Multi-material topology optimization using Wachspress interpolations for designing a 3-phase electrical machine stator
This work uses multi-material topology optimization (MMTO) to maximize the average torque of a 3-phase permanent magnet synchronous machine (PMSM). Eight materials are considered in the stator: air, soft magnetic steel, three electric phases, and their three returns. To address the challenge of desi...
Uloženo v:
| Vydáno v: | Structural and multidisciplinary optimization Ročník 65; číslo 12 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V Springer Verlag Springer Science and Business Media Deutschland GmbH |
| Témata: | |
| ISSN: | 1615-147X, 1615-1488, 1615-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work uses multi-material topology optimization (MMTO) to maximize the average torque of a 3-phase permanent magnet synchronous machine (PMSM). Eight materials are considered in the stator: air, soft magnetic steel, three electric phases, and their three returns. To address the challenge of designing a 3-phase PMSM stator, a generalized density-based framework is used. The proposed methodology places the prescribed material candidates on the vertices of a convex polytope, interpolates material properties using Wachspress shape functions, and defines Cartesian coordinates inside polytopes as design variables. A rational function is used as penalization to ensure convergence towards meaningful structures, without the use of a filtering process. The influences of different polytopes and penalization parameters are investigated. The results indicate that a hexagonal-based diamond polytope is a better choice than the classical orthogonal domains for this MMTO problem. In addition, the proposed methodology yields high-performance designs for 3-phase PMSM stators by implementing a continuation method on the electric load angle. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85142883305 |
| ISSN: | 1615-147X 1615-1488 1615-1488 |
| DOI: | 10.1007/s00158-022-03460-1 |