Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificia...
Gespeichert in:
| Veröffentlicht in: | Chemical Society reviews Jg. 45; H. 15; S. 4340 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
25.07.2016
|
| ISSN: | 1460-4744, 1460-4744 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors. |
|---|---|
| AbstractList | As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors. As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors. |
| Author | Chen, Jun Niu, Zhiqiang Liu, Lili |
| Author_xml | – sequence: 1 givenname: Lili surname: Liu fullname: Liu, Lili email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn and School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China – sequence: 2 givenname: Zhiqiang surname: Niu fullname: Niu, Zhiqiang email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn – sequence: 3 givenname: Jun surname: Chen fullname: Chen, Jun email: zqniu@nankai.edu.cn, chenabc@nankai.edu.cn organization: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China. zqniu@nankai.edu.cn chenabc@nankai.edu.cn and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27263796$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA_d-AMkSzfVvJp0ljL4ggE3zrrcJjfSoU1q0g747x1xBFfnwPn4FmdJZiEGJOSaszvO5PreapsZY4rvz8iCK80KZZSa_etzssx5zxjnRosLMhdGaGnWekFgF2wMBwxjGwN0NE8DJgsD2HaMKVOfYk8DhGghNTEUDWR0FDu0Y4oOaQ8jpha6TMdIHR5ai_Qo9O3HlODHmS_JuT_ueHXKFdk9Pb5vXort2_Pr5mFbWKX4WEhgkkOlLXovNfdc-0ahAmm5kg50VYrKloACeWn8ugFXcnSIXpvKKdRiRW5_vUOKnxPmse7bbLHrIGCccs0rZoTRUqgjenNCp6ZHVw-p7SF91X-3iG8D2GjT |
| CitedBy_id | crossref_primary_10_1016_j_gee_2021_04_006 crossref_primary_10_3390_polym11050821 crossref_primary_10_1016_j_apsusc_2022_154530 crossref_primary_10_1016_j_est_2024_110811 crossref_primary_10_1007_s40843_017_9132_8 crossref_primary_10_1016_j_jechem_2017_11_020 crossref_primary_10_1039_C8QI01010B crossref_primary_10_3390_nano11123249 crossref_primary_10_1039_D2EE00376G crossref_primary_10_1016_j_electacta_2017_02_037 crossref_primary_10_1007_s40820_023_01073_x crossref_primary_10_1016_j_est_2024_114851 crossref_primary_10_1016_j_electacta_2019_06_056 crossref_primary_10_1016_j_jechem_2017_11_026 crossref_primary_10_1016_j_jelechem_2018_05_034 crossref_primary_10_1016_j_est_2022_104938 crossref_primary_10_1016_j_mser_2025_101041 crossref_primary_10_1039_C7TA04001F crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_134 crossref_primary_10_1007_s41918_020_00071_6 crossref_primary_10_3390_nano12152695 crossref_primary_10_1016_j_nanoen_2017_10_056 crossref_primary_10_1007_s10854_018_0530_y crossref_primary_10_1016_j_colsurfa_2022_128473 crossref_primary_10_1007_s10934_020_00957_2 crossref_primary_10_1039_C7CS00505A crossref_primary_10_1016_j_jelechem_2018_10_050 crossref_primary_10_1016_j_jssc_2017_05_035 crossref_primary_10_1016_j_apsusc_2019_144841 crossref_primary_10_1016_j_jpowsour_2019_03_094 crossref_primary_10_1016_j_jallcom_2018_11_169 crossref_primary_10_1016_j_jcis_2024_10_064 crossref_primary_10_1002_celc_201901499 crossref_primary_10_1016_j_ssi_2018_11_014 crossref_primary_10_3390_batteries10080284 crossref_primary_10_1039_D5DT00939A crossref_primary_10_1088_1361_6528_ac0190 crossref_primary_10_1016_j_micromeso_2020_110283 crossref_primary_10_1002_smll_202006434 crossref_primary_10_1016_j_jcis_2017_10_031 crossref_primary_10_1002_adfm_201902860 crossref_primary_10_1016_j_nanoen_2018_03_016 crossref_primary_10_1016_j_inoche_2023_111639 crossref_primary_10_1007_s10450_020_00221_8 crossref_primary_10_1007_s10853_021_06539_0 crossref_primary_10_1016_j_est_2023_107826 crossref_primary_10_1016_j_jallcom_2020_157095 crossref_primary_10_1016_j_synthmet_2025_117880 crossref_primary_10_1016_j_mattod_2017_04_026 crossref_primary_10_1021_acsaem_5c00149 crossref_primary_10_1002_anie_202506922 crossref_primary_10_1016_S1872_5805_18_60342_7 crossref_primary_10_1002_celc_201900966 crossref_primary_10_1016_j_ccr_2020_213660 crossref_primary_10_1007_s40843_017_9154_2 crossref_primary_10_1007_s41918_019_00057_z crossref_primary_10_1016_j_electacta_2024_145126 crossref_primary_10_1002_aoc_6162 crossref_primary_10_1039_C9QM00062C crossref_primary_10_1002_jccs_202100043 crossref_primary_10_1016_j_est_2023_107268 crossref_primary_10_1016_j_jallcom_2017_04_035 crossref_primary_10_1016_j_jelechem_2023_117379 crossref_primary_10_1002_adfm_202009209 crossref_primary_10_3389_fmats_2020_00147 crossref_primary_10_1016_j_ces_2023_118559 crossref_primary_10_1016_j_est_2021_103303 crossref_primary_10_1016_j_jpowsour_2017_04_100 crossref_primary_10_1007_s12274_017_1587_2 crossref_primary_10_1016_j_jechem_2019_03_034 crossref_primary_10_1002_ange_202506922 crossref_primary_10_1016_j_matlet_2018_09_020 crossref_primary_10_1016_j_apsusc_2018_07_215 crossref_primary_10_1002_adma_201903955 crossref_primary_10_1140_epjp_s13360_023_04001_5 crossref_primary_10_1016_j_jallcom_2018_07_064 crossref_primary_10_1016_j_electacta_2023_142866 crossref_primary_10_1039_C9SE00341J crossref_primary_10_1007_s12598_017_0890_0 crossref_primary_10_1016_j_ceramint_2021_06_078 crossref_primary_10_1016_j_ijhydene_2020_09_161 crossref_primary_10_1002_smtd_201800443 crossref_primary_10_1016_j_jechem_2025_02_054 crossref_primary_10_1039_C7QI00361G crossref_primary_10_1007_s10854_018_8763_3 crossref_primary_10_1016_j_est_2022_104928 crossref_primary_10_1016_j_jaap_2025_107110 crossref_primary_10_1016_j_jpowsour_2019_227220 crossref_primary_10_1016_j_jorganchem_2017_10_002 crossref_primary_10_1016_j_est_2023_106962 crossref_primary_10_1002_smll_201800879 crossref_primary_10_1039_D2CP02795J crossref_primary_10_1080_10667857_2019_1699263 crossref_primary_10_1016_j_matdes_2022_111017 crossref_primary_10_1021_acsami_4c21036 crossref_primary_10_1002_aoc_4848 crossref_primary_10_1016_j_jcis_2018_02_010 crossref_primary_10_1016_j_jelechem_2023_117903 crossref_primary_10_1002_adfm_201707247 crossref_primary_10_1002_aelm_201800179 crossref_primary_10_1016_j_colsurfa_2023_131552 crossref_primary_10_1016_j_carbon_2020_03_044 crossref_primary_10_1002_marc_201800770 crossref_primary_10_1007_s10854_021_07391_3 crossref_primary_10_1007_s10854_017_6771_3 crossref_primary_10_1021_acs_energyfuels_5c00973 crossref_primary_10_1088_1361_6528_ab9f77 crossref_primary_10_1016_j_electacta_2019_03_155 crossref_primary_10_1039_C9QI00173E crossref_primary_10_1016_j_susmat_2024_e00891 crossref_primary_10_1016_j_jallcom_2019_03_014 crossref_primary_10_1016_j_electacta_2019_04_087 crossref_primary_10_1016_j_electacta_2021_139297 crossref_primary_10_1016_j_jallcom_2024_175669 crossref_primary_10_1016_j_est_2023_107321 crossref_primary_10_1016_j_surfin_2025_107245 crossref_primary_10_3390_en15103696 crossref_primary_10_1007_s11664_025_12341_4 crossref_primary_10_1016_j_micromeso_2020_110870 crossref_primary_10_1002_adma_202008140 crossref_primary_10_1016_j_jpowsour_2020_228448 crossref_primary_10_1016_j_est_2022_105553 crossref_primary_10_1016_j_cej_2019_122979 crossref_primary_10_1002_adfm_202111805 crossref_primary_10_1016_j_cej_2020_128317 crossref_primary_10_1016_j_jcis_2019_10_023 crossref_primary_10_1002_cssc_201800147 crossref_primary_10_1016_j_ceramint_2021_04_100 crossref_primary_10_1016_j_jcis_2020_03_126 crossref_primary_10_1039_C9QI00390H crossref_primary_10_1088_1674_4926_44_4_041601 crossref_primary_10_1016_j_cej_2018_02_085 crossref_primary_10_1016_j_electacta_2025_146566 crossref_primary_10_1016_j_jcis_2017_09_017 crossref_primary_10_1002_aelm_201900724 crossref_primary_10_1016_j_jechem_2021_08_049 crossref_primary_10_1080_14658011_2021_1966247 crossref_primary_10_1016_j_apsusc_2019_05_142 crossref_primary_10_3390_molecules27217629 crossref_primary_10_1016_j_jpcs_2025_112747 crossref_primary_10_1002_er_6179 crossref_primary_10_1002_cssc_201802450 crossref_primary_10_1039_D4EE04348K crossref_primary_10_1016_j_jcis_2019_09_065 crossref_primary_10_1016_j_rser_2025_115914 crossref_primary_10_1016_j_synthmet_2023_117521 crossref_primary_10_1002_adma_202005531 crossref_primary_10_1007_s40843_021_1924_2 crossref_primary_10_1002_adma_201700515 crossref_primary_10_1016_j_jcis_2022_04_180 crossref_primary_10_1002_inf2_12037 crossref_primary_10_1016_j_apsusc_2022_153617 crossref_primary_10_1002_adfm_202213095 crossref_primary_10_1007_s41061_017_0102_2 crossref_primary_10_1007_s11595_024_3010_7 crossref_primary_10_1088_2043_6254_aba1dc crossref_primary_10_1002_smll_201704497 crossref_primary_10_1002_smtd_202000853 crossref_primary_10_1016_j_cej_2018_05_011 crossref_primary_10_1016_j_electacta_2017_08_003 crossref_primary_10_1002_smll_201702407 crossref_primary_10_1016_j_cej_2024_151857 crossref_primary_10_1038_s41598_020_61138_4 crossref_primary_10_54392_nnxt2221 crossref_primary_10_1039_D0MH00610F crossref_primary_10_1002_admt_202100773 crossref_primary_10_1007_s10854_017_8444_7 crossref_primary_10_1088_2058_6272_ac4bb5 crossref_primary_10_1002_aenm_202001608 crossref_primary_10_1007_s10853_020_04881_3 crossref_primary_10_1002_smtd_201800367 crossref_primary_10_1016_j_cej_2017_12_095 crossref_primary_10_3389_fchem_2020_611852 crossref_primary_10_1016_j_jechem_2017_11_016 crossref_primary_10_1007_s42765_023_00287_3 crossref_primary_10_1016_j_cej_2022_140246 crossref_primary_10_1007_s11581_021_03993_3 crossref_primary_10_1016_j_jelechem_2019_03_073 crossref_primary_10_1088_1361_6528_aab124 crossref_primary_10_1016_j_mtchem_2020_100410 crossref_primary_10_1007_s40843_017_9095_4 crossref_primary_10_1088_1361_6528_aab129 crossref_primary_10_1007_s42114_023_00675_8 crossref_primary_10_1007_s11581_020_03603_8 crossref_primary_10_1016_j_carbon_2017_03_102 crossref_primary_10_1016_j_jelechem_2020_114551 crossref_primary_10_1039_D0RA10377B crossref_primary_10_1039_D2MH01345B crossref_primary_10_1016_j_electacta_2017_08_051 crossref_primary_10_1002_bte2_20220021 crossref_primary_10_1002_smll_201900721 crossref_primary_10_3390_en14040979 crossref_primary_10_1016_j_carbon_2022_07_015 crossref_primary_10_1002_slct_201802400 crossref_primary_10_1039_D5NR01156F crossref_primary_10_1002_anie_201804582 crossref_primary_10_1002_chem_202103145 crossref_primary_10_1016_j_micromeso_2020_110670 crossref_primary_10_1016_j_cej_2025_163772 crossref_primary_10_1016_j_indcrop_2024_118503 crossref_primary_10_1016_j_jallcom_2018_04_031 crossref_primary_10_1016_j_biortech_2019_122696 crossref_primary_10_1016_j_jpowsour_2018_09_012 crossref_primary_10_1016_j_orgel_2017_09_034 crossref_primary_10_1007_s11426_018_9394_1 crossref_primary_10_1016_j_ijbiomac_2022_06_191 crossref_primary_10_1016_j_jpowsour_2021_229634 crossref_primary_10_1002_adfm_202423854 crossref_primary_10_1016_j_electacta_2017_08_181 crossref_primary_10_1016_j_fuel_2024_133639 crossref_primary_10_1007_s40843_020_1417_8 crossref_primary_10_1016_j_electacta_2019_04_157 crossref_primary_10_1002_adfm_201801998 crossref_primary_10_1002_tcr_201700037 crossref_primary_10_1016_j_est_2021_102503 crossref_primary_10_1016_j_jpowsour_2019_227044 crossref_primary_10_1016_j_carbon_2023_01_013 crossref_primary_10_1016_j_est_2024_112040 crossref_primary_10_1039_C7CS00787F crossref_primary_10_1002_ece2_21 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1080_25740881_2021_2015775 crossref_primary_10_1039_C9NR06476A crossref_primary_10_1016_j_carbon_2022_03_023 crossref_primary_10_1016_j_jpowsour_2018_09_044 crossref_primary_10_1016_j_jelechem_2022_116716 crossref_primary_10_1088_1361_6528_aac260 crossref_primary_10_1016_j_nanoen_2017_04_054 crossref_primary_10_1016_j_est_2022_105164 crossref_primary_10_1016_j_materresbull_2021_111266 crossref_primary_10_1039_D3RA06941A crossref_primary_10_1002_cctc_202401922 crossref_primary_10_1016_j_est_2021_102291 crossref_primary_10_1016_j_jiec_2024_06_025 crossref_primary_10_1007_s10854_023_09892_9 crossref_primary_10_1016_j_cej_2024_156147 crossref_primary_10_1016_j_jpowsour_2024_235209 crossref_primary_10_1002_celc_201600830 crossref_primary_10_1016_j_jallcom_2019_01_302 crossref_primary_10_1016_j_jechem_2017_10_034 crossref_primary_10_3390_chemosensors10060223 crossref_primary_10_1016_j_jechem_2017_09_034 crossref_primary_10_1016_j_jpowsour_2018_10_016 crossref_primary_10_1016_j_carbon_2019_04_056 crossref_primary_10_1016_j_diamond_2022_109133 crossref_primary_10_1007_s12274_017_1448_z crossref_primary_10_1016_j_jallcom_2024_174393 crossref_primary_10_1016_j_jcis_2019_11_038 crossref_primary_10_1016_j_cej_2021_128781 crossref_primary_10_1063_5_0051631 crossref_primary_10_1016_S1872_5805_22_60637_1 crossref_primary_10_1039_D5TA03175C crossref_primary_10_1016_j_jelechem_2020_114464 crossref_primary_10_1002_advs_201700003 crossref_primary_10_1007_s11431_019_1510_0 crossref_primary_10_1002_cssc_201700792 crossref_primary_10_1016_j_apsusc_2021_151174 crossref_primary_10_1002_cssc_201902071 crossref_primary_10_1016_j_jechem_2017_08_015 crossref_primary_10_1002_adfm_202101302 crossref_primary_10_1016_j_electacta_2018_06_061 crossref_primary_10_1002_aenm_201701369 crossref_primary_10_1016_j_electacta_2018_02_008 crossref_primary_10_1016_j_ijhydene_2020_10_253 crossref_primary_10_1002_smll_201901145 crossref_primary_10_1007_s12274_017_1749_2 crossref_primary_10_1016_j_jelechem_2018_03_016 crossref_primary_10_1016_j_jiec_2021_04_044 crossref_primary_10_1002_aenm_201900618 crossref_primary_10_1002_admt_201800053 crossref_primary_10_1016_j_apsusc_2018_02_273 crossref_primary_10_1007_s11581_018_2459_9 crossref_primary_10_1039_C8QI00832A crossref_primary_10_1039_D2RA07870H crossref_primary_10_1007_s40242_017_7026_9 crossref_primary_10_1080_14658011_2023_2219085 crossref_primary_10_1016_j_carbon_2021_01_115 crossref_primary_10_1016_j_electacta_2018_03_037 crossref_primary_10_1016_j_jechem_2022_06_051 crossref_primary_10_1016_j_bios_2018_10_053 crossref_primary_10_1016_j_colsurfb_2017_03_011 crossref_primary_10_1016_j_ijhydene_2023_05_112 crossref_primary_10_1016_j_jallcom_2019_07_151 crossref_primary_10_1016_j_jcis_2018_08_035 crossref_primary_10_1016_j_micromeso_2018_12_007 crossref_primary_10_1002_adfm_202204426 crossref_primary_10_1002_cssc_201601571 crossref_primary_10_1016_j_jcis_2018_04_027 crossref_primary_10_1039_C9NR03056E crossref_primary_10_1007_s10854_023_10314_z crossref_primary_10_1016_j_carbon_2018_04_075 crossref_primary_10_1016_j_compositesb_2020_107767 crossref_primary_10_1016_j_est_2023_109104 crossref_primary_10_1016_j_est_2023_107289 crossref_primary_10_1002_aesr_202100220 crossref_primary_10_1016_j_jcis_2023_03_070 crossref_primary_10_1016_j_jechem_2022_12_030 crossref_primary_10_1002_aenm_201901892 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1016_j_inoche_2019_06_009 crossref_primary_10_1007_s10008_019_04211_x crossref_primary_10_1016_j_ceramint_2018_06_215 crossref_primary_10_1002_cssc_201801757 crossref_primary_10_1016_j_cclet_2018_01_013 crossref_primary_10_1016_j_cej_2022_137331 crossref_primary_10_1016_j_electacta_2017_01_012 crossref_primary_10_1016_j_jpcs_2017_10_037 crossref_primary_10_1002_inf2_12549 crossref_primary_10_1016_j_carbon_2018_09_067 crossref_primary_10_1016_j_compositesb_2019_107001 crossref_primary_10_1016_j_est_2025_117669 crossref_primary_10_1002_admt_202201223 crossref_primary_10_1016_j_est_2023_107271 crossref_primary_10_1016_j_apsusc_2019_143557 crossref_primary_10_1016_j_jelechem_2020_113828 crossref_primary_10_1016_j_carbon_2020_02_077 crossref_primary_10_3390_ijms23063174 crossref_primary_10_1016_j_susmat_2024_e01111 crossref_primary_10_1016_j_est_2021_103912 crossref_primary_10_1002_celc_202300751 crossref_primary_10_1002_cey2_64 crossref_primary_10_1016_j_jcis_2017_10_072 crossref_primary_10_1016_j_electacta_2020_136599 crossref_primary_10_1016_j_electacta_2019_135065 crossref_primary_10_1016_j_jechem_2020_04_064 crossref_primary_10_1016_j_jallcom_2018_04_123 crossref_primary_10_1016_j_jelechem_2021_115785 crossref_primary_10_1002_ange_201804582 crossref_primary_10_1002_smll_201701026 crossref_primary_10_1002_batt_201900229 crossref_primary_10_1002_adfm_201803471 crossref_primary_10_1016_j_est_2024_113901 crossref_primary_10_1039_C8NR07469K crossref_primary_10_1016_j_jpowsour_2019_01_053 crossref_primary_10_1039_D0RA01844A crossref_primary_10_1002_aenm_201700127 crossref_primary_10_1016_j_electacta_2019_01_162 crossref_primary_10_1080_10406638_2020_1852277 crossref_primary_10_3390_nano8060412 crossref_primary_10_1002_adfm_201606696 crossref_primary_10_1002_aenm_201702787 crossref_primary_10_1016_j_jallcom_2019_151737 crossref_primary_10_1016_j_est_2023_110350 crossref_primary_10_1016_j_electacta_2019_02_056 crossref_primary_10_1016_j_apsusc_2018_10_209 crossref_primary_10_1016_j_electacta_2019_04_106 crossref_primary_10_1039_C8EE02924E crossref_primary_10_1002_admi_201700855 crossref_primary_10_1016_j_electacta_2018_11_067 crossref_primary_10_1016_j_jelechem_2019_04_021 crossref_primary_10_1088_1361_6528_abf59d crossref_primary_10_1002_adma_201703040 crossref_primary_10_1039_C8QI00172C crossref_primary_10_1016_j_jpowsour_2017_12_012 crossref_primary_10_1016_j_jssc_2018_05_038 crossref_primary_10_1016_j_electacta_2019_135170 crossref_primary_10_1063_5_0048446 crossref_primary_10_3390_cryst11070784 crossref_primary_10_1002_celc_201901951 crossref_primary_10_1002_sus2_151 crossref_primary_10_1016_j_micromeso_2016_10_048 crossref_primary_10_1002_smll_202400690 crossref_primary_10_1016_j_jpowsour_2016_08_111 crossref_primary_10_1016_j_nanoen_2020_105616 crossref_primary_10_1016_j_electacta_2018_09_177 crossref_primary_10_1002_aenm_201700592 crossref_primary_10_1016_j_diamond_2023_110169 crossref_primary_10_1039_D0NR03549A crossref_primary_10_1002_ange_202008960 crossref_primary_10_1007_s10853_019_04129_9 crossref_primary_10_1016_j_jelechem_2023_117869 crossref_primary_10_1016_j_electacta_2020_137667 crossref_primary_10_1016_j_jpowsour_2018_04_056 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1039/c6cs00041j |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1460-4744 |
| ExternalDocumentID | 27263796 |
| Genre | Journal Article Review |
| GroupedDBID | --- -DZ -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A NPM O9- P2P R7B R7D RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 7X8 AKMSF R56 |
| ID | FETCH-LOGICAL-c441t-3a031a86ceff361f16fb4e4a3c143da68528c5ae2e157f9bad51edeef678d4e62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 513 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381328200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-4744 |
| IngestDate | Thu Jul 10 18:17:24 EDT 2025 Thu Apr 03 07:09:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-3a031a86ceff361f16fb4e4a3c143da68528c5ae2e157f9bad51edeef678d4e62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 27263796 |
| PQID | 1807276324 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1807276324 pubmed_primary_27263796 |
| PublicationCentury | 2000 |
| PublicationDate | 20160725 |
| PublicationDateYYYYMMDD | 2016-07-25 |
| PublicationDate_xml | – month: 7 year: 2016 text: 20160725 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemical Society reviews |
| PublicationTitleAlternate | Chem Soc Rev |
| PublicationYear | 2016 |
| SSID | ssj0011762 |
| Score | 2.659056 |
| SecondaryResourceType | review_article |
| Snippet | As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4340 |
| Title | Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27263796 https://www.proquest.com/docview/1807276324 |
| Volume | 45 |
| WOSCitedRecordID | wos000381328200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYJLiwL2WTkbhaNLHj5YRQBeIAFQeQeqsce4zKISlNy_czzqJyQULikluiZGb83pPHmUfItdc8pH2rmMmtYMIKznSuPQNhEg2OO-_qTD-p4VCPRual3XCr2mOVHSbWQO1LF_fIbxLdR6qNw8Vvp58sukbF7mprobFK1jlKmbgw1WjZRUhUbSiKYNBnQgnRjSfl5sZJFycoieTjd2lZU8zDzn9fbpdst-KS3jXVsEdWoNgnm4PO0-2A2Lfi5zFzWi2mMHPIl24SXXdo_NmEFrZAgpvlZcEix3naWuV4oChvm4ql85J6iChD8YFh8r5oKqk6JG8P96-DR9aaLDCHSmjOuMVlbbV0EAKXSUhkyAUIyx0qKW-lzlLtMgspJJkKmFGfJeABArKcFyDTI7JWlAWcEOoQHEycYCqkQyiAXDppjJUmA6mVkD1y1UVvjN8dOxO2gHJRjZfx65HjJgXjaTNtY5yqVHJl5Okf7j4jWyhoZNx7TbNzsh4wIHBBNtzXfFLNLuvqwOvw5fkbQ2jICA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconventional+supercapacitors+from+nanocarbon-based+electrode+materials+to+device+configurations&rft.jtitle=Chemical+Society+reviews&rft.au=Liu%2C+Lili&rft.au=Niu%2C+Zhiqiang&rft.au=Chen%2C+Jun&rft.date=2016-07-25&rft.eissn=1460-4744&rft.volume=45&rft.issue=15&rft.spage=4340&rft_id=info:doi/10.1039%2Fc6cs00041j&rft_id=info%3Apmid%2F27263796&rft_id=info%3Apmid%2F27263796&rft.externalDocID=27263796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon |