GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism
GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 20; číslo 18; s. 5143 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI
09.09.2020
MDPI AG |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods. |
|---|---|
| AbstractList | GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods. GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods.GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods. |
| Author | Huang, Zhiqiu Wang, Senzhang Akbar, Azeem Nawaz, Asif AlSalman, Hussain Gumaei, Abdu |
| AuthorAffiliation | 1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; zqhuang@nuaa.edu.cn (Z.H.); szwang@nuaa.edu.cn (S.W.); L1600308@cqu.edu.cn (A.A.) 3 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China 2 Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China 4 Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; halsalman@ksu.edu.sa |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; zqhuang@nuaa.edu.cn (Z.H.); szwang@nuaa.edu.cn (S.W.); L1600308@cqu.edu.cn (A.A.) – name: 2 Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China – name: 3 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China – name: 4 Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; halsalman@ksu.edu.sa |
| Author_xml | – sequence: 1 givenname: Asif surname: Nawaz fullname: Nawaz, Asif – sequence: 2 givenname: Zhiqiu surname: Huang fullname: Huang, Zhiqiu – sequence: 3 givenname: Senzhang surname: Wang fullname: Wang, Senzhang – sequence: 4 givenname: Azeem surname: Akbar fullname: Akbar, Azeem – sequence: 5 givenname: Hussain surname: AlSalman fullname: AlSalman, Hussain – sequence: 6 givenname: Abdu orcidid: 0000-0001-8512-9687 surname: Gumaei fullname: Gumaei, Abdu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32916967$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEQxy1URB9w4AugPcJhqR-zrwtSCKVUKgJBe7YcezZxtLFT21vUL9DPXacJUYs4WOPx_OY_Y80ckwPnHRLyltGPQnT0NHLK2oqBeEGOGHAoW87pwZP7ITmOcUkpF0K0r8ih4B2ru7o5IvfnP38XV0EtUScf7oqpX60HTNa74jpaNy_OnCmTL7MpPltjQ-ZyUA2ZdLd-GHfeL9RjCOhSTtDeYCi_4KMtJkEvbMppY8Dij02LYpJSBjclvqNeKGfj6jV52ash4pudPSHXX8-upt_Kyx_nF9PJZakBWCo5mzWV0D2jjepYPsJ0DFphdK0YZaqpualqUbU163um2hlXTMygMS0zKBSIE3Kx1TVeLeU62JUKd9IrKx8ffJhLFZLVA0qsAXpVt9g1DTBdtQBKdKA4CATDq6z1aau1HmcrNDr_KajhmejziLMLOfe3sqkaWkGXBd7vBIK_GTEmubJR4zAoh36MkgNwzqDim77fPa21L_J3kBn4sAV08DEG7PcIo3KzJHK_JJk9_YfVNqnNQHKbdvhPxgMN7r8B |
| CitedBy_id | crossref_primary_10_1186_s13638_022_02137_z crossref_primary_10_3390_s22083057 crossref_primary_10_1007_s11116_022_10328_2 crossref_primary_10_3390_s23229120 crossref_primary_10_1007_s42421_023_00065_y crossref_primary_10_1016_j_asoc_2023_110965 crossref_primary_10_1109_TMC_2023_3291130 crossref_primary_10_3390_en14175232 crossref_primary_10_3390_ai6070142 crossref_primary_10_3390_su14106042 crossref_primary_10_3389_feart_2025_1530234 crossref_primary_10_3390_app15020745 |
| Cites_doi | 10.1007/978-3-030-31756-0_5 10.1049/iet-its.2019.0017 10.1109/CVPR.2015.7298878 10.1002/ett.3454 10.1109/MPOT.2019.2906977 10.1145/2442968.2442980 10.1109/ICCV.2017.19 10.1145/2743025 10.1145/1526709.1526816 10.1109/TST.2014.6838194 10.1007/s11704-016-6907-2 10.1145/2525314.2525333 10.1109/TITS.2013.2282352 10.1109/ISCID.2015.55 10.3390/s18113741 10.1145/1409635.1409677 10.3390/sym11050644 10.1587/transinf.2016EDL8252 10.1002/jnm.2632 10.3390/sym11070889 10.1145/2339530.2339562 10.1109/IJCNN.2019.8852211 10.1109/TITS.2019.2900481 10.1109/MDM.2016.25 10.1109/JSYST.2015.2462742 10.1007/978-3-319-46227-1_16 10.1038/nature14539 10.1109/ACCESS.2020.2969750 10.14778/3115404.3115407 10.1109/ITSC.2017.8317943 10.1016/j.trc.2017.11.021 10.1145/2820783.2820829 10.1109/TITS.2018.2870948 10.1007/978-981-10-6385-5_51 10.3390/electronics8121433 10.1145/2996913.2996924 10.1007/978-3-319-68783-4_25 10.1177/0020294020918324 10.1109/ICDE.2012.42 10.1145/1367497.1367532 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/s20185143 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e644fa68e97741c5844a394a243e4d25 PMC7570549 32916967 10_3390_s20185143 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c441t-21b753cf107a917a93d91483dc6a101a762d5635861ff1a8b2a13b47d81de3a43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581673800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:46:02 EDT 2025 Tue Nov 04 01:54:14 EST 2025 Thu Oct 02 12:01:31 EDT 2025 Mon Jul 21 05:39:02 EDT 2025 Tue Nov 18 21:55:49 EST 2025 Sat Nov 29 07:18:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | attention trajectory completion GPS trajectory ConvLSTM encoder-decoder |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-21b753cf107a917a93d91483dc6a101a762d5635861ff1a8b2a13b47d81de3a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8512-9687 |
| OpenAccessLink | https://doaj.org/article/e644fa68e97741c5844a394a243e4d25 |
| PMID | 32916967 |
| PQID | 2442214524 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e644fa68e97741c5844a394a243e4d25 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570549 proquest_miscellaneous_2442214524 pubmed_primary_32916967 crossref_primary_10_3390_s20185143 crossref_citationtrail_10_3390_s20185143 |
| PublicationCentury | 2000 |
| PublicationDate | 20200909 |
| PublicationDateYYYYMMDD | 2020-09-09 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200909 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | ref_50 Wang (ref_9) 2018; 20 Wang (ref_7) 2017; 35 ref_13 ref_12 ref_11 Zheng (ref_20) 2015; 6 ref_10 Shah (ref_2) 2018; 23 Wang (ref_37) 2017; 100 ref_18 ref_16 ref_15 Su (ref_14) 2014; 19 LeCun (ref_40) 2015; 521 Asif (ref_42) 2020; 14 ref_25 ref_24 ref_23 ref_22 ref_21 ref_29 Haider (ref_5) 2018; 29 ref_28 Tanoli (ref_1) 2020; 8 ref_26 Liu (ref_17) 2017; 10 Dabiri (ref_39) 2018; 86 Fioranelli (ref_6) 2019; 38 ref_36 ref_35 ref_34 Shah (ref_4) 2019; 32 ref_33 ref_32 ref_30 ref_38 Femminella (ref_27) 2015; 11 Hunter (ref_31) 2013; 15 Zheng (ref_45) 2010; 33 ref_47 ref_46 ref_44 ref_43 Zheng (ref_19) 2017; 11 ref_3 ref_49 Du (ref_41) 2019; 21 ref_48 ref_8 |
| References_xml | – ident: ref_26 doi: 10.1007/978-3-030-31756-0_5 – volume: 35 start-page: 1 year: 2017 ident: ref_7 article-title: Computing urban traffic congestions by incorporating sparse GPS probe data and social media data publication-title: Acm Trans. Inf. Syst. (TOIS) – volume: 23 start-page: 1 year: 2018 ident: ref_2 article-title: Seizure episodes detection via smart medical sensing system publication-title: J. Ambient. Intell. Humaniz. Comput. – volume: 14 start-page: 570 year: 2020 ident: ref_42 article-title: Convolutional LSTM based transportation mode learning from raw GPS trajectories publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0017 – ident: ref_46 doi: 10.1109/CVPR.2015.7298878 – volume: 29 start-page: e3454 year: 2018 ident: ref_5 article-title: Utilizing a 5G spectrum for health care to detect the tremors and breathing activity for multiple sclerosis publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3454 – volume: 38 start-page: 16 year: 2019 ident: ref_6 article-title: Radar for health care: Recognizing human activities and monitoring vital signs publication-title: IEEE Potentials doi: 10.1109/MPOT.2019.2906977 – ident: ref_30 doi: 10.1145/2442968.2442980 – ident: ref_33 doi: 10.1109/ICCV.2017.19 – volume: 6 start-page: 1 year: 2015 ident: ref_20 article-title: Trajectory data mining: An overview publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/2743025 – ident: ref_12 doi: 10.1145/1526709.1526816 – volume: 19 start-page: 235 year: 2014 ident: ref_14 article-title: Activity recognition with smartphone sensors publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2014.6838194 – volume: 11 start-page: 1 year: 2017 ident: ref_19 article-title: Urban computing: Enabling urban intelligence with big data publication-title: Front. Comput. Sci. doi: 10.1007/s11704-016-6907-2 – ident: ref_32 doi: 10.1145/2525314.2525333 – ident: ref_48 – ident: ref_10 – volume: 15 start-page: 507 year: 2013 ident: ref_31 article-title: The path inference filter: Model-based low-latency map matching of probe vehicle data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2282352 – ident: ref_29 doi: 10.1109/ISCID.2015.55 – ident: ref_18 doi: 10.3390/s18113741 – ident: ref_44 doi: 10.1145/1409635.1409677 – ident: ref_47 doi: 10.3390/sym11050644 – ident: ref_13 – volume: 100 start-page: 1132 year: 2017 ident: ref_37 article-title: Detecting transportation modes using deep neural network publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2016EDL8252 – volume: 32 start-page: e2632 year: 2019 ident: ref_4 article-title: Cognitive health care system and its application in pill-rolling assessment publication-title: Int. J. Numer. Model. Electron. Netw. Devices Fields doi: 10.1002/jnm.2632 – ident: ref_16 doi: 10.3390/sym11070889 – ident: ref_24 doi: 10.1145/2339530.2339562 – ident: ref_21 doi: 10.1109/IJCNN.2019.8852211 – volume: 21 start-page: 972 year: 2019 ident: ref_41 article-title: Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2900481 – ident: ref_22 doi: 10.1109/MDM.2016.25 – ident: ref_3 – ident: ref_34 – volume: 11 start-page: 2917 year: 2015 ident: ref_27 article-title: A zero-configuration tracking system for first responders networks publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2015.2462742 – ident: ref_11 – ident: ref_8 doi: 10.1007/978-3-319-46227-1_16 – volume: 521 start-page: 436 year: 2015 ident: ref_40 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 33 start-page: 32 year: 2010 ident: ref_45 article-title: GeoLife: A collaborative social networking service among user, location and trajectory publication-title: IEEE Data Eng. Bull. – volume: 8 start-page: 29395 year: 2020 ident: ref_1 article-title: Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969750 – volume: 10 start-page: 1010 year: 2017 ident: ref_17 article-title: An experimental evaluation of point-of-interest recommendation in location-based social networks publication-title: Proc. VLDB Endow. doi: 10.14778/3115404.3115407 – ident: ref_36 doi: 10.1109/ITSC.2017.8317943 – volume: 86 start-page: 360 year: 2018 ident: ref_39 article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network publication-title: Transp. Res. Part Emerg. Technol. doi: 10.1016/j.trc.2017.11.021 – ident: ref_15 doi: 10.1145/2820783.2820829 – volume: 20 start-page: 3010 year: 2018 ident: ref_9 article-title: Efficient traffic estimation with multi-sourced data by parallel coupled hidden markov model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2870948 – ident: ref_28 doi: 10.1007/978-981-10-6385-5_51 – ident: ref_38 doi: 10.3390/electronics8121433 – ident: ref_25 doi: 10.1145/2996913.2996924 – ident: ref_35 doi: 10.1007/978-3-319-68783-4_25 – ident: ref_50 doi: 10.1177/0020294020918324 – ident: ref_43 – ident: ref_23 doi: 10.1109/ICDE.2012.42 – ident: ref_49 doi: 10.1145/1367497.1367532 |
| SSID | ssj0023338 |
| Score | 2.4213371 |
| Snippet | GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5143 |
| SubjectTerms | attention ConvLSTM encoder-decoder GPS trajectory trajectory completion |
| Title | GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32916967 https://www.proquest.com/docview/2442214524 https://pubmed.ncbi.nlm.nih.gov/PMC7570549 https://doaj.org/article/e644fa68e97741c5844a394a243e4d25 |
| Volume | 20 |
| WOSCitedRecordID | wos000581673800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwQEOiPFr2aAyiAOXaI2dxPGxHd3g0CoaIJVT5NiOKGIparNJu3Dc3733nLRK0SQuXBLFcRQr7znv-57tzwDvSRAmsyVlbRwRlFKFpVA2HLphUnJno0iVfrMJOZtl87nKe1t90ZywVh64_XDHDgN2pdPMEVCJDMbLWAsVax4LF1vu1UuHUm3IVEe1BDKvVkdIIKk_XmOYyxK_NKcXfbxI_13I8u8Jkr2Ic_oUnnRQkY3aJu7DPVc_g8c9AcHncHOWf2EYbn763Ps1o95NatrLmvm5AGxS27BZhnhi40UbvnzuD2vWV53X4dU5Zd1JpwkfoEXuq_Cj82c26g00MEraslHTtFMk2dTRsuHF-uIFfDudfD35FHY7K4QG4U8T8qhEmmIq5H4a-ZpWwirkRcKaVGMf1fiHtAlCkSyNqirSWcl1JMpYWkS3TuhYvIS9elm7A2DWJIobDGoRt2gfrQ39I7jUVSUznfIAPmy-eGE62XHa_eJXgfSDjFNsjRPAu23V363Wxl2VxmS2bQWSx_YF6DRF5zTFv5wmgLcboxfYnWiMRNduebkuEO1wEm_ncQCvWifYvkpwxNIqlQHIHffYacvunXrxw0t2y0QiNlaH_6PxR_CIE-mnUS31Gvaa1aV7Aw_NVbNYrwZwX86lP2YDeDCezPLzge8beJz-mWBZ_nmaf78FNUUVCg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPS+Trajectory+Completion+Using+End-to-End+Bidirectional+Convolutional+Recurrent+Encoder-Decoder+Architecture+with+Attention+Mechanism&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nawaz%2C+Asif&rft.au=Huang%2C+Zhiqiu&rft.au=Wang%2C+Senzhang&rft.au=Akbar%2C+Azeem&rft.date=2020-09-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft.spage=5143&rft_id=info:doi/10.3390%2Fs20185143&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20185143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |