Segmentation of the ECG Signal by Means of a Linear Regression Algorithm
The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyz...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 19; číslo 4; s. 775 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI
14.02.2019
MDPI AG |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time. |
|---|---|
| AbstractList | The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time. The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time.The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to analyze ECG signals using mobile devices. Considering these trends, we proposed a simple and low computing cost algorithm to process and analyze an ECG signal. Our approach is based on the use of linear regression to segment the signal, with the goal of detecting the R point of the ECG wave and later, to separate the signal in periods for detecting P, Q, S, and T peaks. After pre-processing of ECG signal to reduce the noise, the algorithm was able to efficiently detect fiducial points, information that is transcendental for diagnosis of heart conditions using machine learning classifiers. When tested on 260 ECG records, the detection approach performed with a Sensitivity of 97.5% for Q-point and 100% for the rest of ECG peaks. Finally, we validated the robustness of our algorithm by developing an ECG sensor to register and transmit the acquired signals to a mobile device in real time. |
| Author | Aspuru, Javier Félix, Ramón A. Ochoa-Brust, Alberto Martínez-Peláez, Rafael Mata-López, Walter Mena, Luis J. Ostos, Rodolfo |
| AuthorAffiliation | 2 Academic Unit of Computing, Master Program in Applied Sciences, Polytechnic University of Sinaloa, Mazatlan 82199, Mexico; lmena@upsin.edu.mx (L.J.M.); rostos@upsin.edu.mx (R.O.) 3 Faculty of Information Technology, University of La Salle-Bajio, Av. Universidad #602, Leon 37150, Guanajuato, Mexico; rmartinezp@delasalle.edu.mx 1 Faculty of Mechanical and Electrical Engineering, University of Colima, Av. Universidad #333, Colima 28000, Mexico; jaspuru@ucol.mx (J.A.); rfelix@ucol.mx (R.A.F.); wmata@ucol.mx (W.M.-L.) |
| AuthorAffiliation_xml | – name: 2 Academic Unit of Computing, Master Program in Applied Sciences, Polytechnic University of Sinaloa, Mazatlan 82199, Mexico; lmena@upsin.edu.mx (L.J.M.); rostos@upsin.edu.mx (R.O.) – name: 3 Faculty of Information Technology, University of La Salle-Bajio, Av. Universidad #602, Leon 37150, Guanajuato, Mexico; rmartinezp@delasalle.edu.mx – name: 1 Faculty of Mechanical and Electrical Engineering, University of Colima, Av. Universidad #333, Colima 28000, Mexico; jaspuru@ucol.mx (J.A.); rfelix@ucol.mx (R.A.F.); wmata@ucol.mx (W.M.-L.) |
| Author_xml | – sequence: 1 givenname: Javier orcidid: 0000-0002-8945-4353 surname: Aspuru fullname: Aspuru, Javier – sequence: 2 givenname: Alberto orcidid: 0000-0003-3327-8562 surname: Ochoa-Brust fullname: Ochoa-Brust, Alberto – sequence: 3 givenname: Ramón A. surname: Félix fullname: Félix, Ramón A. – sequence: 4 givenname: Walter orcidid: 0000-0002-8107-2182 surname: Mata-López fullname: Mata-López, Walter – sequence: 5 givenname: Luis J. surname: Mena fullname: Mena, Luis J. – sequence: 6 givenname: Rodolfo surname: Ostos fullname: Ostos, Rodolfo – sequence: 7 givenname: Rafael orcidid: 0000-0003-2188-9892 surname: Martínez-Peláez fullname: Martínez-Peláez, Rafael |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30769781$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU1r3DAQhkVJaT7aQ_9A8bE9bKNPW74UwpImgQ2FJD2LsTT2KthSKnkL-ffVdtMlKTlJaJ55Rsx7TA5CDEjIR0a_CtHS08xaKmnTqDfkiEkuF5pzevDsfkiOc76nlAsh9DtyKGhTt41mR-TyFocJwwyzj6GKfTWvsTpfXlS3fggwVt1jdY0Q8rYE1coHhFTd4JAw523H2TjE5Of19J687WHM-OHpPCE_v5_fLS8Xqx8XV8uz1cJKyeaFZIIqaWvorWspdyBraF2trBRQ27ZWSmihNNCuQ4UUGqqdos5hr5H2mosTcrXzugj35iH5CdKjieDN34eYBgNp9nZE0ynremB1I5oypqMt65TjVKLmFphti-vbzvWw6SZ0tuwhwfhC-rIS_NoM8bepJeNlt0Xw-UmQ4q8N5tlMPlscRwgYN9lw1gpW85JDQT89n7Uf8i-KAnzZATbFnBP2e4RRs43Z7GMu7Ol_rPW7CMs3_fhKxx8bZafx |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_03_004 crossref_primary_10_1016_j_toxicon_2024_108062 crossref_primary_10_1007_s44174_025_00378_2 crossref_primary_10_1016_j_measurement_2023_113556 crossref_primary_10_1109_ACCESS_2019_2948067 crossref_primary_10_3390_bdcc6020034 crossref_primary_10_1155_2023_9379618 crossref_primary_10_3390_electronics10020105 crossref_primary_10_3390_s23010459 crossref_primary_10_1016_j_measurement_2024_116170 crossref_primary_10_3390_s23218796 crossref_primary_10_1088_1361_6579_ad02da crossref_primary_10_1016_j_engappai_2025_110481 crossref_primary_10_1016_j_bspc_2025_108608 crossref_primary_10_1007_s11042_025_21029_0 crossref_primary_10_1109_JSEN_2022_3162691 crossref_primary_10_3390_s21051638 crossref_primary_10_3390_bios15070442 crossref_primary_10_1016_j_cmpb_2022_106807 crossref_primary_10_15829_1560_4071_2024_5907 crossref_primary_10_3389_fcvm_2021_699145 crossref_primary_10_3390_electronics13112190 crossref_primary_10_1016_j_irbm_2024_100859 crossref_primary_10_1109_TIM_2022_3164151 crossref_primary_10_3390_electronics11040598 crossref_primary_10_1007_s11831_023_09935_8 crossref_primary_10_3390_s22249600 crossref_primary_10_1088_1757_899X_1032_1_012047 crossref_primary_10_1016_j_bspc_2022_103629 crossref_primary_10_3390_s24134201 crossref_primary_10_1016_j_compbiomed_2022_106081 crossref_primary_10_1007_s40998_023_00633_6 crossref_primary_10_1007_s41870_022_00963_4 |
| Cites_doi | 10.3390/s120911734 10.1016/j.cmpb.2008.04.006 10.12968/bjca.2013.8.1.38 10.4995/riai.2017.8833 10.1155/2018/9128054 10.1016/S0016-0032(97)00044-6 10.1109/TCSII.2014.2368619 10.1016/j.compbiomed.2016.09.004 10.1109/78.668803 10.1109/10.846677 10.1155/2017/8081361 10.1109/51.993193 10.1109/9780470544204 10.1016/j.sigpro.2013.11.012 10.1109/JBHI.2014.2310354 10.1049/iet-smt.2013.0136 10.1016/j.sigpro.2016.08.007 10.1016/j.phpro.2012.03.192 10.1111/j.1742-1241.2007.01390..x 10.1007/s00034-013-9564-9 10.1161/01.CIR.101.23.e215 10.1109/TBME.1985.325532 10.1109/ICInfA.2012.6246921 10.1155/2015/135676 10.1016/j.cmpb.2015.12.008 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3390/s19040775 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b5cdfa16737a46b091b5d204e82ca1c9 PMC6412424 30769781 10_3390_s19040775 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Secretaría de Educación Pública grantid: DSA/103.5/15/11115 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c441t-413054c6afcd902da46a9d65c43a6c965538358a0bbe5e0a708d50ddef8e0f823 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460829200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:29:25 EDT 2025 Tue Nov 04 01:57:30 EST 2025 Sun Nov 09 11:02:09 EST 2025 Mon Jul 21 06:04:36 EDT 2025 Sat Nov 29 07:19:45 EST 2025 Tue Nov 18 22:31:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Digital Signal Processing segmentation Linear Regression Algorithm ECG Sensor identification waves |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-413054c6afcd902da46a9d65c43a6c965538358a0bbe5e0a708d50ddef8e0f823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8107-2182 0000-0003-2188-9892 0000-0002-8945-4353 0000-0003-3327-8562 |
| OpenAccessLink | https://doaj.org/article/b5cdfa16737a46b091b5d204e82ca1c9 |
| PMID | 30769781 |
| PQID | 2193162142 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b5cdfa16737a46b091b5d204e82ca1c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412424 proquest_miscellaneous_2193162142 pubmed_primary_30769781 crossref_primary_10_3390_s19040775 crossref_citationtrail_10_3390_s19040775 |
| PublicationCentury | 2000 |
| PublicationDate | 20190214 |
| PublicationDateYYYYMMDD | 2019-02-14 |
| PublicationDate_xml | – month: 2 year: 2019 text: 20190214 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Postolache (ref_30) 2014; 8 (ref_10) 2017; 131 Beyramienanlou (ref_12) 2017; 2017 Mjahad (ref_5) 2017; 15 Mahmoud (ref_29) 2013; 32 Yan (ref_9) 2014; 98 ref_32 Zou (ref_8) 2015; 62 Lee (ref_24) 2015; 19 Soliman (ref_27) 1998; 335 Pan (ref_7) 1985; 32 Richley (ref_1) 2013; 8 ref_19 Jekova (ref_22) 2015; 2015 ref_18 ref_17 Mena (ref_3) 2018; 2018 ref_16 Rajaganeshan (ref_25) 2008; 62 Goldberger (ref_20) 2000; 101 Akhbari (ref_14) 2016; 79 Wang (ref_26) 2008; 4 Yeh (ref_13) 2008; 91 Silipo (ref_6) 1998; 46 Luz (ref_15) 2016; 127 ref_23 Kohler (ref_4) 2002; 21 Lagerholm (ref_11) 2000; 47 ref_2 Oller (ref_31) 2012; 12 ref_28 Zhang (ref_21) 2012; 25 |
| References_xml | – ident: ref_28 – volume: 12 start-page: 11734 year: 2012 ident: ref_31 article-title: Overview and evaluation of Bluetooth Low Energy: An emerging low-power wireless technology publication-title: Sensors doi: 10.3390/s120911734 – volume: 91 start-page: 245 year: 2008 ident: ref_13 article-title: QRS complexes detection for ECG signal: The difference operation method publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2008.04.006 – volume: 8 start-page: 38 year: 2013 ident: ref_1 article-title: New training and qualifications in electrocardiography publication-title: Br. J. Cardiac Nurs. doi: 10.12968/bjca.2013.8.1.38 – volume: 15 start-page: 124 year: 2017 ident: ref_5 article-title: Detección de fibrilación ventricular mediante tiempo-frecuencia y clasificador knn sin extracción de parámetros publication-title: Rev. Iberoam. Autom. Inf. Ind. doi: 10.4995/riai.2017.8833 – ident: ref_32 – volume: 2018 start-page: 9 year: 2018 ident: ref_3 article-title: Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly publication-title: Comput. Math Methods Med. doi: 10.1155/2018/9128054 – volume: 335 start-page: 997 year: 1998 ident: ref_27 article-title: Novel oscillators using current and voltage followers publication-title: J. Franklin Inst. doi: 10.1016/S0016-0032(97)00044-6 – volume: 62 start-page: 119 year: 2015 ident: ref_8 article-title: An energy-efficient design for ECG recording and R-peak detection based on wavelet transform publication-title: IEEE Trans. Circuits Syst. Express Briefs doi: 10.1109/TCSII.2014.2368619 – volume: 79 start-page: 21 year: 2016 ident: ref_14 article-title: ECG segmentation and fiducial point extraction using multi hidden Markov model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.09.004 – volume: 46 start-page: 1417 year: 1998 ident: ref_6 article-title: Artificial neural networks for automatic ECG analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.668803 – ident: ref_16 – volume: 47 start-page: 838 year: 2000 ident: ref_11 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846677 – volume: 2017 start-page: 16 year: 2017 ident: ref_12 article-title: Shannon’s energy based algorithm in ECG signal processing publication-title: Comput. Math Methods Med. doi: 10.1155/2017/8081361 – volume: 21 start-page: 42 year: 2002 ident: ref_4 article-title: The principles of software QRS detection publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.993193 – ident: ref_18 – ident: ref_2 doi: 10.1109/9780470544204 – volume: 98 start-page: 74 year: 2014 ident: ref_9 article-title: Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.11.012 – volume: 19 start-page: 236 year: 2015 ident: ref_24 article-title: Low-power wireless ECG acquisition and classification system for body sensor networks publication-title: IEEE J. Biomed. Health doi: 10.1109/JBHI.2014.2310354 – volume: 8 start-page: 610 year: 2014 ident: ref_30 article-title: Wireless sensor network-based solution for environmental monitoring: Water quality assessment case study publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2013.0136 – volume: 131 start-page: 113 year: 2017 ident: ref_10 article-title: On the parameterization of Hermite transform with application to the compression of QRS complexes publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.08.007 – volume: 25 start-page: 1010 year: 2012 ident: ref_21 article-title: An improved QRS wave group detection algorithm and MATLAB implementation publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.03.192 – volume: 4 start-page: 38 year: 2008 ident: ref_26 article-title: Principle and application of AD620 instrumentation amplifier publication-title: Microprocessors – volume: 62 start-page: 65 year: 2008 ident: ref_25 article-title: Accuracy in ECG lead placement among technicians, nurses, general physicians and cardiologists publication-title: Int. J. Clin. Pract. doi: 10.1111/j.1742-1241.2007.01390..x – volume: 32 start-page: 2029 year: 2013 ident: ref_29 article-title: Low-noise low-pass filter for ECG portable detection systems with digitally programmable range publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-013-9564-9 – volume: 101 start-page: e215 year: 2000 ident: ref_20 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 32 start-page: 230 year: 1985 ident: ref_7 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – ident: ref_17 – ident: ref_19 – ident: ref_23 doi: 10.1109/ICInfA.2012.6246921 – volume: 2015 start-page: 13 year: 2015 ident: ref_22 article-title: Personal verification/identification via analysis of the peripheral ECG leads: influence of the personal health status on the accuracy publication-title: BioMed Res. Int. doi: 10.1155/2015/135676 – volume: 127 start-page: 144 year: 2016 ident: ref_15 article-title: ECG-based heartbeat classification for arrhythmia detection: A survey publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.12.008 |
| SSID | ssj0023338 |
| Score | 2.4487736 |
| Snippet | The monitoring and processing of electrocardiogram (ECG) beats have been actively studied in recent years: new lines of research have even been developed to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 775 |
| SubjectTerms | Algorithms Digital Signal Processing ECG Sensor Electrocardiography - methods Heart - diagnostic imaging Heart - physiology Humans identification waves Linear Models Linear Regression Algorithm segmentation Signal Processing, Computer-Assisted |
| Title | Segmentation of the ECG Signal by Means of a Linear Regression Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30769781 https://www.proquest.com/docview/2193162142 https://pubmed.ncbi.nlm.nih.gov/PMC6412424 https://doaj.org/article/b5cdfa16737a46b091b5d204e82ca1c9 |
| Volume | 19 |
| WOSCitedRecordID | wos000460829200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4UAPqLxdaLQgDlysrr0P7x7bKqVIJIpaQOFk7ctppNapkrQSF347s7YTJagSFy572B3Lq5n1fDPy7DcAHxVnwfOiSvPM0ZSLoFNlnU2tUlYVXgfetG_78bUYDtV4rEcbrb5iTVhLD9wq7tAK5yuTxXYqhkuL8GaFzykPKncmc83VPVroVTLVpVoMM6-WR4hhUn-4QNjjkextC30akv77Isu_CyQ3EOd0D552oSI5arf4DB6E-jnsbhAIvoCzizC57m4P1WRWEQznSP_kM7mYTuKz9hcZBASjuGQI5p14rsl5mLTFrzU5uprM5tPl5fVL-H7a_3Zylna9EVKHAcwyjdgjuJOmcl7T3KNujPZSOM6MdFoKdGRMKEOtDSJQU1DlBUVfVqlAK5WzV7BTz-rwBkjkbBPUMiYjVYyxKMBsYagKudfSmwQ-rXRWuo44PPavuCoxgYjqLdfqTeDDWvSmZcu4T-g4Kn4tEAmumwk0e9mZvfyX2RN4vzJbiR9E_Mth6jC7XZToglkmI5NcAq9bM65fhQ5NRpKvBIotA2_tZXulnl42pNsytunO-f7_2PxbeIJxl47F3xl_BzvL-W04gMfubjldzHvwsBgXzah68Oi4Pxyd95rTjePgdx_nRl8Go59_AMH1_yY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+the+ECG+Signal+by+Means+of+a+Linear+Regression+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Aspuru%2C+Javier&rft.au=Ochoa-Brust%2C+Alberto&rft.au=F%C3%A9lix%2C+Ram%C3%B3n+A&rft.au=Mata-L%C3%B3pez%2C+Walter&rft.date=2019-02-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=4&rft_id=info:doi/10.3390%2Fs19040775&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |