sEMG-Based Drawing Trace Reconstruction: A Novel Hybrid Algorithm Fusing Gene Expression Programming into Kalman Filter
How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some ext...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 18; H. 10; S. 3296 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI
30.09.2018
MDPI AG |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields. |
|---|---|
| AbstractList | How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields. How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields.How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An effective algorithm is crucial to reliable reconstruction. Previously, nonlinear regression methods have been utilized successfully to some extent. In the quest to improve the accuracy of transient myoelectric signal decoding, a novel hybrid algorithm KF-GEP fusing Gene Expression Programming (GEP) into Kalman Filter (KF) framework is proposed for sEMG-based drawing trace reconstruction. In this work, the KF-GEP was applied to reconstruct fourteen drawn shapes and ten numeric characters from sEMG signals across five participants. Then the reconstruction performance of KF-GEP, KF and GEP were compared. The experimental results show that the KF-GEP algorithm performs best because it combines the advantages of KF and GEP. The findings add to the literature on the muscle-computer interface and can be introduced to many practical fields. |
| Author | Yang, Zhongliang Chen, Yumiao Wen, Yangliang |
| AuthorAffiliation | 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China; yzl@dhu.edu.cn (Z.Y.); wenyangliang@outlook.com (Y.W.) 2 School of Art, Design and Media, East China University of Science and Technology, Shanghai 200237, China |
| AuthorAffiliation_xml | – name: 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China; yzl@dhu.edu.cn (Z.Y.); wenyangliang@outlook.com (Y.W.) – name: 2 School of Art, Design and Media, East China University of Science and Technology, Shanghai 200237, China |
| Author_xml | – sequence: 1 givenname: Zhongliang orcidid: 0000-0002-2790-243X surname: Yang fullname: Yang, Zhongliang – sequence: 2 givenname: Yangliang surname: Wen fullname: Wen, Yangliang – sequence: 3 givenname: Yumiao surname: Chen fullname: Chen, Yumiao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30274386$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkltv1DAQhSNURC_wwB9AfoSHbX1L4vCAtJTdbUW5CO27NXEmqavEXmynpf-ebLetWngaa-ac71iaOcz2nHeYZW8ZPRaioieRKUYFr4oX2QGTXM4U53TvyXs_O4zxilIuhFCvsn1BeSmFKg6ym7j4tpp9hogN-RLgxrqOrAMYJL_QeBdTGE2y3n0kc_LdX2NPzm7rYBsy7zsfbLocyHKMW9cKHZLFn03AGCcD-Rl8F2AYtjPrkidfoR_AkaXtE4bX2csW-ohv7utRtl4u1qdns4sfq_PT-cXMSMnSTJTT75GWqoK6RMUM1I1sC0qBVjVwpRgXvM2NRF5R2bZtWTKAum1FjXVZi6PsfIdtPFzpTbADhFvtweq7hg-dhpCs6VHLKucib5opt5aKciVLJYGjEUVTiQYn1qcdazPWAzYGXQrQP4M-nzh7qTt_rQvOqKJiAry_BwT_e8SY9GCjwb4Hh36MmjOWl3kh82qSvnua9RjysLhJcLITmOBjDNhqYxNsNzVF214zqrenoR9PY3J8-MfxAP1f-xcMibkb |
| CitedBy_id | crossref_primary_10_1002_cai2_110 |
| Cites_doi | 10.1016/j.cag.2010.07.001 10.1109/ROMAN.2010.5598705 10.1016/j.neucom.2012.06.041 10.1109/TBME.2003.813539 10.1007/s12652-012-0107-1 10.3390/e18040106 10.1145/2021164.2021181 10.1016/j.neucom.2015.05.037 10.1016/j.ins.2005.04.006 10.1145/1294211.1294238 10.3390/s150923303 10.3389/fnins.2017.00061 10.3389/fnins.2015.00389 10.3844/ajassp.2012.1742.1756 10.1145/2688203 10.1088/1741-2552/aa758e 10.1371/journal.pone.0006791 10.1016/j.bspc.2007.07.009 10.1007/978-81-322-1050-4_33 10.1109/TIE.2015.2403797 10.3390/s140406677 10.1109/TNSRE.2014.2305111 |
| ContentType | Journal Article |
| Copyright | 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.3390/s18103296 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_495235dd441b480284784a2ec36d93de PMC6210803 30274386 10_3390_s18103296 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c441t-37220e0789ab7e81cabd4f600a09ba2881232f5c4e2904fff771aabff3beb7b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448661500124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:14 EDT 2025 Tue Nov 04 01:57:06 EST 2025 Fri Sep 05 11:43:57 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Tue Nov 18 21:50:40 EST 2025 Sat Nov 29 07:14:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | gene expression programming Kalman Filter muscle-computer interface electromyography drawing trace |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-37220e0789ab7e81cabd4f600a09ba2881232f5c4e2904fff771aabff3beb7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2790-243X |
| OpenAccessLink | https://doaj.org/article/495235dd441b480284784a2ec36d93de |
| PMID | 30274386 |
| PQID | 2115756459 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_495235dd441b480284784a2ec36d93de pubmedcentral_primary_oai_pubmedcentral_nih_gov_6210803 proquest_miscellaneous_2115756459 pubmed_primary_30274386 crossref_citationtrail_10_3390_s18103296 crossref_primary_10_3390_s18103296 |
| PublicationCentury | 2000 |
| PublicationDate | 20180930 |
| PublicationDateYYYYMMDD | 2018-09-30 |
| PublicationDate_xml | – month: 9 year: 2018 text: 20180930 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Okorokova (ref_3) 2015; 9 Tang (ref_8) 2014; 14 ref_14 Chihi (ref_21) 2012; 9 ref_13 Ding (ref_4) 2015; 62 ref_12 Field (ref_10) 2010; 34 Farina (ref_9) 2014; 22 ref_19 Englehart (ref_26) 2003; 50 ref_17 ref_16 ref_15 Chen (ref_18) 2015; 168 Chen (ref_24) 2017; 11 Mi (ref_11) 2006; 176 ref_25 Pan (ref_6) 2017; 14 ref_23 Hu (ref_27) 2007; 2 ref_22 ref_20 Fairclough (ref_1) 2015; 21 ref_2 Cheng (ref_7) 2015; 15 ref_28 Zhang (ref_29) 2013; 105 ref_5 |
| References_xml | – volume: 34 start-page: 499 year: 2010 ident: ref_10 article-title: The effect of task on classification accuracy: Using gesture recognition techniques in free-sketch recognition publication-title: Comput. Graph. doi: 10.1016/j.cag.2010.07.001 – ident: ref_16 doi: 10.1109/ROMAN.2010.5598705 – ident: ref_28 – volume: 105 start-page: 100 year: 2013 ident: ref_29 article-title: Web music emotion recognition based on higher effective gene expression programming publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.041 – volume: 50 start-page: 848 year: 2003 ident: ref_26 article-title: A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.813539 – ident: ref_17 doi: 10.1007/s12652-012-0107-1 – ident: ref_5 doi: 10.3390/e18040106 – ident: ref_14 doi: 10.1145/2021164.2021181 – volume: 168 start-page: 871 year: 2015 ident: ref_18 article-title: Eyebrow emotional expression recognition using surface EMG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.037 – volume: 176 start-page: 1290 year: 2006 ident: ref_11 article-title: A new gesture recognition algorithm and segmentation method of Korean scripts for gesture-allowed ink editor publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.04.006 – ident: ref_13 doi: 10.1145/1294211.1294238 – ident: ref_23 – volume: 15 start-page: 23303 year: 2015 ident: ref_7 article-title: A novel phonology- and radical-coded Chinese sign language recognition framework using accelerometer and surface electromyography sensors publication-title: Sensors doi: 10.3390/s150923303 – volume: 11 start-page: 61 year: 2017 ident: ref_24 article-title: A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00061 – volume: 9 start-page: 1 year: 2015 ident: ref_3 article-title: A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00389 – ident: ref_25 – volume: 9 start-page: 1742 year: 2012 ident: ref_21 article-title: Analysis of Handwriting Velocity to Identify Handwriting Process from Electromyographic Signals publication-title: Am. J. Appl. Sci. doi: 10.3844/ajassp.2012.1742.1756 – ident: ref_12 – volume: 21 start-page: 1 year: 2015 ident: ref_1 article-title: Introduction to the Special Issue on Physiological Computing for Human-Computer Interaction publication-title: ACM Trans. Comput. Interact. doi: 10.1145/2688203 – volume: 14 start-page: 46019 year: 2017 ident: ref_6 article-title: Transcranial direct current stimulation versus user training on improving online myoelectric control for amputees publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa758e – ident: ref_19 doi: 10.1371/journal.pone.0006791 – volume: 2 start-page: 275 year: 2007 ident: ref_27 article-title: Myoelectric control systems—A survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.009 – ident: ref_15 – ident: ref_2 doi: 10.1007/978-81-322-1050-4_33 – volume: 62 start-page: 4994 year: 2015 ident: ref_4 article-title: Missing-Data Classification with the Extended Full-Dimensional Gaussian Mixture Model: Applications to EMG-Based Motion Recognition publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2403797 – ident: ref_22 – volume: 14 start-page: 6677 year: 2014 ident: ref_8 article-title: An upper-limb power-assist exoskeleton using proportional myoelectric control publication-title: Sensors doi: 10.3390/s140406677 – ident: ref_20 – volume: 22 start-page: 797 year: 2014 ident: ref_9 article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305111 |
| SSID | ssj0023338 |
| Score | 2.2435255 |
| Snippet | How to reconstruct drawing and handwriting traces from surface electromyography (sEMG) signals accurately has attracted a number of researchers recently. An... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3296 |
| SubjectTerms | Adult Algorithms drawing trace electromyography Electromyography - methods gene expression programming Handwriting Humans Kalman Filter Male muscle-computer interface Muscles - physiology |
| Title | sEMG-Based Drawing Trace Reconstruction: A Novel Hybrid Algorithm Fusing Gene Expression Programming into Kalman Filter |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30274386 https://www.proquest.com/docview/2115756459 https://pubmed.ncbi.nlm.nih.gov/PMC6210803 https://doaj.org/article/495235dd441b480284784a2ec36d93de |
| Volume | 18 |
| WOSCitedRecordID | wos000448661500124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxHMpj8ogDlyiTWy3trm1kLIItYrQHsopsh17N1KboLbswoXfzkySlhatxIWLD7aljDzjmW_kyTeEvBFOOKuFj5IwcJEYFDYyAOIi5iyAfRWMHZqm2YSczdR8rrO9Vl9YE9bSA7cHdwIAnvFBUUDYtkLF6E2VMMw7Piw0Lzx631jqbTLVpVocMq-WR4hDUn-yhjgWc4bM_HvRpyHpvw5Z_l0guRdxJvfJvQ4q0lEr4gNyw1cPyd09AsFH5GqdTj9GY4hEBf2wMlcwSSH6OE8xrfxDDvuOjuisvvQLevoTf9Gio8V5vSo3F0s6wcr3c4r00zT90ZXFVjRr67aWuFZWm5p-NoulqeikxOf1x-Rskp69P426VgqRg4PbgBthLPZILW-s9CpxxhYiANgxsbaGKYXICrQlPNOxCCFImRhjQ-DWW2n5E3JU1ZV_SqjTJjZWW22SAi6_g4wN3KVxNok1Y8H3yNvtCeeuoxnHbheLHNINVEa-U0aPvN5t_dZya1y3aYxq2m1AOuxmAowk74wk_5eR9MirrZJzuD74JmIqX39f5wzJhhpGnR45bpW--xQ-6QquQAR5YA4HshyuVOVFQ9E9ZFi7yZ_9D-GfkzuA0roilRfkCEzHvyS33eWmXK_65Kacy2ZUfXJrnM6yL_3mLsA4_ZXCXPZpmn39DevlEAc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Drawing+Trace+Reconstruction%3A+A+Novel+Hybrid+Algorithm+Fusing+Gene+Expression+Programming+into+Kalman+Filter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Zhongliang&rft.au=Wen%2C+Yangliang&rft.au=Chen%2C+Yumiao&rft.date=2018-09-30&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fs18103296&rft_id=info%3Apmid%2F30274386&rft.externalDocID=PMC6210803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |