Segmentation of the ECG Signal by Means of a Linear Regression Algorithm

The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyz...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 19; no. 4; p. 775
Main Authors: Aspuru, Javier, Ochoa-Brust, Alberto, Félix, Ramón A., Mata-López, Walter, Mena, Luis J., Ostos, Rodolfo, Martínez-Peláez, Rafael
Format: Journal Article
Language:English
Published: Switzerland MDPI 14.02.2019
MDPI AG
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.
AbstractList The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.
The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.
Author Aspuru, Javier
Félix, Ramón A.
Ochoa-Brust, Alberto
Martínez-Peláez, Rafael
Mata-López, Walter
Mena, Luis J.
Ostos, Rodolfo
AuthorAffiliation 2 Academic Unit of Computing, Master Program in Applied Sciences, Polytechnic University of Sinaloa, Mazatlan 82199, Mexico; lmena@upsin.edu.mx (L.J.M.); rostos@upsin.edu.mx (R.O.)
3 Faculty of Information Technology, University of La Salle-Bajio, Av. Universidad #602, Leon 37150, Guanajuato, Mexico; rmartinezp@delasalle.edu.mx
1 Faculty of Mechanical and Electrical Engineering, University of Colima, Av. Universidad #333, Colima 28000, Mexico; jaspuru@ucol.mx (J.A.); rfelix@ucol.mx (R.A.F.); wmata@ucol.mx (W.M.-L.)
AuthorAffiliation_xml – name: 2 Academic Unit of Computing, Master Program in Applied Sciences, Polytechnic University of Sinaloa, Mazatlan 82199, Mexico; lmena@upsin.edu.mx (L.J.M.); rostos@upsin.edu.mx (R.O.)
– name: 3 Faculty of Information Technology, University of La Salle-Bajio, Av. Universidad #602, Leon 37150, Guanajuato, Mexico; rmartinezp@delasalle.edu.mx
– name: 1 Faculty of Mechanical and Electrical Engineering, University of Colima, Av. Universidad #333, Colima 28000, Mexico; jaspuru@ucol.mx (J.A.); rfelix@ucol.mx (R.A.F.); wmata@ucol.mx (W.M.-L.)
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0002-8945-4353
  surname: Aspuru
  fullname: Aspuru, Javier
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0003-3327-8562
  surname: Ochoa-Brust
  fullname: Ochoa-Brust, Alberto
– sequence: 3
  givenname: Ramón A.
  surname: Félix
  fullname: Félix, Ramón A.
– sequence: 4
  givenname: Walter
  orcidid: 0000-0002-8107-2182
  surname: Mata-López
  fullname: Mata-López, Walter
– sequence: 5
  givenname: Luis J.
  surname: Mena
  fullname: Mena, Luis J.
– sequence: 6
  givenname: Rodolfo
  surname: Ostos
  fullname: Ostos, Rodolfo
– sequence: 7
  givenname: Rafael
  orcidid: 0000-0003-2188-9892
  surname: Martínez-Peláez
  fullname: Martínez-Peláez, Rafael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30769781$$D View this record in MEDLINE/PubMed
BookMark eNptkU1r3DAQhkVJaT7aQ_9A8bE9bKNPW74UwpImgQ2FJD2LsTT2KthSKnkL-ffVdtMlKTlJaJ55Rsx7TA5CDEjIR0a_CtHS08xaKmnTqDfkiEkuF5pzevDsfkiOc76nlAsh9DtyKGhTt41mR-TyFocJwwyzj6GKfTWvsTpfXlS3fggwVt1jdY0Q8rYE1coHhFTd4JAw523H2TjE5Of19J687WHM-OHpPCE_v5_fLS8Xqx8XV8uz1cJKyeaFZIIqaWvorWspdyBraF2trBRQ27ZWSmihNNCuQ4UUGqqdos5hr5H2mosTcrXzugj35iH5CdKjieDN34eYBgNp9nZE0ynremB1I5oypqMt65TjVKLmFphti-vbzvWw6SZ0tuwhwfhC-rIS_NoM8bepJeNlt0Xw-UmQ4q8N5tlMPlscRwgYN9lw1gpW85JDQT89n7Uf8i-KAnzZATbFnBP2e4RRs43Z7GMu7Ol_rPW7CMs3_fhKxx8bZafx
CitedBy_id crossref_primary_10_1016_j_neunet_2023_03_004
crossref_primary_10_1016_j_toxicon_2024_108062
crossref_primary_10_1007_s44174_025_00378_2
crossref_primary_10_1016_j_measurement_2023_113556
crossref_primary_10_1109_ACCESS_2019_2948067
crossref_primary_10_3390_bdcc6020034
crossref_primary_10_1155_2023_9379618
crossref_primary_10_3390_electronics10020105
crossref_primary_10_3390_s23010459
crossref_primary_10_1016_j_measurement_2024_116170
crossref_primary_10_3390_s23218796
crossref_primary_10_1088_1361_6579_ad02da
crossref_primary_10_1016_j_engappai_2025_110481
crossref_primary_10_1016_j_bspc_2025_108608
crossref_primary_10_1007_s11042_025_21029_0
crossref_primary_10_1109_JSEN_2022_3162691
crossref_primary_10_3390_s21051638
crossref_primary_10_3390_bios15070442
crossref_primary_10_1016_j_cmpb_2022_106807
crossref_primary_10_15829_1560_4071_2024_5907
crossref_primary_10_3389_fcvm_2021_699145
crossref_primary_10_3390_electronics13112190
crossref_primary_10_1016_j_irbm_2024_100859
crossref_primary_10_1109_TIM_2022_3164151
crossref_primary_10_3390_electronics11040598
crossref_primary_10_1007_s11831_023_09935_8
crossref_primary_10_3390_s22249600
crossref_primary_10_1088_1757_899X_1032_1_012047
crossref_primary_10_1016_j_bspc_2022_103629
crossref_primary_10_3390_s24134201
crossref_primary_10_1016_j_compbiomed_2022_106081
crossref_primary_10_1007_s40998_023_00633_6
crossref_primary_10_1007_s41870_022_00963_4
Cites_doi 10.3390/s120911734
10.1016/j.cmpb.2008.04.006
10.12968/bjca.2013.8.1.38
10.4995/riai.2017.8833
10.1155/2018/9128054
10.1016/S0016-0032(97)00044-6
10.1109/TCSII.2014.2368619
10.1016/j.compbiomed.2016.09.004
10.1109/78.668803
10.1109/10.846677
10.1155/2017/8081361
10.1109/51.993193
10.1109/9780470544204
10.1016/j.sigpro.2013.11.012
10.1109/JBHI.2014.2310354
10.1049/iet-smt.2013.0136
10.1016/j.sigpro.2016.08.007
10.1016/j.phpro.2012.03.192
10.1111/j.1742-1241.2007.01390..x
10.1007/s00034-013-9564-9
10.1161/01.CIR.101.23.e215
10.1109/TBME.1985.325532
10.1109/ICInfA.2012.6246921
10.1155/2015/135676
10.1016/j.cmpb.2015.12.008
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s19040775
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b5cdfa16737a46b091b5d204e82ca1c9
PMC6412424
30769781
10_3390_s19040775
Genre Journal Article
GrantInformation_xml – fundername: Secretaría de Educación Pública
  grantid: DSA/103.5/15/11115
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c441t-413054c6afcd902da46a9d65c43a6c965538358a0bbe5e0a708d50ddef8e0f823
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460829200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:29:25 EDT 2025
Tue Nov 04 01:57:30 EST 2025
Sun Nov 09 11:02:09 EST 2025
Mon Jul 21 06:04:36 EDT 2025
Sat Nov 29 07:19:45 EST 2025
Tue Nov 18 22:31:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Digital Signal Processing
segmentation
Linear Regression Algorithm
ECG Sensor
identification waves
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-413054c6afcd902da46a9d65c43a6c965538358a0bbe5e0a708d50ddef8e0f823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8107-2182
0000-0003-2188-9892
0000-0002-8945-4353
0000-0003-3327-8562
OpenAccessLink https://doaj.org/article/b5cdfa16737a46b091b5d204e82ca1c9
PMID 30769781
PQID 2193162142
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b5cdfa16737a46b091b5d204e82ca1c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412424
proquest_miscellaneous_2193162142
pubmed_primary_30769781
crossref_primary_10_3390_s19040775
crossref_citationtrail_10_3390_s19040775
PublicationCentury 2000
PublicationDate 20190214
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 2
  year: 2019
  text: 20190214
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Postolache (ref_30) 2014; 8
(ref_10) 2017; 131
Beyramienanlou (ref_12) 2017; 2017
Mjahad (ref_5) 2017; 15
Mahmoud (ref_29) 2013; 32
Yan (ref_9) 2014; 98
ref_32
Zou (ref_8) 2015; 62
Lee (ref_24) 2015; 19
Soliman (ref_27) 1998; 335
Pan (ref_7) 1985; 32
Richley (ref_1) 2013; 8
ref_19
Jekova (ref_22) 2015; 2015
ref_18
ref_17
Mena (ref_3) 2018; 2018
ref_16
Rajaganeshan (ref_25) 2008; 62
Goldberger (ref_20) 2000; 101
Akhbari (ref_14) 2016; 79
Wang (ref_26) 2008; 4
Yeh (ref_13) 2008; 91
Silipo (ref_6) 1998; 46
Luz (ref_15) 2016; 127
ref_23
Kohler (ref_4) 2002; 21
Lagerholm (ref_11) 2000; 47
ref_2
Oller (ref_31) 2012; 12
ref_28
Zhang (ref_21) 2012; 25
References_xml – ident: ref_28
– volume: 12
  start-page: 11734
  year: 2012
  ident: ref_31
  article-title: Overview and evaluation of Bluetooth Low Energy: An emerging low-power wireless technology
  publication-title: Sensors
  doi: 10.3390/s120911734
– volume: 91
  start-page: 245
  year: 2008
  ident: ref_13
  article-title: QRS complexes detection for ECG signal: The difference operation method
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2008.04.006
– volume: 8
  start-page: 38
  year: 2013
  ident: ref_1
  article-title: New training and qualifications in electrocardiography
  publication-title: Br. J. Cardiac Nurs.
  doi: 10.12968/bjca.2013.8.1.38
– volume: 15
  start-page: 124
  year: 2017
  ident: ref_5
  article-title: Detección de fibrilación ventricular mediante tiempo-frecuencia y clasificador knn sin extracción de parámetros
  publication-title: Rev. Iberoam. Autom. Inf. Ind.
  doi: 10.4995/riai.2017.8833
– ident: ref_32
– volume: 2018
  start-page: 9
  year: 2018
  ident: ref_3
  article-title: Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly
  publication-title: Comput. Math Methods Med.
  doi: 10.1155/2018/9128054
– volume: 335
  start-page: 997
  year: 1998
  ident: ref_27
  article-title: Novel oscillators using current and voltage followers
  publication-title: J. Franklin Inst.
  doi: 10.1016/S0016-0032(97)00044-6
– volume: 62
  start-page: 119
  year: 2015
  ident: ref_8
  article-title: An energy-efficient design for ECG recording and R-peak detection based on wavelet transform
  publication-title: IEEE Trans. Circuits Syst. Express Briefs
  doi: 10.1109/TCSII.2014.2368619
– volume: 79
  start-page: 21
  year: 2016
  ident: ref_14
  article-title: ECG segmentation and fiducial point extraction using multi hidden Markov model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.09.004
– volume: 46
  start-page: 1417
  year: 1998
  ident: ref_6
  article-title: Artificial neural networks for automatic ECG analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.668803
– ident: ref_16
– volume: 47
  start-page: 838
  year: 2000
  ident: ref_11
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846677
– volume: 2017
  start-page: 16
  year: 2017
  ident: ref_12
  article-title: Shannon’s energy based algorithm in ECG signal processing
  publication-title: Comput. Math Methods Med.
  doi: 10.1155/2017/8081361
– volume: 21
  start-page: 42
  year: 2002
  ident: ref_4
  article-title: The principles of software QRS detection
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.993193
– ident: ref_18
– ident: ref_2
  doi: 10.1109/9780470544204
– volume: 98
  start-page: 74
  year: 2014
  ident: ref_9
  article-title: Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.11.012
– volume: 19
  start-page: 236
  year: 2015
  ident: ref_24
  article-title: Low-power wireless ECG acquisition and classification system for body sensor networks
  publication-title: IEEE J. Biomed. Health
  doi: 10.1109/JBHI.2014.2310354
– volume: 8
  start-page: 610
  year: 2014
  ident: ref_30
  article-title: Wireless sensor network-based solution for environmental monitoring: Water quality assessment case study
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0136
– volume: 131
  start-page: 113
  year: 2017
  ident: ref_10
  article-title: On the parameterization of Hermite transform with application to the compression of QRS complexes
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.08.007
– volume: 25
  start-page: 1010
  year: 2012
  ident: ref_21
  article-title: An improved QRS wave group detection algorithm and MATLAB implementation
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.03.192
– volume: 4
  start-page: 38
  year: 2008
  ident: ref_26
  article-title: Principle and application of AD620 instrumentation amplifier
  publication-title: Microprocessors
– volume: 62
  start-page: 65
  year: 2008
  ident: ref_25
  article-title: Accuracy in ECG lead placement among technicians, nurses, general physicians and cardiologists
  publication-title: Int. J. Clin. Pract.
  doi: 10.1111/j.1742-1241.2007.01390..x
– volume: 32
  start-page: 2029
  year: 2013
  ident: ref_29
  article-title: Low-noise low-pass filter for ECG portable detection systems with digitally programmable range
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-013-9564-9
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_20
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 32
  start-page: 230
  year: 1985
  ident: ref_7
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– ident: ref_17
– ident: ref_19
– ident: ref_23
  doi: 10.1109/ICInfA.2012.6246921
– volume: 2015
  start-page: 13
  year: 2015
  ident: ref_22
  article-title: Personal verification/identification via analysis of the peripheral ECG leads: influence of the personal health status on the accuracy
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/135676
– volume: 127
  start-page: 144
  year: 2016
  ident: ref_15
  article-title: ECG-based heartbeat classification for arrhythmia detection: A survey
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.12.008
SSID ssj0023338
Score 2.448853
Snippet The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 775
SubjectTerms Algorithms
Digital Signal Processing
ECG Sensor
Electrocardiography - methods
Heart - diagnostic imaging
Heart - physiology
Humans
identification waves
Linear Models
Linear Regression Algorithm
segmentation
Signal Processing, Computer-Assisted
Title Segmentation of the ECG Signal by Means of a Linear Regression Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/30769781
https://www.proquest.com/docview/2193162142
https://pubmed.ncbi.nlm.nih.gov/PMC6412424
https://doaj.org/article/b5cdfa16737a46b091b5d204e82ca1c9
Volume 19
WOSCitedRecordID wos000460829200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4aHQc4TOPHtmyjMogDl4g0sR3nWFChHFpVBaRyimzHKZUgRW2ZtMv-9r2XpFU7Ie3CxQfHcaz3nPfeJz9_D-DU5LlGrxL50oiIjhmNb6xu-ZlSXBhF9waqYhNxv69Go2SwVuqLcsIqeuBKcOdG2Ayno3IqmkuD7s2ILAy4UyHOacure0GcLMFUDbUiRF4Vj1CEoP58jm6PE9nbhvcpSfrfiiz_TZBc8zhXn-FTHSqydrXEPfjgin3YXSMQPIDurRs_17eHCjbNGYZzrHN5zW4nY3rX_GY9h86IHmmGuBP3NRu6cZX8WrD203g6mywenw_h_qpzd9n169oIvsUAZuGT7xHcSp3bLAnCDGWjk0wKyyMtbSIFGrJIKB0Y44QLdByoTARoy3LlglyF0RdoFNPCfQMWc5NIRG0IkkPuEHDgBLHEyI7nmUh4y4OzpcxSWxOHU_2KpxQBBIk3XYnXg5PV0JeKLeOtQRck-NUAIrguO1Dtaa329H9q9-B4qbYUfwg65dCFm77OUzTBUUsSk5wHXys1rj6FBk0SyZcH8YaCN9ay-aSYPJak25LKdIf8-3ss_gfsYNyVUPJ3i_-ExmL26o5g2_5aTOazJmzFo7hsVRM-XnT6g2Gz3N3Y9v50sG9w0xs8_AWo_f4n
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+the+ECG+Signal+by+Means+of+a+Linear+Regression+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Aspuru%2C+Javier&rft.au=Ochoa-Brust%2C+Alberto&rft.au=F%C3%A9lix%2C+Ram%C3%B3n+A.&rft.au=Mata-L%C3%B3pez%2C+Walter&rft.date=2019-02-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=4&rft.spage=775&rft_id=info:doi/10.3390%2Fs19040775&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s19040775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon