sEMG-Based Drawing Trace Reconstruction: A Novel Hybrid Algorithm Fusing Gene Expression Programming into Kalman Filter

How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 18; H. 10; S. 3296
Hauptverfasser: Yang, Zhongliang, Wen, Yangliang, Chen, Yumiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 30.09.2018
MDPI AG
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields.
AbstractList How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields.
How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields.How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields.
Author Yang, Zhongliang
Chen, Yumiao
Wen, Yangliang
AuthorAffiliation 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China; yzl@dhu.edu.cn (Z.Y.); wenyangliang@outlook.com (Y.W.)
2 School of Art, Design and Media, East China University of Science and Technology, Shanghai 200237, China
AuthorAffiliation_xml – name: 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China; yzl@dhu.edu.cn (Z.Y.); wenyangliang@outlook.com (Y.W.)
– name: 2 School of Art, Design and Media, East China University of Science and Technology, Shanghai 200237, China
Author_xml – sequence: 1
  givenname: Zhongliang
  orcidid: 0000-0002-2790-243X
  surname: Yang
  fullname: Yang, Zhongliang
– sequence: 2
  givenname: Yangliang
  surname: Wen
  fullname: Wen, Yangliang
– sequence: 3
  givenname: Yumiao
  surname: Chen
  fullname: Chen, Yumiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30274386$$D View this record in MEDLINE/PubMed
BookMark eNplkltv1DAQhSNURC_wwB9AfoSHbX1L4vCAtJTdbUW5CO27NXEmqavEXmynpf-ebLetWngaa-ac71iaOcz2nHeYZW8ZPRaioieRKUYFr4oX2QGTXM4U53TvyXs_O4zxilIuhFCvsn1BeSmFKg6ym7j4tpp9hogN-RLgxrqOrAMYJL_QeBdTGE2y3n0kc_LdX2NPzm7rYBsy7zsfbLocyHKMW9cKHZLFn03AGCcD-Rl8F2AYtjPrkidfoR_AkaXtE4bX2csW-ohv7utRtl4u1qdns4sfq_PT-cXMSMnSTJTT75GWqoK6RMUM1I1sC0qBVjVwpRgXvM2NRF5R2bZtWTKAum1FjXVZi6PsfIdtPFzpTbADhFvtweq7hg-dhpCs6VHLKucib5opt5aKciVLJYGjEUVTiQYn1qcdazPWAzYGXQrQP4M-nzh7qTt_rQvOqKJiAry_BwT_e8SY9GCjwb4Hh36MmjOWl3kh82qSvnua9RjysLhJcLITmOBjDNhqYxNsNzVF214zqrenoR9PY3J8-MfxAP1f-xcMibkb
CitedBy_id crossref_primary_10_1002_cai2_110
Cites_doi 10.1016/j.cag.2010.07.001
10.1109/ROMAN.2010.5598705
10.1016/j.neucom.2012.06.041
10.1109/TBME.2003.813539
10.1007/s12652-012-0107-1
10.3390/e18040106
10.1145/2021164.2021181
10.1016/j.neucom.2015.05.037
10.1016/j.ins.2005.04.006
10.1145/1294211.1294238
10.3390/s150923303
10.3389/fnins.2017.00061
10.3389/fnins.2015.00389
10.3844/ajassp.2012.1742.1756
10.1145/2688203
10.1088/1741-2552/aa758e
10.1371/journal.pone.0006791
10.1016/j.bspc.2007.07.009
10.1007/978-81-322-1050-4_33
10.1109/TIE.2015.2403797
10.3390/s140406677
10.1109/TNSRE.2014.2305111
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s18103296
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_495235dd441b480284784a2ec36d93de
PMC6210803
30274386
10_3390_s18103296
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-37220e0789ab7e81cabd4f600a09ba2881232f5c4e2904fff771aabff3beb7b3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448661500124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:14 EDT 2025
Tue Nov 04 01:57:06 EST 2025
Fri Sep 05 11:43:57 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Tue Nov 18 21:50:40 EST 2025
Sat Nov 29 07:14:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords gene expression programming
Kalman Filter
muscle-computer interface
electromyography
drawing trace
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-37220e0789ab7e81cabd4f600a09ba2881232f5c4e2904fff771aabff3beb7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2790-243X
OpenAccessLink https://doaj.org/article/495235dd441b480284784a2ec36d93de
PMID 30274386
PQID 2115756459
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_495235dd441b480284784a2ec36d93de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6210803
proquest_miscellaneous_2115756459
pubmed_primary_30274386
crossref_citationtrail_10_3390_s18103296
crossref_primary_10_3390_s18103296
PublicationCentury 2000
PublicationDate 20180930
PublicationDateYYYYMMDD 2018-09-30
PublicationDate_xml – month: 9
  year: 2018
  text: 20180930
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Okorokova (ref_3) 2015; 9
Tang (ref_8) 2014; 14
ref_14
Chihi (ref_21) 2012; 9
ref_13
Ding (ref_4) 2015; 62
ref_12
Field (ref_10) 2010; 34
Farina (ref_9) 2014; 22
ref_19
Englehart (ref_26) 2003; 50
ref_17
ref_16
ref_15
Chen (ref_18) 2015; 168
Chen (ref_24) 2017; 11
Mi (ref_11) 2006; 176
ref_25
Pan (ref_6) 2017; 14
ref_23
Hu (ref_27) 2007; 2
ref_22
ref_20
Fairclough (ref_1) 2015; 21
ref_2
Cheng (ref_7) 2015; 15
ref_28
Zhang (ref_29) 2013; 105
ref_5
References_xml – volume: 34
  start-page: 499
  year: 2010
  ident: ref_10
  article-title: The effect of task on classification accuracy: Using gesture recognition techniques in free-sketch recognition
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2010.07.001
– ident: ref_16
  doi: 10.1109/ROMAN.2010.5598705
– ident: ref_28
– volume: 105
  start-page: 100
  year: 2013
  ident: ref_29
  article-title: Web music emotion recognition based on higher effective gene expression programming
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.041
– volume: 50
  start-page: 848
  year: 2003
  ident: ref_26
  article-title: A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– ident: ref_17
  doi: 10.1007/s12652-012-0107-1
– ident: ref_5
  doi: 10.3390/e18040106
– ident: ref_14
  doi: 10.1145/2021164.2021181
– volume: 168
  start-page: 871
  year: 2015
  ident: ref_18
  article-title: Eyebrow emotional expression recognition using surface EMG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.037
– volume: 176
  start-page: 1290
  year: 2006
  ident: ref_11
  article-title: A new gesture recognition algorithm and segmentation method of Korean scripts for gesture-allowed ink editor
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2005.04.006
– ident: ref_13
  doi: 10.1145/1294211.1294238
– ident: ref_23
– volume: 15
  start-page: 23303
  year: 2015
  ident: ref_7
  article-title: A novel phonology- and radical-coded Chinese sign language recognition framework using accelerometer and surface electromyography sensors
  publication-title: Sensors
  doi: 10.3390/s150923303
– volume: 11
  start-page: 61
  year: 2017
  ident: ref_24
  article-title: A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00061
– volume: 9
  start-page: 1
  year: 2015
  ident: ref_3
  article-title: A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00389
– ident: ref_25
– volume: 9
  start-page: 1742
  year: 2012
  ident: ref_21
  article-title: Analysis of Handwriting Velocity to Identify Handwriting Process from Electromyographic Signals
  publication-title: Am. J. Appl. Sci.
  doi: 10.3844/ajassp.2012.1742.1756
– ident: ref_12
– volume: 21
  start-page: 1
  year: 2015
  ident: ref_1
  article-title: Introduction to the Special Issue on Physiological Computing for Human-Computer Interaction
  publication-title: ACM Trans. Comput. Interact.
  doi: 10.1145/2688203
– volume: 14
  start-page: 46019
  year: 2017
  ident: ref_6
  article-title: Transcranial direct current stimulation versus user training on improving online myoelectric control for amputees
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa758e
– ident: ref_19
  doi: 10.1371/journal.pone.0006791
– volume: 2
  start-page: 275
  year: 2007
  ident: ref_27
  article-title: Myoelectric control systems—A survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref_15
– ident: ref_2
  doi: 10.1007/978-81-322-1050-4_33
– volume: 62
  start-page: 4994
  year: 2015
  ident: ref_4
  article-title: Missing-Data Classification with the Extended Full-Dimensional Gaussian Mixture Model: Applications to EMG-Based Motion Recognition
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2403797
– ident: ref_22
– volume: 14
  start-page: 6677
  year: 2014
  ident: ref_8
  article-title: An upper-limb power-assist exoskeleton using proportional myoelectric control
  publication-title: Sensors
  doi: 10.3390/s140406677
– ident: ref_20
– volume: 22
  start-page: 797
  year: 2014
  ident: ref_9
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305111
SSID ssj0023338
Score 2.2435255
Snippet How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3296
SubjectTerms Adult
Algorithms
drawing trace
electromyography
Electromyography - methods
gene expression programming
Handwriting
Humans
Kalman Filter
Male
muscle-computer interface
Muscles - physiology
Title sEMG-Based Drawing Trace Reconstruction: A Novel Hybrid Algorithm Fusing Gene Expression Programming into Kalman Filter
URI https://www.ncbi.nlm.nih.gov/pubmed/30274386
https://www.proquest.com/docview/2115756459
https://pubmed.ncbi.nlm.nih.gov/PMC6210803
https://doaj.org/article/495235dd441b480284784a2ec36d93de
Volume 18
WOSCitedRecordID wos000448661500124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxHMpj8ogDlyiTWy3trm1kLIItYrQHsopsh17N1KboLbswoXfzkySlhatxIWLD7aljDzjmW_kyTeEvBFOOKuFj5IwcJEYFDYyAOIi5iyAfRWMHZqm2YSczdR8rrO9Vl9YE9bSA7cHdwIAnvFBUUDYtkLF6E2VMMw7Piw0Lzx631jqbTLVpVocMq-WR4hDUn-yhjgWc4bM_HvRpyHpvw5Z_l0guRdxJvfJvQ4q0lEr4gNyw1cPyd09AsFH5GqdTj9GY4hEBf2wMlcwSSH6OE8xrfxDDvuOjuisvvQLevoTf9Gio8V5vSo3F0s6wcr3c4r00zT90ZXFVjRr67aWuFZWm5p-NoulqeikxOf1x-Rskp69P426VgqRg4PbgBthLPZILW-s9CpxxhYiANgxsbaGKYXICrQlPNOxCCFImRhjQ-DWW2n5E3JU1ZV_SqjTJjZWW22SAi6_g4wN3KVxNok1Y8H3yNvtCeeuoxnHbheLHNINVEa-U0aPvN5t_dZya1y3aYxq2m1AOuxmAowk74wk_5eR9MirrZJzuD74JmIqX39f5wzJhhpGnR45bpW--xQ-6QquQAR5YA4HshyuVOVFQ9E9ZFi7yZ_9D-GfkzuA0roilRfkCEzHvyS33eWmXK_65Kacy2ZUfXJrnM6yL_3mLsA4_ZXCXPZpmn39DevlEAc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Drawing+Trace+Reconstruction%3A+A+Novel+Hybrid+Algorithm+Fusing+Gene+Expression+Programming+into+Kalman+Filter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Zhongliang&rft.au=Wen%2C+Yangliang&rft.au=Chen%2C+Yumiao&rft.date=2018-09-30&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fs18103296&rft_id=info%3Apmid%2F30274386&rft.externalDocID=PMC6210803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon