GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism

GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 20; číslo 18; s. 5143
Hlavní autori: Nawaz, Asif, Huang, Zhiqiu, Wang, Senzhang, Akbar, Azeem, AlSalman, Hussain, Gumaei, Abdu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI 09.09.2020
MDPI AG
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods.
AbstractList GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods.
GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods.GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking, and security in urban computing systems. Understanding the hidden patterns in large amount of GPS data is critically important in ubiquitous computing. The quality of GPS data is the fundamental key problem to produce high quality results. In real world applications, certain GPS trajectories are sparse and incomplete; this increases the complexity of inference algorithms. Few of existing studies have tried to address this problem using complicated algorithms that are based on conventional heuristics; this requires extensive domain knowledge of underlying applications. Our contribution in this paper are two-fold. First, we proposed deep learning based bidirectional convolutional recurrent encoder-decoder architecture to generate the missing points of GPS trajectories over occupancy grid-map. Second, we interfaced attention mechanism between enconder and decoder, that further enhance the performance of our model. We have performed the experiments on widely used Microsoft geolife trajectory dataset, and perform the experiments over multiple level of grid resolutions and multiple lengths of missing GPS segments. Our proposed model achieved better results in terms of average displacement error as compared to the state-of-the-art benchmark methods.
Author Huang, Zhiqiu
Wang, Senzhang
Akbar, Azeem
Nawaz, Asif
AlSalman, Hussain
Gumaei, Abdu
AuthorAffiliation 1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; zqhuang@nuaa.edu.cn (Z.H.); szwang@nuaa.edu.cn (S.W.); L1600308@cqu.edu.cn (A.A.)
3 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China
2 Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China
4 Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; halsalman@ksu.edu.sa
AuthorAffiliation_xml – name: 1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; zqhuang@nuaa.edu.cn (Z.H.); szwang@nuaa.edu.cn (S.W.); L1600308@cqu.edu.cn (A.A.)
– name: 2 Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China
– name: 3 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China
– name: 4 Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; halsalman@ksu.edu.sa
Author_xml – sequence: 1
  givenname: Asif
  surname: Nawaz
  fullname: Nawaz, Asif
– sequence: 2
  givenname: Zhiqiu
  surname: Huang
  fullname: Huang, Zhiqiu
– sequence: 3
  givenname: Senzhang
  surname: Wang
  fullname: Wang, Senzhang
– sequence: 4
  givenname: Azeem
  surname: Akbar
  fullname: Akbar, Azeem
– sequence: 5
  givenname: Hussain
  surname: AlSalman
  fullname: AlSalman, Hussain
– sequence: 6
  givenname: Abdu
  orcidid: 0000-0001-8512-9687
  surname: Gumaei
  fullname: Gumaei, Abdu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32916967$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQxy1URB9w4AugPcJhqR-zrwtSCKVUKgJBe7YcezZxtLFT21vUL9DPXacJUYs4WOPx_OY_Y80ckwPnHRLyltGPQnT0NHLK2oqBeEGOGHAoW87pwZP7ITmOcUkpF0K0r8ih4B2ru7o5IvfnP38XV0EtUScf7oqpX60HTNa74jpaNy_OnCmTL7MpPltjQ-ZyUA2ZdLd-GHfeL9RjCOhSTtDeYCi_4KMtJkEvbMppY8Dij02LYpJSBjclvqNeKGfj6jV52ash4pudPSHXX8-upt_Kyx_nF9PJZakBWCo5mzWV0D2jjepYPsJ0DFphdK0YZaqpualqUbU163um2hlXTMygMS0zKBSIE3Kx1TVeLeU62JUKd9IrKx8ffJhLFZLVA0qsAXpVt9g1DTBdtQBKdKA4CATDq6z1aau1HmcrNDr_KajhmejziLMLOfe3sqkaWkGXBd7vBIK_GTEmubJR4zAoh36MkgNwzqDim77fPa21L_J3kBn4sAV08DEG7PcIo3KzJHK_JJk9_YfVNqnNQHKbdvhPxgMN7r8B
CitedBy_id crossref_primary_10_1186_s13638_022_02137_z
crossref_primary_10_3390_s22083057
crossref_primary_10_1007_s11116_022_10328_2
crossref_primary_10_3390_s23229120
crossref_primary_10_1007_s42421_023_00065_y
crossref_primary_10_1016_j_asoc_2023_110965
crossref_primary_10_1109_TMC_2023_3291130
crossref_primary_10_3390_en14175232
crossref_primary_10_3390_ai6070142
crossref_primary_10_3390_su14106042
crossref_primary_10_3389_feart_2025_1530234
crossref_primary_10_3390_app15020745
Cites_doi 10.1007/978-3-030-31756-0_5
10.1049/iet-its.2019.0017
10.1109/CVPR.2015.7298878
10.1002/ett.3454
10.1109/MPOT.2019.2906977
10.1145/2442968.2442980
10.1109/ICCV.2017.19
10.1145/2743025
10.1145/1526709.1526816
10.1109/TST.2014.6838194
10.1007/s11704-016-6907-2
10.1145/2525314.2525333
10.1109/TITS.2013.2282352
10.1109/ISCID.2015.55
10.3390/s18113741
10.1145/1409635.1409677
10.3390/sym11050644
10.1587/transinf.2016EDL8252
10.1002/jnm.2632
10.3390/sym11070889
10.1145/2339530.2339562
10.1109/IJCNN.2019.8852211
10.1109/TITS.2019.2900481
10.1109/MDM.2016.25
10.1109/JSYST.2015.2462742
10.1007/978-3-319-46227-1_16
10.1038/nature14539
10.1109/ACCESS.2020.2969750
10.14778/3115404.3115407
10.1109/ITSC.2017.8317943
10.1016/j.trc.2017.11.021
10.1145/2820783.2820829
10.1109/TITS.2018.2870948
10.1007/978-981-10-6385-5_51
10.3390/electronics8121433
10.1145/2996913.2996924
10.1007/978-3-319-68783-4_25
10.1177/0020294020918324
10.1109/ICDE.2012.42
10.1145/1367497.1367532
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s20185143
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e644fa68e97741c5844a394a243e4d25
PMC7570549
32916967
10_3390_s20185143
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-21b753cf107a917a93d91483dc6a101a762d5635861ff1a8b2a13b47d81de3a43
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581673800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:02 EDT 2025
Tue Nov 04 01:54:14 EST 2025
Thu Oct 02 12:01:31 EDT 2025
Mon Jul 21 05:39:02 EDT 2025
Tue Nov 18 21:55:49 EST 2025
Sat Nov 29 07:18:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords attention
trajectory completion
GPS trajectory
ConvLSTM
encoder-decoder
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-21b753cf107a917a93d91483dc6a101a762d5635861ff1a8b2a13b47d81de3a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8512-9687
OpenAccessLink https://doaj.org/article/e644fa68e97741c5844a394a243e4d25
PMID 32916967
PQID 2442214524
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e644fa68e97741c5844a394a243e4d25
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570549
proquest_miscellaneous_2442214524
pubmed_primary_32916967
crossref_primary_10_3390_s20185143
crossref_citationtrail_10_3390_s20185143
PublicationCentury 2000
PublicationDate 20200909
PublicationDateYYYYMMDD 2020-09-09
PublicationDate_xml – month: 9
  year: 2020
  text: 20200909
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
Wang (ref_9) 2018; 20
Wang (ref_7) 2017; 35
ref_13
ref_12
ref_11
Zheng (ref_20) 2015; 6
ref_10
Shah (ref_2) 2018; 23
Wang (ref_37) 2017; 100
ref_18
ref_16
ref_15
Su (ref_14) 2014; 19
LeCun (ref_40) 2015; 521
Asif (ref_42) 2020; 14
ref_25
ref_24
ref_23
ref_22
ref_21
ref_29
Haider (ref_5) 2018; 29
ref_28
Tanoli (ref_1) 2020; 8
ref_26
Liu (ref_17) 2017; 10
Dabiri (ref_39) 2018; 86
Fioranelli (ref_6) 2019; 38
ref_36
ref_35
ref_34
Shah (ref_4) 2019; 32
ref_33
ref_32
ref_30
ref_38
Femminella (ref_27) 2015; 11
Hunter (ref_31) 2013; 15
Zheng (ref_45) 2010; 33
ref_47
ref_46
ref_44
ref_43
Zheng (ref_19) 2017; 11
ref_3
ref_49
Du (ref_41) 2019; 21
ref_48
ref_8
References_xml – ident: ref_26
  doi: 10.1007/978-3-030-31756-0_5
– volume: 35
  start-page: 1
  year: 2017
  ident: ref_7
  article-title: Computing urban traffic congestions by incorporating sparse GPS probe data and social media data
  publication-title: Acm Trans. Inf. Syst. (TOIS)
– volume: 23
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Seizure episodes detection via smart medical sensing system
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– volume: 14
  start-page: 570
  year: 2020
  ident: ref_42
  article-title: Convolutional LSTM based transportation mode learning from raw GPS trajectories
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2019.0017
– ident: ref_46
  doi: 10.1109/CVPR.2015.7298878
– volume: 29
  start-page: e3454
  year: 2018
  ident: ref_5
  article-title: Utilizing a 5G spectrum for health care to detect the tremors and breathing activity for multiple sclerosis
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3454
– volume: 38
  start-page: 16
  year: 2019
  ident: ref_6
  article-title: Radar for health care: Recognizing human activities and monitoring vital signs
  publication-title: IEEE Potentials
  doi: 10.1109/MPOT.2019.2906977
– ident: ref_30
  doi: 10.1145/2442968.2442980
– ident: ref_33
  doi: 10.1109/ICCV.2017.19
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_20
  article-title: Trajectory data mining: An overview
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/2743025
– ident: ref_12
  doi: 10.1145/1526709.1526816
– volume: 19
  start-page: 235
  year: 2014
  ident: ref_14
  article-title: Activity recognition with smartphone sensors
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2014.6838194
– volume: 11
  start-page: 1
  year: 2017
  ident: ref_19
  article-title: Urban computing: Enabling urban intelligence with big data
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-016-6907-2
– ident: ref_32
  doi: 10.1145/2525314.2525333
– ident: ref_48
– ident: ref_10
– volume: 15
  start-page: 507
  year: 2013
  ident: ref_31
  article-title: The path inference filter: Model-based low-latency map matching of probe vehicle data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2282352
– ident: ref_29
  doi: 10.1109/ISCID.2015.55
– ident: ref_18
  doi: 10.3390/s18113741
– ident: ref_44
  doi: 10.1145/1409635.1409677
– ident: ref_47
  doi: 10.3390/sym11050644
– ident: ref_13
– volume: 100
  start-page: 1132
  year: 2017
  ident: ref_37
  article-title: Detecting transportation modes using deep neural network
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2016EDL8252
– volume: 32
  start-page: e2632
  year: 2019
  ident: ref_4
  article-title: Cognitive health care system and its application in pill-rolling assessment
  publication-title: Int. J. Numer. Model. Electron. Netw. Devices Fields
  doi: 10.1002/jnm.2632
– ident: ref_16
  doi: 10.3390/sym11070889
– ident: ref_24
  doi: 10.1145/2339530.2339562
– ident: ref_21
  doi: 10.1109/IJCNN.2019.8852211
– volume: 21
  start-page: 972
  year: 2019
  ident: ref_41
  article-title: Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2900481
– ident: ref_22
  doi: 10.1109/MDM.2016.25
– ident: ref_3
– ident: ref_34
– volume: 11
  start-page: 2917
  year: 2015
  ident: ref_27
  article-title: A zero-configuration tracking system for first responders networks
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2015.2462742
– ident: ref_11
– ident: ref_8
  doi: 10.1007/978-3-319-46227-1_16
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_40
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 33
  start-page: 32
  year: 2010
  ident: ref_45
  article-title: GeoLife: A collaborative social networking service among user, location and trajectory
  publication-title: IEEE Data Eng. Bull.
– volume: 8
  start-page: 29395
  year: 2020
  ident: ref_1
  article-title: Impact of relay location of STANC bi-directional transmission for future autonomous internet of things applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969750
– volume: 10
  start-page: 1010
  year: 2017
  ident: ref_17
  article-title: An experimental evaluation of point-of-interest recommendation in location-based social networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3115404.3115407
– ident: ref_36
  doi: 10.1109/ITSC.2017.8317943
– volume: 86
  start-page: 360
  year: 2018
  ident: ref_39
  article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network
  publication-title: Transp. Res. Part Emerg. Technol.
  doi: 10.1016/j.trc.2017.11.021
– ident: ref_15
  doi: 10.1145/2820783.2820829
– volume: 20
  start-page: 3010
  year: 2018
  ident: ref_9
  article-title: Efficient traffic estimation with multi-sourced data by parallel coupled hidden markov model
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2870948
– ident: ref_28
  doi: 10.1007/978-981-10-6385-5_51
– ident: ref_38
  doi: 10.3390/electronics8121433
– ident: ref_25
  doi: 10.1145/2996913.2996924
– ident: ref_35
  doi: 10.1007/978-3-319-68783-4_25
– ident: ref_50
  doi: 10.1177/0020294020918324
– ident: ref_43
– ident: ref_23
  doi: 10.1109/ICDE.2012.42
– ident: ref_49
  doi: 10.1145/1367497.1367532
SSID ssj0023338
Score 2.4213371
Snippet GPS datasets in the big data regime provide rich contextual information that enable efficient implementation of advanced features such as navigation, tracking,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5143
SubjectTerms attention
ConvLSTM
encoder-decoder
GPS trajectory
trajectory completion
Title GPS Trajectory Completion Using End-to-End Bidirectional Convolutional Recurrent Encoder-Decoder Architecture with Attention Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/32916967
https://www.proquest.com/docview/2442214524
https://pubmed.ncbi.nlm.nih.gov/PMC7570549
https://doaj.org/article/e644fa68e97741c5844a394a243e4d25
Volume 20
WOSCitedRecordID wos000581673800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwQEOiPFr2aAyiAOXaI2dxPGxHd3g0CoaIJVT5NiOKGIparNJu3Dc3733nLRK0SQuXBLFcRQr7znv-57tzwDvSRAmsyVlbRwRlFKFpVA2HLphUnJno0iVfrMJOZtl87nKe1t90ZywVh64_XDHDgN2pdPMEVCJDMbLWAsVax4LF1vu1UuHUm3IVEe1BDKvVkdIIKk_XmOYyxK_NKcXfbxI_13I8u8Jkr2Ic_oUnnRQkY3aJu7DPVc_g8c9AcHncHOWf2EYbn763Ps1o95NatrLmvm5AGxS27BZhnhi40UbvnzuD2vWV53X4dU5Zd1JpwkfoEXuq_Cj82c26g00MEraslHTtFMk2dTRsuHF-uIFfDudfD35FHY7K4QG4U8T8qhEmmIq5H4a-ZpWwirkRcKaVGMf1fiHtAlCkSyNqirSWcl1JMpYWkS3TuhYvIS9elm7A2DWJIobDGoRt2gfrQ39I7jUVSUznfIAPmy-eGE62XHa_eJXgfSDjFNsjRPAu23V363Wxl2VxmS2bQWSx_YF6DRF5zTFv5wmgLcboxfYnWiMRNduebkuEO1wEm_ncQCvWifYvkpwxNIqlQHIHffYacvunXrxw0t2y0QiNlaH_6PxR_CIE-mnUS31Gvaa1aV7Aw_NVbNYrwZwX86lP2YDeDCezPLzge8beJz-mWBZ_nmaf78FNUUVCg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPS+Trajectory+Completion+Using+End-to-End+Bidirectional+Convolutional+Recurrent+Encoder-Decoder+Architecture+with+Attention+Mechanism&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nawaz%2C+Asif&rft.au=Huang%2C+Zhiqiu&rft.au=Wang%2C+Senzhang&rft.au=Akbar%2C+Azeem&rft.date=2020-09-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft.spage=5143&rft_id=info:doi/10.3390%2Fs20185143&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20185143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon