Computer vision for automatic detection and classification of fabric defect employing deep learning algorithm

Purpose The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm. Design/methodology/approach To make a fast and effective classification of fabric defect, the authors have considered a char...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of clothing science and technology Ročník 31; číslo 4; s. 510 - 521
Hlavní autoři: Jeyaraj, Pandia Rajan, Samuel Nadar, Edward Rajan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bradford Emerald Publishing Limited 05.08.2019
Emerald Group Publishing Limited
Témata:
ISSN:0955-6222, 1758-5953
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm. Design/methodology/approach To make a fast and effective classification of fabric defect, the authors have considered a characteristic of texture, namely its colour. A deep convolutional neural network is formed to learn from the training phase of various defect data sets. In the testing phase, the authors have utilised a learning feature for defect classification. Findings The improvement in the defect classification accuracy has been achieved by employing deep learning algorithm. The authors have tested the defect classification accuracy on six different fabric materials and have obtained an average accuracy of 96.55 per cent with 96.4 per cent sensitivity and 0.94 success rate. Practical implications The authors had evaluated the method by using 20 different data sets collected from different raw fabrics. Also, the authors have tested the algorithm in standard data set provided by Ministry of Textile. In the testing task, the authors have obtained an average accuracy of 94.85 per cent, with six defects being successfully recognised by the proposed algorithm. Originality/value The quantitative value of performance index shows the effectiveness of developed classification algorithm. Moreover, the computational time for different fabric processing was presented to verify the computational range of proposed algorithm with the conventional fabric processing techniques. Hence, this proposed computer vision-based fabric defects detection system is used for an accurate defect detection and computer-aided analysis system.
AbstractList Purpose The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm. Design/methodology/approach To make a fast and effective classification of fabric defect, the authors have considered a characteristic of texture, namely its colour. A deep convolutional neural network is formed to learn from the training phase of various defect data sets. In the testing phase, the authors have utilised a learning feature for defect classification. Findings The improvement in the defect classification accuracy has been achieved by employing deep learning algorithm. The authors have tested the defect classification accuracy on six different fabric materials and have obtained an average accuracy of 96.55 per cent with 96.4 per cent sensitivity and 0.94 success rate. Practical implications The authors had evaluated the method by using 20 different data sets collected from different raw fabrics. Also, the authors have tested the algorithm in standard data set provided by Ministry of Textile. In the testing task, the authors have obtained an average accuracy of 94.85 per cent, with six defects being successfully recognised by the proposed algorithm. Originality/value The quantitative value of performance index shows the effectiveness of developed classification algorithm. Moreover, the computational time for different fabric processing was presented to verify the computational range of proposed algorithm with the conventional fabric processing techniques. Hence, this proposed computer vision-based fabric defects detection system is used for an accurate defect detection and computer-aided analysis system.
PurposeThe purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced learning algorithm.Design/methodology/approachTo make a fast and effective classification of fabric defect, the authors have considered a characteristic of texture, namely its colour. A deep convolutional neural network is formed to learn from the training phase of various defect data sets. In the testing phase, the authors have utilised a learning feature for defect classification.FindingsThe improvement in the defect classification accuracy has been achieved by employing deep learning algorithm. The authors have tested the defect classification accuracy on six different fabric materials and have obtained an average accuracy of 96.55 per cent with 96.4 per cent sensitivity and 0.94 success rate.Practical implicationsThe authors had evaluated the method by using 20 different data sets collected from different raw fabrics. Also, the authors have tested the algorithm in standard data set provided by Ministry of Textile. In the testing task, the authors have obtained an average accuracy of 94.85 per cent, with six defects being successfully recognised by the proposed algorithm.Originality/valueThe quantitative value of performance index shows the effectiveness of developed classification algorithm. Moreover, the computational time for different fabric processing was presented to verify the computational range of proposed algorithm with the conventional fabric processing techniques. Hence, this proposed computer vision-based fabric defects detection system is used for an accurate defect detection and computer-aided analysis system.
Author Samuel Nadar, Edward Rajan
Jeyaraj, Pandia Rajan
Author_xml – sequence: 1
  givenname: Pandia Rajan
  orcidid: 0000-0001-7086-6596
  surname: Jeyaraj
  fullname: Jeyaraj, Pandia Rajan
  email: pandiarajan@mepcoeng.ac.in
– sequence: 2
  givenname: Edward Rajan
  surname: Samuel Nadar
  fullname: Samuel Nadar, Edward Rajan
  email: sedward@mepcoeng.ac.in
BookMark eNp9kV9PwyAUxYmZidv0C_jUxOcqF0pXHs3inxkTH5zPDaUwWdpSgZrs20s7XzTGJy4n53fJOSzQrLOdQugS8DUALm42T-vXbQqQEgxFioGyEzSHFStSxhmdoTnmjKU5IeQMLbzfY4yzrGBz1K5t2w9BueTTeGO7RFuXiCHYVgQjk1oFJcOoi65OZCO8N9pIMUlWJ1pUbrLpaEtU2zf2YLpdFFSfNEq4bryJZmedCe_tOTrVovHq4vtcorf7u-36MX1-edisb59TmWUQUppzRYXmuSC15nQVI-aMSpmTGnBNMpIpIDKv6ApjJrMq5zzmo0AJFHVVSLpEV8e9vbMfg_Kh3NvBdfHJkpCcZwCUk-gqji7prPdO6VKaMEULTpimBFyO5ZZTuXEsx3LLsdyIkl9o70wr3OF_CI6QapUTTf038-MX6Rfg0I5U
CitedBy_id crossref_primary_10_1016_j_jmst_2020_04_033
crossref_primary_10_1080_00405000_2024_2383799
crossref_primary_10_1016_j_compeleceng_2023_108706
crossref_primary_10_2478_ftee_2022_0020
crossref_primary_10_3390_app9183791
crossref_primary_10_3390_app12105285
crossref_primary_10_1117_1_JEI_31_6_063033
crossref_primary_10_3390_polym16081156
crossref_primary_10_1177_00405175241233942
crossref_primary_10_3390_agriengineering7050127
crossref_primary_10_1177_00405175221137010
crossref_primary_10_1007_s11063_022_11063_6
crossref_primary_10_1016_j_compind_2021_103551
crossref_primary_10_3390_electronics13183728
crossref_primary_10_1109_ACCESS_2021_3083518
crossref_primary_10_3390_s23052539
crossref_primary_10_1177_0040517519884124
crossref_primary_10_1007_s11831_025_10366_w
crossref_primary_10_1177_00405175251342617
crossref_primary_10_1007_s10044_024_01318_4
crossref_primary_10_1007_s11740_024_01324_9
crossref_primary_10_1007_s12204_020_2246_4
crossref_primary_10_1177_00405175211044794
crossref_primary_10_3390_s22207846
crossref_primary_10_1177_14727978251337906
crossref_primary_10_1016_j_eswa_2021_114838
crossref_primary_10_3390_ma18153554
crossref_primary_10_1177_00405175231158134
crossref_primary_10_1108_IJCST_02_2020_0024
crossref_primary_10_1080_03019233_2020_1816806
crossref_primary_10_1177_00405175221114633
crossref_primary_10_32604_cmc_2021_015128
crossref_primary_10_1002_2050_7038_12521
crossref_primary_10_1177_00405175231188535
crossref_primary_10_1007_s11042_020_09245_2
crossref_primary_10_1177_24723444231201441
crossref_primary_10_1016_j_jmapro_2021_11_063
crossref_primary_10_1177_00405175221130773
crossref_primary_10_1007_s00170_021_06592_8
crossref_primary_10_1007_s10586_023_04115_6
crossref_primary_10_1109_ACCESS_2020_3003588
crossref_primary_10_3390_s20164531
crossref_primary_10_1177_00405175231202035
crossref_primary_10_1177_15589250221101382
crossref_primary_10_3390_app14125298
crossref_primary_10_3390_electronics13112009
crossref_primary_10_1007_s11042_023_18087_7
crossref_primary_10_3390_electronics13214314
crossref_primary_10_1007_s11036_023_02280_x
crossref_primary_10_1108_JFMM_05_2021_0129
crossref_primary_10_1108_BIJ_02_2021_0075
Cites_doi 10.1080/00405000.2013.836784
10.1177/0040517514525880
10.1016/j.isatra.2013.11.015
10.1016/j.imavis.2011.02.002
10.1109/TMM.2016.2608000
10.1109/TLA.2016.7587603
10.1109/TMM.2014.2298832
10.1080/00405000.2015.1131440
10.1109/TMSCS.2016.2601326
10.1016/j.ijleo.2015.04.017
10.1109/TASE.2017.2696748
10.1109/TASE.2016.2520955
10.1016/j.ijleo.2016.09.110
10.1109/TNNLS.2018.2790981
10.1177/1528083713490002
10.1080/00405000.2015.1061760
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2019
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2019
DBID AAYXX
CITATION
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
F~G
GNUQQ
HCIFZ
K6~
KB.
L.-
L.0
L6V
M0C
M2P
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/IJCST-11-2018-0135
DatabaseName CrossRef
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
ABI/INFORM global
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1758-5953
EndPage 521
ExternalDocumentID 10_1108_IJCST_11_2018_0135
10.1108/IJCST-11-2018-0135
GroupedDBID 0R
29J
3FY
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8FW
8R4
8R5
9E0
AADTA
AADXL
AAGBP
AAMCF
AAPBV
AATHL
AAUDR
ABIJV
ABJCF
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBZA
AEHZZ
AENEX
AEUCW
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BPQFQ
CAG
CS3
D1I
DU5
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
KB.
KBGRL
L6V
M0C
M2P
M7S
MS
O9-
P2P
PDBOC
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q2X
RIG
V1G
0R~
490
AAYXX
ABJNI
ABKQV
ABYQI
ACZLT
AFFHD
AHMHQ
AJZCB
AODMV
CCPQU
CITATION
H13
HZ~
IJT
K6~
M42
MS~
PHGZM
PHGZT
PQGLB
SBBZN
Z11
7XB
8FD
AFNTC
F28
FR3
L.-
L.0
PKEHL
PUEGO
Q9U
ID FETCH-LOGICAL-c441t-369e3af96a2df937110653cc62d10d2424e12c6b37005c4b699095313218db8c3
IEDL.DBID 7WY
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479288600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0955-6222
IngestDate Sat Aug 23 13:41:09 EDT 2025
Tue Nov 18 22:25:53 EST 2025
Sat Nov 29 07:42:35 EST 2025
Tue Nov 30 14:00:00 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computer vision
Fabric defect detection
Feature extraction
Defect classifications
Deep learning algorithm
Language English
License Licensed re-use rights only
https://www.emeraldinsight.com/page/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-369e3af96a2df937110653cc62d10d2424e12c6b37005c4b699095313218db8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7086-6596
PQID 2269411392
PQPubID 29796
PageCount 12
ParticipantIDs crossref_citationtrail_10_1108_IJCST_11_2018_0135
emerald_primary_10_1108_IJCST-11-2018-0135
crossref_primary_10_1108_IJCST_11_2018_0135
proquest_journals_2269411392
PublicationCentury 2000
PublicationDate 2019-08-05
PublicationDateYYYYMMDD 2019-08-05
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-05
  day: 05
PublicationDecade 2010
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle International journal of clothing science and technology
PublicationYear 2019
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2019080814052357400_ref008) 2018; 6
(key2019080814052357400_ref005) 2015
(key2019080814052357400_ref027) 2018; 29
(key2019080814052357400_ref019) 2016; 14
key2019080814052357400_ref011
(key2019080814052357400_ref009) 2016
(key2019080814052357400_ref023) 2017
(key2019080814052357400_ref010) 2018; 18
(key2019080814052357400_ref002) 2014; 16
(key2019080814052357400_ref029) 2014; 84
(key2019080814052357400_ref025) 2018; 79
(key2019080814052357400_ref026) 2016; 51
(key2019080814052357400_ref004) 2018; 15
(key2019080814052357400_ref006) 2016; 127
(key2019080814052357400_ref028) 2014; 105
(key2019080814052357400_ref018) 2017; 14
(key2019080814052357400_ref016) 2015; 23
(key2019080814052357400_ref012) 2016; 173
(key2019080814052357400_ref022) 2011; 29
(key2019080814052357400_ref021) 2014; 53
(key2019080814052357400_ref003) 2018; 6
(key2019080814052357400_ref007) 2011; 29
(key2019080814052357400_ref020) 2014; 22
(key2019080814052357400_ref017) 2014; 44
(key2019080814052357400_ref024) 2016; 107
(key2019080814052357400_ref013) 2017; 19
(key2019080814052357400_ref014) 2016; 107
(key2019080814052357400_ref015) 2015; 126
(key2019080814052357400_ref001) 2016; 2
References_xml – volume: 105
  start-page: 223
  issue: 3
  year: 2014
  ident: key2019080814052357400_ref028
  article-title: Dictionary learning framework for fabric defect detection
  publication-title: Journal of Textile Institute
  doi: 10.1080/00405000.2013.836784
– volume: 84
  start-page: 1634
  issue: 15
  year: 2014
  ident: key2019080814052357400_ref029
  article-title: Fabric defect detection via small scale over-complete basis set
  publication-title: Journal of Textile Research
  doi: 10.1177/0040517514525880
– volume: 53
  start-page: 834
  issue: 3
  year: 2014
  ident: key2019080814052357400_ref021
  article-title: Surface defect detection in tiling industries using digital image processing methods: analysis and evaluation
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2013.11.015
– volume: 29
  start-page: 442
  issue: 7
  year: 2011
  ident: key2019080814052357400_ref007
  article-title: Automated fabric defect detection review
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.02.002
– volume: 19
  start-page: 80
  issue: 1
  year: 2017
  ident: key2019080814052357400_ref013
  article-title: Cartoon and texture decomposition-based color transfer for fabric images
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2016.2608000
– volume: 14
  start-page: 3065
  issue: 7
  year: 2016
  ident: key2019080814052357400_ref019
  article-title: Automatic detection and classification of defects in knitted fabrics
  publication-title: IEEE Latin America Transactions
  doi: 10.1109/TLA.2016.7587603
– ident: key2019080814052357400_ref011
– volume: 16
  start-page: 772
  issue: 3
  year: 2014
  ident: key2019080814052357400_ref002
  article-title: Texture modeling using contourlets and finite mixtures of generalized Gaussian distributions and applications
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2014.2298832
– start-page: 1437
  year: 2016
  ident: key2019080814052357400_ref009
  article-title: Fabric defect detection using deep learning
– volume: 173
  start-page: 1386
  issue: 3
  year: 2016
  ident: key2019080814052357400_ref012
  article-title: Differential evolution-based optimal Gabor filter model for fabric inspection
  publication-title: Neurocomputing
– volume: 107
  start-page: 800
  issue: 6
  year: 2016
  ident: key2019080814052357400_ref014
  article-title: Unsupervised fabric defect segmentation using local patch approximation
  publication-title: Journal of Textile Institute
  doi: 10.1080/00405000.2015.1131440
– volume: 2
  start-page: 242
  issue: 4
  year: 2016
  ident: key2019080814052357400_ref001
  article-title: Stochastic-based deep convolutional networks with reconfigurable logic fabric
  publication-title: IEEE Transactions on Multi-Scale Computing Systems
  doi: 10.1109/TMSCS.2016.2601326
– volume: 126
  start-page: 1331
  issue: 14
  year: 2015
  ident: key2019080814052357400_ref015
  article-title: Automated defect detection in textured surfaces using optimal elliptical Gabor filters
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.04.017
– volume: 15
  start-page: 1014
  issue: 3
  year: 2018
  ident: key2019080814052357400_ref004
  article-title: Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2017.2696748
– volume: 6
  start-page: 37965
  issue: 1
  year: 2018
  ident: key2019080814052357400_ref008
  article-title: Automatic visual defect detection using texture prior and low-rank representation
  publication-title: IEEE Access
– volume: 22
  start-page: 51
  issue: 4
  year: 2014
  ident: key2019080814052357400_ref020
  article-title: Application of principal component analysis to boost the performance of an automated fabric fault detector and classifier
  publication-title: Fibres Textiles in Eastern Europe
– volume: 14
  start-page: 1256
  issue: 2
  year: 2017
  ident: key2019080814052357400_ref018
  article-title: Deformable patterned fabric defect detection with fisher criterion-based deep learning
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2016.2520955
– volume: 29
  start-page: 442
  issue: 7
  year: 2011
  ident: key2019080814052357400_ref022
  article-title: Automated fabric defect detection-a review
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.02.002
– volume: 127
  start-page: 11960
  issue: 24
  year: 2016
  ident: key2019080814052357400_ref006
  article-title: Fabric defect detection systems and methods – a systematic literature review
  publication-title: Optik – International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2016.09.110
– volume: 29
  start-page: 2216
  issue: 6
  year: 2018
  ident: key2019080814052357400_ref027
  article-title: Self-paced prioritized curriculum learning with coverage penalty in deep reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2790981
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: key2019080814052357400_ref017
  article-title: Supervised defect detection on textile fabrics via optimal Gabor filter
  publication-title: Journal of Industrial Textiles
  doi: 10.1177/1528083713490002
– volume: 6
  start-page: 27659
  issue: 1
  year: 2018
  ident: key2019080814052357400_ref003
  article-title: Fabric defect detection based on biological vision modeling
  publication-title: IEEE Access
– volume: 51
  start-page: 378
  issue: 17
  year: 2016
  ident: key2019080814052357400_ref026
  article-title: Fabric inspection based on the Elo rating method
  publication-title: Pattern Recognition
– year: 2017
  ident: key2019080814052357400_ref023
  article-title: Fabric defects detection via visual attention mechanism
– volume: 79
  start-page: 303
  issue: 7
  year: 2018
  ident: key2019080814052357400_ref025
  article-title: Single image deraining via decorrelating the rain streaks and background scene in gradient domain
  publication-title: Pattern Recognition
– volume: 23
  start-page: 85
  issue: 3
  year: 2015
  ident: key2019080814052357400_ref016
  article-title: Real-time denim fabric inspection using image analysis
  publication-title: Fibres Textiles in Eastern Europe
– year: 2015
  ident: key2019080814052357400_ref005
  article-title: A learning-based approach for automatic defect detection in textile images
– volume: 107
  start-page: 743
  issue: 6
  year: 2016
  ident: key2019080814052357400_ref024
  article-title: Defect detection on the fabric with complex texture via dual-scale over-complete dictionary
  publication-title: Journal of Textile Institute
  doi: 10.1080/00405000.2015.1061760
– volume: 18
  start-page: 1
  issue: 4
  year: 2018
  ident: key2019080814052357400_ref010
  article-title: Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model
  publication-title: Sensors
SSID ssj0004485
Score 2.4204125
Snippet Purpose The purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced...
PurposeThe purpose of this paper is to focus on the design and development of computer-aided fabric defect detection and classification employing advanced...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 510
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Automation
CAD
Classification
Computer aided design
Computer vision
Computing time
Datasets
Deep learning
Defects
Design defects
Machine learning
Performance evaluation
Performance indices
Scanners
Sensitivity analysis
Standard data
Success
Textiles
Title Computer vision for automatic detection and classification of fabric defect employing deep learning algorithm
URI https://www.emerald.com/insight/content/doi/10.1108/IJCST-11-2018-0135/full/html
https://www.proquest.com/docview/2269411392
Volume 31
WOSCitedRecordID wos000479288600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1758-5953
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004485
  issn: 0955-6222
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5Bi0R7KBCoGiiRD5yoluza-zwhGjWiBaKoDzWcVl7bGyq1mzS75fcz43ibFqFcuFj78FqWxvaMvfN9H8CHELcA3FepJ4QRXqiwkITkKn1ZZJoLEWlL4vo9GY3SySQbuwO32qVVtmuiXaj1TNEZeZ9byCXGK_zz_NYj1Sj6u-okNJ7CJjrqiBQMksufK1xkaCU5iWXNi9ERtqAZP-0fnwzOzglThg6Qsrms3NvKMf2Fzl2t0NbtDF_8b4dfwo4LONmX5Qh5BU9M1YHnLR657sD2A0rC13DTyjywJeqcYVDL5F0zs9SuTJvG5m5VTFaaKQq9KdfImpfNSlbKYmGrUZYIM1ZOGNvFB2bOnELFlMnrKfa0-XXzBi6GR-eDr56TZPAUxk2NJ-LMCFlmseS6JCq9gLhtlYq5DnxNUBMTcBUXIsHZrcIiRmeXRUQPGaS6SJXYhY1qVpk9YFmMoZIWOkgUxmR-VJRGZ9xwWfBS-iLsQtDaI1eOr5xkM65zu2_x09zaEC9zsmFONuzCwf038yVbx9raH52Z_1350fDown5r5txN8zpf2fjt-tfvYAtbymzmYLQPG83izryHZ-p3c1UvenbU9mDz8Gg0PsW7b4efsPzhD6jkYyqTsz_lLPYm
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3xUQk4QBtAhALdQ7lQWbF3Hcc-VKgKINJ8qBJB4uaud9eABE5IDIg_xW9kZmM3bYVy48DFipzNSrbf7sw4894D-OpjCcBdFTpCGOH4Cg-SmFypK5NIcyHq2oq4dhq9XnhxEf2ag-eSC0NtleWeaDdqPVD0jrzGLeUS8xV-OLxzyDWK_l0tLTQmsGibp0cs2cbfW0f4fPc5PznuN0-dwlXAURj6c0cEkREyjQLJdUpqcB7JsyoVcO25mtgSxuMqSEQDAar8JMD9OqqTwqEX6iRUAuedh0UfCy9aV123OeVh-tYClFTdnAADb0nSccNa62fzrE8cNgy41D1m7eWmgfA_NvA0Itgwd7L23m7QR1gtEmr2Y7ICPsGcySqwVPKtxxVY-UtycR1uSxsLNmHVM0zambzPB1a6lmmT2960jMlMM0WlBfVSWfiyQcpSmYzsMOqCYcbaJeO8eMIMWeHAccnkzSXemfzqdgPO3-TaN2EhG2RmC1gUYCqohfYaCnNOt56kRkfccJnwVLrCr4JXPv9YFXrsZAtyE9u6zA1jixn8GBNmYsJMFb79-c1wokYyc_RBAavXB_8DxyrslLCKi21sHE8xtT376y-wdNrvduJOq9f-DMs4a2S7JOs7sJCP7s0ufFAP-fV4tGdXDIPfb43AF2gxSaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+for+automatic+detection+and+classification+of+fabric+defect+employing+deep+learning+algorithm&rft.jtitle=International+journal+of+clothing+science+and+technology&rft.au=Jeyaraj%2C+Pandia+Rajan&rft.au=Samuel+Nadar%2C+Edward+Rajan&rft.date=2019-08-05&rft.pub=Emerald+Publishing+Limited&rft.issn=0955-6222&rft.eissn=1758-5953&rft.volume=31&rft.issue=4&rft.spage=510&rft.epage=521&rft_id=info:doi/10.1108%2FIJCST-11-2018-0135&rft.externalDocID=10.1108%2FIJCST-11-2018-0135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-6222&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-6222&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-6222&client=summon