_3138242
crossref_primary_10_1287_moor_2020_1079
crossref_primary_10_1109_JSAC_2021_3088624
crossref_primary_10_1109_ACCESS_2020_2992613
crossref_primary_10_1109_TCOMM_2021_3058374
crossref_primary_10_1109_TNSE_2023_3342183
crossref_primary_10_1109_JIOT_2023_3336919
crossref_primary_10_1109_TSP_2025_3595590
crossref_primary_10_1109_TVT_2024_3379298
crossref_primary_10_1109_TWC_2025_3528002
crossref_primary_10_1109_TSMC_2020_2968959
crossref_primary_10_1109_LCOMM_2020_3024256
crossref_primary_10_1109_TITS_2024_3449034
crossref_primary_10_1007_s10957_020_01762_2
crossref_primary_10_1109_TCOMM_2020_3007612
crossref_primary_10_1109_TSP_2016_2637314
crossref_primary_10_1109_TSP_2020_3001906
crossref_primary_10_1109_TSIPN_2017_2668142
crossref_primary_10_1007_s10107_018_1235_y
crossref_primary_10_1109_TBC_2019_2932339
crossref_primary_10_1109_TCOMM_2024_3450605
crossref_primary_10_1109_TSP_2020_2996374
crossref_primary_10_1109_JIOT_2023_3335937
crossref_primary_10_1109_TWC_2020_3038787
crossref_primary_10_1049_sil2_12012
crossref_primary_10_1007_s11081_020_09585_w
crossref_primary_10_1109_ACCESS_2022_3176362
crossref_primary_10_1109_TWC_2017_2702158
crossref_primary_10_1109_TVT_2023_3308589
crossref_primary_10_1109_JIOT_2024_3424782
crossref_primary_10_1109_TVT_2024_3482412
crossref_primary_10_1109_TSIPN_2018_2876754
crossref_primary_10_1016_j_jnca_2020_102781
crossref_primary_10_1109_TMC_2021_3108960
crossref_primary_10_1109_TNET_2020_3035770
crossref_primary_10_1109_ACCESS_2019_2921626
crossref_primary_10_1016_j_frl_2018_08_001
crossref_primary_10_1109_TCOMM_2023_3334810
crossref_primary_10_1109_TSP_2018_2868265
crossref_primary_10_1109_TMC_2024_3437435
crossref_primary_10_1109_TVT_2022_3140833
crossref_primary_10_1109_TWC_2021_3128247
crossref_primary_10_1109_TSP_2017_2684748
crossref_primary_10_1109_JSTSP_2021_3121878
crossref_primary_10_1002_rnc_7341
crossref_primary_10_1109_TNSE_2024_3439744
crossref_primary_10_1109_TSMC_2024_3491595
crossref_primary_10_1109_TSP_2018_2835384
crossref_primary_10_1109_TAC_2024_3522188
crossref_primary_10_1049_cmu2_12120
crossref_primary_10_1007_s10287_023_00492_w
crossref_primary_10_1109_TSP_2024_3372252
crossref_primary_10_1109_TSP_2024_3372250
crossref_primary_10_1109_TWC_2021_3122959
crossref_primary_10_1109_LWC_2022_3179028
crossref_primary_10_3390_s19204521
crossref_primary_10_1109_TWC_2020_3006565
crossref_primary_10_1109_TAC_2023_3287218
crossref_primary_10_1109_ACCESS_2024_3507856
crossref_primary_10_1109_JIOT_2022_3231250
crossref_primary_10_1109_TWC_2023_3287549
crossref_primary_10_1109_TNET_2018_2851379
crossref_primary_10_1109_LSP_2020_3005053
crossref_primary_10_1109_TNET_2023_3262482
crossref_primary_10_1109_TWC_2025_3543042
crossref_primary_10_1080_02331934_2024_2407019
crossref_primary_10_1007_s11277_024_11509_1
crossref_primary_10_1109_TNSM_2020_2998175
crossref_primary_10_1109_TWC_2022_3189320
crossref_primary_10_1109_TGCN_2022_3226530
crossref_primary_10_1109_JIOT_2022_3175733
crossref_primary_10_1631_FITEE_1800566
crossref_primary_10_1109_TSP_2022_3185905
crossref_primary_10_1109_JIOT_2019_2893376
crossref_primary_10_1109_JIOT_2019_2957728
crossref_primary_10_1016_j_phycom_2023_102167
crossref_primary_10_1109_MSP_2019_2894391
crossref_primary_10_1109_TSP_2023_3295180
crossref_primary_10_1109_JIOT_2023_3347623
crossref_primary_10_1109_TNET_2019_2900434
crossref_primary_10_1016_j_comnet_2020_107380
crossref_primary_10_1109_TSIPN_2019_2901649
crossref_primary_10_1109_ACCESS_2025_3585551
crossref_primary_10_1109_TAC_2024_3489752
crossref_primary_10_1109_TII_2021_3126813
crossref_primary_10_1109_TVT_2023_3289962
crossref_primary_10_1109_TWC_2024_3514663
crossref_primary_10_1109_TWC_2020_2968431
crossref_primary_10_1109_ACCESS_2018_2879610
crossref_primary_10_1109_TITS_2022_3163804
crossref_primary_10_1109_TVT_2024_3466519
crossref_primary_10_1109_JIOT_2019_2957313
crossref_primary_10_1109_OJCOMS_2024_3522256
crossref_primary_10_1109_TMC_2021_3117511
crossref_primary_10_1016_j_adhoc_2018_10_009
crossref_primary_10_1007_s10589_020_00178_y
crossref_primary_10_1007_s11432_022_3667_3
crossref_primary_10_1109_MWC_001_2100196
crossref_primary_10_1109_TVT_2024_3387468
crossref_primary_10_1109_TSP_2017_2736516
crossref_primary_10_1080_02331934_2021_1939336
crossref_primary_10_1109_TSIPN_2021_3070712
crossref_primary_10_1109_TVT_2021_3087181
crossref_primary_10_1109_TSP_2024_3401072
crossref_primary_10_1109_TAC_2021_3077874
crossref_primary_10_1109_TVT_2024_3488956
crossref_primary_10_1155_2017_3610283
crossref_primary_10_1109_TSP_2017_2690386
crossref_primary_10_1109_TSP_2020_2979602
crossref_primary_10_1109_LWC_2017_2696539
crossref_primary_10_1016_j_cja_2020_04_014
crossref_primary_10_1109_TCYB_2025_3583588
crossref_primary_10_1109_JSAC_2023_3236003
crossref_primary_10_1109_TSP_2019_2923141
crossref_primary_10_1137_19M1259973
crossref_primary_10_1109_JIOT_2019_2956409
crossref_primary_10_1109_TSP_2024_3411800
crossref_primary_10_1109_TWC_2022_3208659
crossref_primary_10_1109_TNSE_2023_3298782
crossref_primary_10_1109_TGRS_2018_2870486
crossref_primary_10_1109_TSP_2017_2742984
crossref_primary_10_1109_TCCN_2024_3391329
crossref_primary_10_1109_TGCN_2022_3208819
crossref_primary_10_1007_s11036_023_02265_w
crossref_primary_10_1109_TAC_2025_3555375
crossref_primary_10_1287_moor_2022_0193
crossref_primary_10_1109_TSP_2021_3051369
crossref_primary_10_1109_JSAC_2022_3227031
crossref_primary_10_1109_LWC_2022_3189497
crossref_primary_10_1109_LWC_2024_3475734
crossref_primary_10_1109_TSP_2019_2893862
crossref_primary_10_1109_TAC_2021_3091096
crossref_primary_10_1109_TSP_2018_2871998
crossref_primary_10_1631_FITEE_2400465
crossref_primary_10_1109_TSP_2021_3094971
crossref_primary_10_1016_j_parco_2023_102999
Cites_doi 10.1109/LSP.2013.2297351
10.1109/ICASSP.2014.6853715
10.1016/0362-546X(85)90024-0
10.1109/TSP.2006.872578
10.1137/080716542
10.1109/TIT.2011.2120270
10.1007/s10107-004-0552-5
10.1109/TSP.2008.927460
10.1109/TSP.2012.2218240
10.1109/ICASSP.2016.7472376
10.1109/JPROC.2006.887322
10.1109/TSP.2007.909010
10.1109/TSP.2008.917378
10.1109/TSP.2011.2177824
10.1109/TWC.2007.05960
10.1109/TSP.2016.2637314
10.1109/TSP.2015.2436357
10.1561/9781601985118
10.1137/S1052623495293949
10.1007/BF01637664
10.1287/moor.13.3.421
10.1023/A:1025136421370
10.1109/TSP.2013.2293126
10.1109/JSAC.2013.131131
10.1109/TSP.2015.2399858
10.1007/BF01215992
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10898-009-9456-5
10.1137/S1052623499362822
10.1007/978-1-4419-8853-9
10.1109/MSRP.2009.933371
10.1109/TSP.2011.2163066
10.1007/0-387-30065-1_8
10.1137/120891009
10.1109/TSP.2014.2315167
10.1109/TSP.2012.2208635
10.1007/978-3-642-54455-2_1
10.1109/TAC.2007.910665
10.1007/978-3-319-06569-4_2
10.1023/A:1014890403681
10.1137/0804047
10.1002/nme.1620240207
10.1287/opre.26.4.681
10.1137/S1052623498344562
10.1007/978-3-642-02431-3
10.1109/SSP.2007.4301310
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2016.2637317
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1944
ExternalDocumentID 10_1109_TSP_2016_2637317
7776948
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation; USA National Science Foundation
  grantid: CIF 1632599; CIF 1564044; CAREER Award 1555850
  funderid: 10.13039/100000001
– fundername: Office of Naval Research
  grantid: N00014-16-1-2244
  funderid: 10.13039/100000006
– fundername: MIUR project PLATINO
  grantid: PON01_01007
  funderid: 10.13039/501100003407
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c441t-41cb310e620759d0affadfbf07d0beddc13ce44ebc7ac73d1075e9fb501e90133
IEDL.DBID RIE
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395827100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 04:10:42 EST 2025
Tue Nov 18 22:18:54 EST 2025
Wed Aug 27 08:33:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-41cb310e620759d0affadfbf07d0beddc13ce44ebc7ac73d1075e9fb501e90133
OpenAccessLink http://hdl.handle.net/11573/937935
PageCount 16
ParticipantIDs ieee_primary_7776948
crossref_citationtrail_10_1109_TSP_2016_2637317
crossref_primary_10_1109_TSP_2016_2637317
PublicationCentury 2000
PublicationDate 2017-April15,-15
2017-4-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref58
ref14
ref52
ref11
ref10
fiacco (ref5) 1968
ref17
ref16
ref19
ref18
bertsekas (ref46) 2003
rockafellar (ref39) 1998
ref45
nesterov (ref44) 2004
ref48
bach (ref47) 2011
ref42
ref49
ref8
ref7
ref9
ref4
vucic (ref24) 2010
ref6
su (ref43) 2010; 1
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
chiang (ref38) 2008
ref2
bertsekas (ref21) 1989
ref1
bertsekas (ref41) 2003
clarke (ref53) 1983
scutari (ref3) 2014
ref23
ref26
scutari (ref54) 2016
ref25
facchinei (ref55) 2003
ref20
ref22
ref28
ref27
le thi (ref51) 2014; 8342
ref29
tibshirani (ref50) 1996; 58
quoc (ref15) 2011
References_xml – ident: ref30
  doi: 10.1109/LSP.2013.2297351
– ident: ref1
  doi: 10.1109/ICASSP.2014.6853715
– ident: ref58
  doi: 10.1016/0362-546X(85)90024-0
– ident: ref35
  doi: 10.1109/TSP.2006.872578
– ident: ref48
  doi: 10.1137/080716542
– year: 2003
  ident: ref46
  publication-title: Convex Analysis and Optimization
– ident: ref32
  doi: 10.1109/TIT.2011.2120270
– ident: ref45
  doi: 10.1007/s10107-004-0552-5
– ident: ref28
  doi: 10.1109/TSP.2008.927460
– ident: ref33
  doi: 10.1109/TSP.2012.2218240
– ident: ref2
  doi: 10.1109/ICASSP.2016.7472376
– ident: ref37
  doi: 10.1109/JPROC.2006.887322
– ident: ref36
  doi: 10.1109/TSP.2007.909010
– ident: ref27
  doi: 10.1109/TSP.2008.917378
– ident: ref23
  doi: 10.1109/TSP.2011.2177824
– year: 2016
  ident: ref54
  article-title: Parallel and distributed methods for constrained nonconvex optimization-Part I: Theory
  publication-title: Tech Rep
– ident: ref25
  doi: 10.1109/TWC.2007.05960
– year: 1968
  ident: ref5
  publication-title: Nonlinear Programming Sequential Unconstrained Minimization Techniques
– ident: ref19
  doi: 10.1109/TSP.2016.2637314
– ident: ref42
  doi: 10.1109/TSP.2015.2436357
– year: 2011
  ident: ref47
  publication-title: Optimization with Sparsity-Inducing Penalties (Foundations and Trends in Machine Learning)
  doi: 10.1561/9781601985118
– year: 1989
  ident: ref21
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref9
  doi: 10.1137/S1052623495293949
– ident: ref16
  doi: 10.1007/BF01637664
– ident: ref56
  doi: 10.1287/moor.13.3.421
– year: 2003
  ident: ref55
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: ref4
  doi: 10.1023/A:1025136421370
– ident: ref13
  doi: 10.1109/TSP.2013.2293126
– ident: ref34
  doi: 10.1109/JSAC.2013.131131
– ident: ref49
  doi: 10.1109/TSP.2015.2399858
– ident: ref57
  doi: 10.1007/BF01215992
– volume: 58
  start-page: 267
  year: 1996
  ident: ref50
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref11
  doi: 10.1007/s10898-009-9456-5
– ident: ref18
  doi: 10.1137/S1052623499362822
– start-page: 380
  year: 2010
  ident: ref24
  article-title: DC programming approach for resource allocation in wireless networks
  publication-title: Proc 3rd Int Symp Model Optim Mobile Ad Hoc Wireless Netw
– year: 2011
  ident: ref15
  article-title: Sequential convex programming methods for solving nonlinear optimization problems with dc constraints
– volume: 1
  start-page: 35
  year: 2010
  ident: ref43
  article-title: Remarks on the gradient-projection algorithm
  publication-title: Nonlinear Anal Optim
– year: 2004
  ident: ref44
  publication-title: Introductory Lectures on Convex Optimization A Basic Course (Applied Optimization)
  doi: 10.1007/978-1-4419-8853-9
– ident: ref29
  doi: 10.1109/MSRP.2009.933371
– ident: ref31
  doi: 10.1109/TSP.2011.2163066
– ident: ref40
  doi: 10.1007/0-387-30065-1_8
– ident: ref12
  doi: 10.1137/120891009
– ident: ref14
  doi: 10.1109/TSP.2014.2315167
– ident: ref26
  doi: 10.1109/TSP.2012.2208635
– volume: 8342
  start-page: 1
  year: 2014
  ident: ref51
  article-title: Recent advances in dc programming and DCA
  publication-title: Trans Comput Intell XIII
  doi: 10.1007/978-3-642-54455-2_1
– ident: ref20
  doi: 10.1109/TAC.2007.910665
– ident: ref52
  doi: 10.1007/978-3-319-06569-4_2
– ident: ref8
  doi: 10.1023/A:1014890403681
– year: 1983
  ident: ref53
  publication-title: Optimization and Nonsmooth Analysis
– ident: ref7
  doi: 10.1137/0804047
– ident: ref17
  doi: 10.1002/nme.1620240207
– ident: ref10
  doi: 10.1287/opre.26.4.681
– year: 2008
  ident: ref38
  publication-title: Power Control in Wireless Cellular Networks
– ident: ref6
  doi: 10.1137/S1052623498344562
– year: 1998
  ident: ref39
  publication-title: Variational Analysis
  doi: 10.1007/978-3-642-02431-3
– year: 2014
  ident: ref3
  article-title: Parallel and distributed methods for nonconvex optimization-Part I: Theory
– year: 2003
  ident: ref41
  publication-title: Convex Analysis and Optimization
– ident: ref22
  doi: 10.1109/SSP.2007.4301310
SSID ssj0014496
Score 2.6482859
Snippet In this two-part paper, we propose a general algorithmic framework for the minimization of a nonconvex smooth function subject to nonconvex smooth constraints,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1929
SubjectTerms Ad hoc networks
Approximation algorithms
Convergence
Distributed algorithms
Linear programming
nonconvex optimization
Optimization
Signal processing algorithms
successive convex approximation
Title Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory
URI https://ieeexplore.ieee.org/document/7776948
Volume 65
WOSCitedRecordID wos000395827100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4f5GDF8FuXZMmqTdRh4LOgVN2K03yAsLsZOvEo3-Ef6F_iUnWzR1E8BZCUtr3St-Xvve-D6FjkVGVcNkKokxCQOPEBBmPaCAEYQIYNczTFz_d8k5H9PtJt4JO570wAOCLz6Dhhj6Xr4dq4n6VNTnnLKFiCS3Z0bRXa54xoNRrcVm4QIJY8P4sJRkmzd5D19VwsUbECCdemuwnBC1oqviQ0l7_381soLUSOuLzqa83UQXyLbS6QChYQ_1uNnLiKAOc5RpfOlJcp2cFGt95pegxthgVO5FOLw1h5zvD3Beev-N7-_F4Kbsyvz4-7ZUKfHOGp8372-ixfdW7uA5K7YRAWYBTBLSlpEVuwCKLCRIdZsZk2kgTch1K0Fq1iAJKQSqeKU60PQXGkBgZhy2wEIGQHVTNhznsIgzCWJioI7tRW3hHBNPCGC5DBZKJkNVRc2bOVJXE4u4hBqk_YIRJah2QOgekpQPq6GS-43VKqvHH2pqz_Xxdafa936f30Urk4q4jY4wPULUYTeAQLau34nk8OvJvzDdynsDm
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD74uKAu1OsD32bh5oJ12iZNUnfiA8VxHHCuzK40yQkI2pFxFJf-CH-hv8QkU0cXIrgrISntOaHnS8853wewI0umc6GSKC0VRizLbVSKlEVSUi6RM8sDffF1U7RastvN22OwO-qFQcRQfIZ7_jLk8k1PP_pfZQ0hBM-ZHIfJjLE0GXZrjXIGjAU1LgcYaJRJ0f1ISsZ5o3PV9lVcfC_lVNAgTvYZhL6oqoSgcjL3u8eZh9kaPJKDobf_whhWCzDzhVJwEbrtsu_lUW5JWRly5GlxvaIVGnIRtKIfiEOpxMt0BnEIN97qVaH0_Jlcus_HXd2X-fby6u40IGf7ZNi-vwT_T447h6dRrZ4QaQdxBhFLtHLYDXnqUEFu4tLa0lhlY2FihcbohGpkDJUWpRbUuHNghrlVWZygAwmULsNE1atwBQhK64CiSd1C4wAeldxIa4WKNSouY74KjQ9zFrqmFvcvcVuEI0acF84BhXdAUTtgFf6NVtwPaTV-mLvobT-aV5t97fvhbZg67Vw0i-ZZ63wdplMfhT01Y7YBE4P-I27CH_00uHnob4Xd8w6jlMQt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+Distributed+Methods+for+Constrained+Nonconvex+Optimization%E2%80%94Part+I%3A+Theory&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Scutari%2C+Gesualdo&rft.au=Facchinei%2C+Francisco&rft.au=Lampariello%2C+Lorenzo&rft.date=2017-04-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=65&rft.issue=8&rft.spage=1929&rft.epage=1944&rft_id=info:doi/10.1109%2FTSP.2016.2637317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2016_2637317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon