Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations

As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews Jg. 45; H. 15; S. 4340
Hauptverfasser: Liu, Lili, Niu, Zhiqiang, Chen, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 25.07.2016
ISSN:1460-4744, 1460-4744
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
AbstractList As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
Author Chen, Jun
Niu, Zhiqiang
Liu, Lili
Author_xml – sequence: 1
  givenname: Lili
  surname: Liu
  fullname: Liu, Lili
  email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn
  organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn and School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
– sequence: 2
  givenname: Zhiqiang
  surname: Niu
  fullname: Niu, Zhiqiang
  email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn
  organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn
– sequence: 3
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn
  organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27263796$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA_d-AMkSzfVvJp0ljL4ggE3zrrcJjfSoU1q0g747x1xBFfnwPn4FmdJZiEGJOSaszvO5PreapsZY4rvz8iCK80KZZSa_etzssx5zxjnRosLMhdGaGnWekFgF2wMBwxjGwN0NE8DJgsD2HaMKVOfYk8DhGghNTEUDWR0FDu0Y4oOaQ8jpha6TMdIHR5ai_Qo9O3HlODHmS_JuT_ueHXKFdk9Pb5vXort2_Pr5mFbWKX4WEhgkkOlLXovNfdc-0ahAmm5kg50VYrKloACeWn8ugFXcnSIXpvKKdRiRW5_vUOKnxPmse7bbLHrIGCccs0rZoTRUqgjenNCp6ZHVw-p7SF91X-3iG8D2GjT
CitedBy_id crossref_primary_10_1016_j_gee_2021_04_006
crossref_primary_10_3390_polym11050821
crossref_primary_10_1016_j_apsusc_2022_154530
crossref_primary_10_1016_j_est_2024_110811
crossref_primary_10_1007_s40843_017_9132_8
crossref_primary_10_1016_j_jechem_2017_11_020
crossref_primary_10_1039_C8QI01010B
crossref_primary_10_3390_nano11123249
crossref_primary_10_1039_D2EE00376G
crossref_primary_10_1016_j_electacta_2017_02_037
crossref_primary_10_1007_s40820_023_01073_x
crossref_primary_10_1016_j_est_2024_114851
crossref_primary_10_1016_j_electacta_2019_06_056
crossref_primary_10_1016_j_jechem_2017_11_026
crossref_primary_10_1016_j_jelechem_2018_05_034
crossref_primary_10_1016_j_est_2022_104938
crossref_primary_10_1016_j_mser_2025_101041
crossref_primary_10_1039_C7TA04001F
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_134
crossref_primary_10_1007_s41918_020_00071_6
crossref_primary_10_3390_nano12152695
crossref_primary_10_1016_j_nanoen_2017_10_056
crossref_primary_10_1007_s10854_018_0530_y
crossref_primary_10_1016_j_colsurfa_2022_128473
crossref_primary_10_1007_s10934_020_00957_2
crossref_primary_10_1039_C7CS00505A
crossref_primary_10_1016_j_jelechem_2018_10_050
crossref_primary_10_1016_j_jssc_2017_05_035
crossref_primary_10_1016_j_apsusc_2019_144841
crossref_primary_10_1016_j_jpowsour_2019_03_094
crossref_primary_10_1016_j_jallcom_2018_11_169
crossref_primary_10_1016_j_jcis_2024_10_064
crossref_primary_10_1002_celc_201901499
crossref_primary_10_1016_j_ssi_2018_11_014
crossref_primary_10_3390_batteries10080284
crossref_primary_10_1039_D5DT00939A
crossref_primary_10_1088_1361_6528_ac0190
crossref_primary_10_1016_j_micromeso_2020_110283
crossref_primary_10_1002_smll_202006434
crossref_primary_10_1016_j_jcis_2017_10_031
crossref_primary_10_1002_adfm_201902860
crossref_primary_10_1016_j_nanoen_2018_03_016
crossref_primary_10_1016_j_inoche_2023_111639
crossref_primary_10_1007_s10450_020_00221_8
crossref_primary_10_1007_s10853_021_06539_0
crossref_primary_10_1016_j_est_2023_107826
crossref_primary_10_1016_j_jallcom_2020_157095
crossref_primary_10_1016_j_synthmet_2025_117880
crossref_primary_10_1016_j_mattod_2017_04_026
crossref_primary_10_1021_acsaem_5c00149
crossref_primary_10_1002_anie_202506922
crossref_primary_10_1016_S1872_5805_18_60342_7
crossref_primary_10_1002_celc_201900966
crossref_primary_10_1016_j_ccr_2020_213660
crossref_primary_10_1007_s40843_017_9154_2
crossref_primary_10_1007_s41918_019_00057_z
crossref_primary_10_1016_j_electacta_2024_145126
crossref_primary_10_1002_aoc_6162
crossref_primary_10_1039_C9QM00062C
crossref_primary_10_1002_jccs_202100043
crossref_primary_10_1016_j_est_2023_107268
crossref_primary_10_1016_j_jallcom_2017_04_035
crossref_primary_10_1016_j_jelechem_2023_117379
crossref_primary_10_1002_adfm_202009209
crossref_primary_10_3389_fmats_2020_00147
crossref_primary_10_1016_j_ces_2023_118559
crossref_primary_10_1016_j_est_2021_103303
crossref_primary_10_1016_j_jpowsour_2017_04_100
crossref_primary_10_1007_s12274_017_1587_2
crossref_primary_10_1016_j_jechem_2019_03_034
crossref_primary_10_1002_ange_202506922
crossref_primary_10_1016_j_matlet_2018_09_020
crossref_primary_10_1016_j_apsusc_2018_07_215
crossref_primary_10_1002_adma_201903955
crossref_primary_10_1140_epjp_s13360_023_04001_5
crossref_primary_10_1016_j_jallcom_2018_07_064
crossref_primary_10_1016_j_electacta_2023_142866
crossref_primary_10_1039_C9SE00341J
crossref_primary_10_1007_s12598_017_0890_0
crossref_primary_10_1016_j_ceramint_2021_06_078
crossref_primary_10_1016_j_ijhydene_2020_09_161
crossref_primary_10_1002_smtd_201800443
crossref_primary_10_1016_j_jechem_2025_02_054
crossref_primary_10_1039_C7QI00361G
crossref_primary_10_1007_s10854_018_8763_3
crossref_primary_10_1016_j_est_2022_104928
crossref_primary_10_1016_j_jaap_2025_107110
crossref_primary_10_1016_j_jpowsour_2019_227220
crossref_primary_10_1016_j_jorganchem_2017_10_002
crossref_primary_10_1016_j_est_2023_106962
crossref_primary_10_1002_smll_201800879
crossref_primary_10_1039_D2CP02795J
crossref_primary_10_1080_10667857_2019_1699263
crossref_primary_10_1016_j_matdes_2022_111017
crossref_primary_10_1021_acsami_4c21036
crossref_primary_10_1002_aoc_4848
crossref_primary_10_1016_j_jcis_2018_02_010
crossref_primary_10_1016_j_jelechem_2023_117903
crossref_primary_10_1002_adfm_201707247
crossref_primary_10_1002_aelm_201800179
crossref_primary_10_1016_j_colsurfa_2023_131552
crossref_primary_10_1016_j_carbon_2020_03_044
crossref_primary_10_1002_marc_201800770
crossref_primary_10_1007_s10854_021_07391_3
crossref_primary_10_1007_s10854_017_6771_3
crossref_primary_10_1021_acs_energyfuels_5c00973
crossref_primary_10_1088_1361_6528_ab9f77
crossref_primary_10_1016_j_electacta_2019_03_155
crossref_primary_10_1039_C9QI00173E
crossref_primary_10_1016_j_susmat_2024_e00891
crossref_primary_10_1016_j_jallcom_2019_03_014
crossref_primary_10_1016_j_electacta_2019_04_087
crossref_primary_10_1016_j_electacta_2021_139297
crossref_primary_10_1016_j_jallcom_2024_175669
crossref_primary_10_1016_j_est_2023_107321
crossref_primary_10_1016_j_surfin_2025_107245
crossref_primary_10_3390_en15103696
crossref_primary_10_1007_s11664_025_12341_4
crossref_primary_10_1016_j_micromeso_2020_110870
crossref_primary_10_1002_adma_202008140
crossref_primary_10_1016_j_jpowsour_2020_228448
crossref_primary_10_1016_j_est_2022_105553
crossref_primary_10_1016_j_cej_2019_122979
crossref_primary_10_1002_adfm_202111805
crossref_primary_10_1016_j_cej_2020_128317
crossref_primary_10_1016_j_jcis_2019_10_023
crossref_primary_10_1002_cssc_201800147
crossref_primary_10_1016_j_ceramint_2021_04_100
crossref_primary_10_1016_j_jcis_2020_03_126
crossref_primary_10_1039_C9QI00390H
crossref_primary_10_1088_1674_4926_44_4_041601
crossref_primary_10_1016_j_cej_2018_02_085
crossref_primary_10_1016_j_electacta_2025_146566
crossref_primary_10_1016_j_jcis_2017_09_017
crossref_primary_10_1002_aelm_201900724
crossref_primary_10_1016_j_jechem_2021_08_049
crossref_primary_10_1080_14658011_2021_1966247
crossref_primary_10_1016_j_apsusc_2019_05_142
crossref_primary_10_3390_molecules27217629
crossref_primary_10_1016_j_jpcs_2025_112747
crossref_primary_10_1002_er_6179
crossref_primary_10_1002_cssc_201802450
crossref_primary_10_1039_D4EE04348K
crossref_primary_10_1016_j_jcis_2019_09_065
crossref_primary_10_1016_j_rser_2025_115914
crossref_primary_10_1016_j_synthmet_2023_117521
crossref_primary_10_1002_adma_202005531
crossref_primary_10_1007_s40843_021_1924_2
crossref_primary_10_1002_adma_201700515
crossref_primary_10_1016_j_jcis_2022_04_180
crossref_primary_10_1002_inf2_12037
crossref_primary_10_1016_j_apsusc_2022_153617
crossref_primary_10_1002_adfm_202213095
crossref_primary_10_1007_s41061_017_0102_2
crossref_primary_10_1007_s11595_024_3010_7
crossref_primary_10_1088_2043_6254_aba1dc
crossref_primary_10_1002_smll_201704497
crossref_primary_10_1002_smtd_202000853
crossref_primary_10_1016_j_cej_2018_05_011
crossref_primary_10_1016_j_electacta_2017_08_003
crossref_primary_10_1002_smll_201702407
crossref_primary_10_1016_j_cej_2024_151857
crossref_primary_10_1038_s41598_020_61138_4
crossref_primary_10_54392_nnxt2221
crossref_primary_10_1039_D0MH00610F
crossref_primary_10_1002_admt_202100773
crossref_primary_10_1007_s10854_017_8444_7
crossref_primary_10_1088_2058_6272_ac4bb5
crossref_primary_10_1002_aenm_202001608
crossref_primary_10_1007_s10853_020_04881_3
crossref_primary_10_1002_smtd_201800367
crossref_primary_10_1016_j_cej_2017_12_095
crossref_primary_10_3389_fchem_2020_611852
crossref_primary_10_1016_j_jechem_2017_11_016
crossref_primary_10_1007_s42765_023_00287_3
crossref_primary_10_1016_j_cej_2022_140246
crossref_primary_10_1007_s11581_021_03993_3
crossref_primary_10_1016_j_jelechem_2019_03_073
crossref_primary_10_1088_1361_6528_aab124
crossref_primary_10_1016_j_mtchem_2020_100410
crossref_primary_10_1007_s40843_017_9095_4
crossref_primary_10_1088_1361_6528_aab129
crossref_primary_10_1007_s42114_023_00675_8
crossref_primary_10_1007_s11581_020_03603_8
crossref_primary_10_1016_j_carbon_2017_03_102
crossref_primary_10_1016_j_jelechem_2020_114551
crossref_primary_10_1039_D0RA10377B
crossref_primary_10_1039_D2MH01345B
crossref_primary_10_1016_j_electacta_2017_08_051
crossref_primary_10_1002_bte2_20220021
crossref_primary_10_1002_smll_201900721
crossref_primary_10_3390_en14040979
crossref_primary_10_1016_j_carbon_2022_07_015
crossref_primary_10_1002_slct_201802400
crossref_primary_10_1039_D5NR01156F
crossref_primary_10_1002_anie_201804582
crossref_primary_10_1002_chem_202103145
crossref_primary_10_1016_j_micromeso_2020_110670
crossref_primary_10_1016_j_cej_2025_163772
crossref_primary_10_1016_j_indcrop_2024_118503
crossref_primary_10_1016_j_jallcom_2018_04_031
crossref_primary_10_1016_j_biortech_2019_122696
crossref_primary_10_1016_j_jpowsour_2018_09_012
crossref_primary_10_1016_j_orgel_2017_09_034
crossref_primary_10_1007_s11426_018_9394_1
crossref_primary_10_1016_j_ijbiomac_2022_06_191
crossref_primary_10_1016_j_jpowsour_2021_229634
crossref_primary_10_1002_adfm_202423854
crossref_primary_10_1016_j_electacta_2017_08_181
crossref_primary_10_1016_j_fuel_2024_133639
crossref_primary_10_1007_s40843_020_1417_8
crossref_primary_10_1016_j_electacta_2019_04_157
crossref_primary_10_1002_adfm_201801998
crossref_primary_10_1002_tcr_201700037
crossref_primary_10_1016_j_est_2021_102503
crossref_primary_10_1016_j_jpowsour_2019_227044
crossref_primary_10_1016_j_carbon_2023_01_013
crossref_primary_10_1016_j_est_2024_112040
crossref_primary_10_1039_C7CS00787F
crossref_primary_10_1002_ece2_21
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1080_25740881_2021_2015775
crossref_primary_10_1039_C9NR06476A
crossref_primary_10_1016_j_carbon_2022_03_023
crossref_primary_10_1016_j_jpowsour_2018_09_044
crossref_primary_10_1016_j_jelechem_2022_116716
crossref_primary_10_1088_1361_6528_aac260
crossref_primary_10_1016_j_nanoen_2017_04_054
crossref_primary_10_1016_j_est_2022_105164
crossref_primary_10_1016_j_materresbull_2021_111266
crossref_primary_10_1039_D3RA06941A
crossref_primary_10_1002_cctc_202401922
crossref_primary_10_1016_j_est_2021_102291
crossref_primary_10_1016_j_jiec_2024_06_025
crossref_primary_10_1007_s10854_023_09892_9
crossref_primary_10_1016_j_cej_2024_156147
crossref_primary_10_1016_j_jpowsour_2024_235209
crossref_primary_10_1002_celc_201600830
crossref_primary_10_1016_j_jallcom_2019_01_302
crossref_primary_10_1016_j_jechem_2017_10_034
crossref_primary_10_3390_chemosensors10060223
crossref_primary_10_1016_j_jechem_2017_09_034
crossref_primary_10_1016_j_jpowsour_2018_10_016
crossref_primary_10_1016_j_carbon_2019_04_056
crossref_primary_10_1016_j_diamond_2022_109133
crossref_primary_10_1007_s12274_017_1448_z
crossref_primary_10_1016_j_jallcom_2024_174393
crossref_primary_10_1016_j_jcis_2019_11_038
crossref_primary_10_1016_j_cej_2021_128781
crossref_primary_10_1063_5_0051631
crossref_primary_10_1016_S1872_5805_22_60637_1
crossref_primary_10_1039_D5TA03175C
crossref_primary_10_1016_j_jelechem_2020_114464
crossref_primary_10_1002_advs_201700003
crossref_primary_10_1007_s11431_019_1510_0
crossref_primary_10_1002_cssc_201700792
crossref_primary_10_1016_j_apsusc_2021_151174
crossref_primary_10_1002_cssc_201902071
crossref_primary_10_1016_j_jechem_2017_08_015
crossref_primary_10_1002_adfm_202101302
crossref_primary_10_1016_j_electacta_2018_06_061
crossref_primary_10_1002_aenm_201701369
crossref_primary_10_1016_j_electacta_2018_02_008
crossref_primary_10_1016_j_ijhydene_2020_10_253
crossref_primary_10_1002_smll_201901145
crossref_primary_10_1007_s12274_017_1749_2
crossref_primary_10_1016_j_jelechem_2018_03_016
crossref_primary_10_1016_j_jiec_2021_04_044
crossref_primary_10_1002_aenm_201900618
crossref_primary_10_1002_admt_201800053
crossref_primary_10_1016_j_apsusc_2018_02_273
crossref_primary_10_1007_s11581_018_2459_9
crossref_primary_10_1039_C8QI00832A
crossref_primary_10_1039_D2RA07870H
crossref_primary_10_1007_s40242_017_7026_9
crossref_primary_10_1080_14658011_2023_2219085
crossref_primary_10_1016_j_carbon_2021_01_115
crossref_primary_10_1016_j_electacta_2018_03_037
crossref_primary_10_1016_j_jechem_2022_06_051
crossref_primary_10_1016_j_bios_2018_10_053
crossref_primary_10_1016_j_colsurfb_2017_03_011
crossref_primary_10_1016_j_ijhydene_2023_05_112
crossref_primary_10_1016_j_jallcom_2019_07_151
crossref_primary_10_1016_j_jcis_2018_08_035
crossref_primary_10_1016_j_micromeso_2018_12_007
crossref_primary_10_1002_adfm_202204426
crossref_primary_10_1002_cssc_201601571
crossref_primary_10_1016_j_jcis_2018_04_027
crossref_primary_10_1039_C9NR03056E
crossref_primary_10_1007_s10854_023_10314_z
crossref_primary_10_1016_j_carbon_2018_04_075
crossref_primary_10_1016_j_compositesb_2020_107767
crossref_primary_10_1016_j_est_2023_109104
crossref_primary_10_1016_j_est_2023_107289
crossref_primary_10_1002_aesr_202100220
crossref_primary_10_1016_j_jcis_2023_03_070
crossref_primary_10_1016_j_jechem_2022_12_030
crossref_primary_10_1002_aenm_201901892
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1016_j_inoche_2019_06_009
crossref_primary_10_1007_s10008_019_04211_x
crossref_primary_10_1016_j_ceramint_2018_06_215
crossref_primary_10_1002_cssc_201801757
crossref_primary_10_1016_j_cclet_2018_01_013
crossref_primary_10_1016_j_cej_2022_137331
crossref_primary_10_1016_j_electacta_2017_01_012
crossref_primary_10_1016_j_jpcs_2017_10_037
crossref_primary_10_1002_inf2_12549
crossref_primary_10_1016_j_carbon_2018_09_067
crossref_primary_10_1016_j_compositesb_2019_107001
crossref_primary_10_1016_j_est_2025_117669
crossref_primary_10_1002_admt_202201223
crossref_primary_10_1016_j_est_2023_107271
crossref_primary_10_1016_j_apsusc_2019_143557
crossref_primary_10_1016_j_jelechem_2020_113828
crossref_primary_10_1016_j_carbon_2020_02_077
crossref_primary_10_3390_ijms23063174
crossref_primary_10_1016_j_susmat_2024_e01111
crossref_primary_10_1016_j_est_2021_103912
crossref_primary_10_1002_celc_202300751
crossref_primary_10_1002_cey2_64
crossref_primary_10_1016_j_jcis_2017_10_072
crossref_primary_10_1016_j_electacta_2020_136599
crossref_primary_10_1016_j_electacta_2019_135065
crossref_primary_10_1016_j_jechem_2020_04_064
crossref_primary_10_1016_j_jallcom_2018_04_123
crossref_primary_10_1016_j_jelechem_2021_115785
crossref_primary_10_1002_ange_201804582
crossref_primary_10_1002_smll_201701026
crossref_primary_10_1002_batt_201900229
crossref_primary_10_1002_adfm_201803471
crossref_primary_10_1016_j_est_2024_113901
crossref_primary_10_1039_C8NR07469K
crossref_primary_10_1016_j_jpowsour_2019_01_053
crossref_primary_10_1039_D0RA01844A
crossref_primary_10_1002_aenm_201700127
crossref_primary_10_1016_j_electacta_2019_01_162
crossref_primary_10_1080_10406638_2020_1852277
crossref_primary_10_3390_nano8060412
crossref_primary_10_1002_adfm_201606696
crossref_primary_10_1002_aenm_201702787
crossref_primary_10_1016_j_jallcom_2019_151737
crossref_primary_10_1016_j_est_2023_110350
crossref_primary_10_1016_j_electacta_2019_02_056
crossref_primary_10_1016_j_apsusc_2018_10_209
crossref_primary_10_1016_j_electacta_2019_04_106
crossref_primary_10_1039_C8EE02924E
crossref_primary_10_1002_admi_201700855
crossref_primary_10_1016_j_electacta_2018_11_067
crossref_primary_10_1016_j_jelechem_2019_04_021
crossref_primary_10_1088_1361_6528_abf59d
crossref_primary_10_1002_adma_201703040
crossref_primary_10_1039_C8QI00172C
crossref_primary_10_1016_j_jpowsour_2017_12_012
crossref_primary_10_1016_j_jssc_2018_05_038
crossref_primary_10_1016_j_electacta_2019_135170
crossref_primary_10_1063_5_0048446
crossref_primary_10_3390_cryst11070784
crossref_primary_10_1002_celc_201901951
crossref_primary_10_1002_sus2_151
crossref_primary_10_1016_j_micromeso_2016_10_048
crossref_primary_10_1002_smll_202400690
crossref_primary_10_1016_j_jpowsour_2016_08_111
crossref_primary_10_1016_j_nanoen_2020_105616
crossref_primary_10_1016_j_electacta_2018_09_177
crossref_primary_10_1002_aenm_201700592
crossref_primary_10_1016_j_diamond_2023_110169
crossref_primary_10_1039_D0NR03549A
crossref_primary_10_1002_ange_202008960
crossref_primary_10_1007_s10853_019_04129_9
crossref_primary_10_1016_j_jelechem_2023_117869
crossref_primary_10_1016_j_electacta_2020_137667
crossref_primary_10_1016_j_jpowsour_2018_04_056
ContentType Journal Article
DBID NPM
7X8
DOI 10.1039/c6cs00041j
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
ExternalDocumentID 27263796
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
NPM
O9-
P2P
R7B
R7D
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
7X8
AKMSF
R56
ID FETCH-LOGICAL-c441t-3a031a86ceff361f16fb4e4a3c143da68528c5ae2e157f9bad51edeef678d4e62
IEDL.DBID 7X8
ISICitedReferencesCount 513
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381328200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-4744
IngestDate Thu Jul 10 18:17:24 EDT 2025
Thu Apr 03 07:09:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-3a031a86ceff361f16fb4e4a3c143da68528c5ae2e157f9bad51edeef678d4e62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27263796
PQID 1807276324
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1807276324
pubmed_primary_27263796
PublicationCentury 2000
PublicationDate 20160725
PublicationDateYYYYMMDD 2016-07-25
PublicationDate_xml – month: 7
  year: 2016
  text: 20160725
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2016
SSID ssj0011762
Score 2.659056
SecondaryResourceType review_article
Snippet As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4340
Title Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations
URI https://www.ncbi.nlm.nih.gov/pubmed/27263796
https://www.proquest.com/docview/1807276324
Volume 45
WOSCitedRecordID wos000381328200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYJLiwL2WTkbhaNLHj5YRQBeIAFQeQeqsce4zKISlNy_czzqJyQULikluiZGb83pPHmUfItdc8pH2rmMmtYMIKznSuPQNhEg2OO-_qTD-p4VCPRual3XCr2mOVHSbWQO1LF_fIbxLdR6qNw8Vvp58sukbF7mprobFK1jlKmbgw1WjZRUhUbSiKYNBnQgnRjSfl5sZJFycoieTjd2lZU8zDzn9fbpdst-KS3jXVsEdWoNgnm4PO0-2A2Lfi5zFzWi2mMHPIl24SXXdo_NmEFrZAgpvlZcEix3naWuV4oChvm4ql85J6iChD8YFh8r5oKqk6JG8P96-DR9aaLDCHSmjOuMVlbbV0EAKXSUhkyAUIyx0qKW-lzlLtMgspJJkKmFGfJeABArKcFyDTI7JWlAWcEOoQHEycYCqkQyiAXDppjJUmA6mVkD1y1UVvjN8dOxO2gHJRjZfx65HjJgXjaTNtY5yqVHJl5Okf7j4jWyhoZNx7TbNzsh4wIHBBNtzXfFLNLuvqwOvw5fkbQ2jICA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconventional+supercapacitors+from+nanocarbon-based+electrode+materials+to+device+configurations&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Lili&rft.au=Niu%2C+Zhiqiang&rft.au=Chen%2C+Jun&rft.date=2016-07-25&rft.eissn=1460-4744&rft.volume=45&rft.issue=15&rft.spage=4340&rft_id=info:doi/10.1039%2Fc6cs00041j&rft_id=info%3Apmid%2F27263796&rft_id=info%3Apmid%2F27263796&rft.externalDocID=27263796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon