CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN
WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1114 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
05.02.2021
MDPI AG |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively. |
|---|---|
| AbstractList | WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively. WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively. |
| Author | Wang, Xing Zuo, Tao Qin, Feng |
| AuthorAffiliation | 2 Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; wangxing199613@163.com 1 College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; QinF7373@163.com |
| AuthorAffiliation_xml | – name: 1 College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; QinF7373@163.com – name: 2 Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; wangxing199613@163.com |
| Author_xml | – sequence: 1 givenname: Feng surname: Qin fullname: Qin, Feng – sequence: 2 givenname: Tao surname: Zuo fullname: Zuo, Tao – sequence: 3 givenname: Xing surname: Wang fullname: Wang, Xing |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33562754$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkU9v1DAQxS1URP_AgS-AcoRDWo_txDYHpBK6ZaWqIAHiaDnOZHGVtbd2FqnfHpdtqxZOHnne_J4975DshRiQkNdAjznX9CQzoAIAxDNyAIKJWjFG9x7V--Qw5ytKGedcvSD7nDctk404IF3XbWJ-X_30C18tfFhh2iQf5moZhhhT9TVmP_sYSqf6dpNnXFcfbcahiqHqPp2e1d3l5UvyfLRTxld35xH5sTj73n2uL76cL7vTi9oJAXMNPfIWpW2da-0oRqdQO8tU37BRK-qgd-UXo-4bh0gpaM05hVEitNgrRfkRWe64Q7RXpjxzbdONidabvxcxrYxNs3cTmsZxJhCFVAKElLr4YTs42TZ80D2wwvqwY222_RoHh2FOdnoCfdoJ_pdZxd9Gamh0owrg7R0gxest5tmsfXY4TTZg3GbDhFKgVQOySN889nowuU-hCE52ApdizglH4_xsb9derP1kgJrbnM1DzmXi3T8T99D_tX8Av0ylag |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3111083 crossref_primary_10_1007_s42979_025_04237_1 crossref_primary_10_1007_s10489_022_04362_x crossref_primary_10_1109_ACCESS_2023_3296615 crossref_primary_10_1109_JIOT_2025_3575904 crossref_primary_10_1109_JSEN_2024_3432154 crossref_primary_10_1109_JSAC_2024_3423629 crossref_primary_10_1016_j_autcon_2023_104897 crossref_primary_10_3390_s22155891 crossref_primary_10_3390_app13148545 crossref_primary_10_1016_j_comcom_2022_07_003 crossref_primary_10_3390_info13080363 crossref_primary_10_12677_mos_2024_133356 crossref_primary_10_3390_bdcc5030042 crossref_primary_10_3390_biomimetics9090551 crossref_primary_10_1007_s10586_024_04793_w crossref_primary_10_1038_s41598_025_97715_8 crossref_primary_10_1016_j_comnet_2023_110042 crossref_primary_10_3390_s22124622 crossref_primary_10_1007_s11042_023_17274_w crossref_primary_10_1016_j_comnet_2022_109041 crossref_primary_10_1016_j_future_2023_10_003 crossref_primary_10_3390_s21113912 crossref_primary_10_3390_s22239127 crossref_primary_10_1109_TIM_2022_3223075 crossref_primary_10_1109_TAES_2023_3328571 crossref_primary_10_3390_s22176629 crossref_primary_10_1016_j_engappai_2022_105509 crossref_primary_10_3390_ijerph19105913 crossref_primary_10_1109_ACCESS_2024_3487901 crossref_primary_10_3390_s22010346 crossref_primary_10_1109_JIOT_2025_3528447 crossref_primary_10_3390_s22155709 crossref_primary_10_3390_s22207920 crossref_primary_10_1109_ACCESS_2022_3157719 crossref_primary_10_3390_electronics13173366 crossref_primary_10_1109_ACCESS_2024_3360228 crossref_primary_10_3390_s23073453 crossref_primary_10_1186_s43020_022_00086_y crossref_primary_10_3788_AOS250604 crossref_primary_10_3390_electronics14061136 crossref_primary_10_1109_JIOT_2024_3484456 crossref_primary_10_1088_1361_6501_adf3da crossref_primary_10_32362_2500_316X_2025_13_1_68_75 crossref_primary_10_1016_j_eswa_2023_119778 crossref_primary_10_12677_SEA_2023_124060 crossref_primary_10_1080_10589759_2023_2253493 crossref_primary_10_3390_s23208458 crossref_primary_10_1109_ACCESS_2023_3304334 crossref_primary_10_1016_j_eswa_2024_123389 crossref_primary_10_1109_JISPIN_2025_3558465 crossref_primary_10_1016_j_adhoc_2024_103486 crossref_primary_10_3390_s21248228 crossref_primary_10_1038_s41467_024_48747_7 crossref_primary_10_3390_jtaer20020055 crossref_primary_10_1016_j_asoc_2024_112032 crossref_primary_10_1515_geo_2022_0427 crossref_primary_10_1109_ACCESS_2024_3509516 crossref_primary_10_1109_JIOT_2024_3386889 crossref_primary_10_1038_s41598_024_79647_x crossref_primary_10_3390_info12030114 |
| Cites_doi | 10.1016/j.eswa.2015.08.013 10.1109/ISCC.2018.8538530 10.1109/JIOT.2020.2986685 10.1109/UPINLBS.2018.8559903 10.3390/s17040812 10.1109/JIOT.2018.2864607 10.1016/j.procir.2017.03.085 10.1109/PERCOM.2019.8767421 10.1109/ICUFN.2018.8436598 10.1109/IPIN.2014.7275492 10.1016/j.pmcj.2019.101085 10.1016/j.jfranklin.2019.10.028 10.1016/j.compeleceng.2020.106694 10.1016/j.promfg.2019.02.021 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139 10.1109/JIOT.2019.2940368 10.1016/j.sigpro.2019.107375 10.1016/j.icte.2018.04.004 10.1109/UPINLBS.2018.8559705 10.1109/IPIN.2014.7275556 10.1109/IPIN.2017.8115940 10.1016/j.future.2020.03.043 10.3390/s19092114 10.1016/j.future.2018.06.030 10.1109/ICISCE.2017.354 10.1109/ICDSP.2018.8631593 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/s21041114 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12 PMC7915958 33562754 10_3390_s21041114 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Major Project of Hubei Province Technology Innovation grantid: 2019AAA071 – fundername: National Natural Science Fund grantid: No. 61673304 and 62073249 – fundername: the open research foundation of Institute of Robotics and Intelligent Systems (Wuhan University of Science and Technology) grantid: No. F20180 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c441t-1be36e7a6cc6af4fc8e9ca28b52f980c1bc041f9b5cee001993301f7e16eb8803 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624693200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:34:58 EDT 2025 Tue Nov 04 01:59:38 EST 2025 Thu Sep 04 18:03:58 EDT 2025 Wed Feb 19 02:29:03 EST 2025 Sat Nov 29 07:12:42 EST 2025 Tue Nov 18 21:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | K-means convolutional denoising autoencoder convolutional neural network WiFi fingerprint positioning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-1be36e7a6cc6af4fc8e9ca28b52f980c1bc041f9b5cee001993301f7e16eb8803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/5c324ee478414779af4e6dc7653d9b12 |
| PMID | 33562754 |
| PQID | 2488198517 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915958 proquest_miscellaneous_2488198517 pubmed_primary_33562754 crossref_citationtrail_10_3390_s21041114 crossref_primary_10_3390_s21041114 |
| PublicationCentury | 2000 |
| PublicationDate | 20210205 |
| PublicationDateYYYYMMDD | 2021-02-05 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210205 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Zhang (ref_13) 2020; 7 Hu (ref_17) 2019; 6 ref_14 Hoang (ref_19) 2019; 6 Bialer (ref_7) 2020; 169 ref_10 ref_30 Thewan (ref_11) 2019; 30 ref_18 ref_16 Orujov (ref_4) 2018; 89 Gao (ref_8) 2020; 86 Zh (ref_2) 2020; 357 Oh (ref_6) 2018; 4 ref_25 ref_24 ref_23 ref_22 ref_21 Huang (ref_3) 2017; 63 ref_20 ref_1 Ninh (ref_12) 2020; 109 Yang (ref_15) 2019; 60 ref_29 Montoliu (ref_27) 2015; 42 ref_26 Song (ref_28) 2020; 31 ref_9 ref_5 |
| References_xml | – volume: 42 start-page: 9263 year: 2015 ident: ref_27 article-title: Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.013 – ident: ref_21 doi: 10.1109/ISCC.2018.8538530 – volume: 7 start-page: 10773 year: 2020 ident: ref_13 article-title: WiFi-Based Indoor Robot Positioning Using Deep Fuzzy Forests publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2986685 – ident: ref_18 doi: 10.1109/UPINLBS.2018.8559903 – ident: ref_24 – ident: ref_26 – ident: ref_5 doi: 10.3390/s17040812 – volume: 6 start-page: 891 year: 2019 ident: ref_17 article-title: Experimental Analysis on Weight K -Nearest Neighbor Indoor Fingerprint Positioning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2864607 – volume: 63 start-page: 132 year: 2017 ident: ref_3 article-title: A Real-time Location System Based on RFID and UWB for Digital Manufacturing Workshop publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.085 – ident: ref_16 – ident: ref_20 doi: 10.1109/PERCOM.2019.8767421 – ident: ref_22 doi: 10.1109/ICUFN.2018.8436598 – ident: ref_29 doi: 10.1109/IPIN.2014.7275492 – volume: 60 start-page: 101085 year: 2019 ident: ref_15 article-title: WKNN indoor location algorithm based on zone partition by spatial features and restriction of former location publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2019.101085 – volume: 357 start-page: 1420 year: 2020 ident: ref_2 article-title: Accurate WiFi-based indoor localization by using fuzzy classifier and mlps ensemble in complex environment publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2019.10.028 – volume: 86 start-page: 106694 year: 2020 ident: ref_8 article-title: An improved localization method in cyber-social environments with obstacles publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106694 – volume: 30 start-page: 143 year: 2019 ident: ref_11 article-title: Comparing WiFi RSS Filtering for Wireless Robot Location System publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.02.021 – ident: ref_23 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139 – volume: 6 start-page: 10639 year: 2019 ident: ref_19 article-title: Recurrent Neural Networks for Accurate RSSI Indoor Localization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2940368 – volume: 169 start-page: 107375 year: 2020 ident: ref_7 article-title: A time-of-arrival estimation algorithm for OFDM signals in indoor multipath environments publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107375 – volume: 4 start-page: 91 year: 2018 ident: ref_6 article-title: Adaptive K-nearest neighbour algorithm for WiFi fingerprint positioning publication-title: ICT Express doi: 10.1016/j.icte.2018.04.004 – ident: ref_9 doi: 10.1109/UPINLBS.2018.8559705 – ident: ref_14 doi: 10.1109/IPIN.2014.7275556 – ident: ref_30 doi: 10.1109/IPIN.2017.8115940 – volume: 109 start-page: 238 year: 2020 ident: ref_12 article-title: An effective random statistical method for Indoor Positioning System using WiFi fingerprinting publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.043 – ident: ref_1 doi: 10.3390/s19092114 – volume: 31 start-page: 25 year: 2020 ident: ref_28 article-title: Image restoration using convolutional denoising autoencoder in images publication-title: J. Korean Data Inf. Sci. Soc. – volume: 89 start-page: 335 year: 2018 ident: ref_4 article-title: Smartphone based intelligent indoor positioning using fuzzy logic publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.06.030 – ident: ref_10 doi: 10.1109/ICISCE.2017.354 – ident: ref_25 doi: 10.1109/ICDSP.2018.8631593 |
| SSID | ssj0023338 |
| Score | 2.5509133 |
| Snippet | WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1114 |
| SubjectTerms | convolutional denoising autoencoder convolutional neural network K-means WiFi fingerprint positioning |
| Title | CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33562754 https://www.proquest.com/docview/2488198517 https://pubmed.ncbi.nlm.nih.gov/PMC7915958 https://doaj.org/article/5c324ee478414779af4e6dc7653d9b12 |
| Volume | 21 |
| WOSCitedRecordID | wos000624693200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED6kaYdmCNKmbdwkBltkyCJETz6y2YqNeIggFC3qTAJJUYiAQgospWN_e4-SbNhBgC5dOJAEdPpO1N3xDt8BXFBFqU0TOqzwqRMGVDrC59LhkQzRWnGh8qJrNsGShC-XIt1q9WVrwnp64B64q0ijyTcmtPmxkDEhi9DQXDMaBblQXX9h32ViHUwNoVaAkVfPIxRgUH_VYGAT4qkOd6xPR9L_kmf5vEByy-LMj-BwcBXJpBfxHeyZ6j0cbBEIHkMcx491c01-lvOSzLsbOntR15JFldf1iqRDSRaukJ6bnEzRbOWkrkh8M5k5cZJ8gB_z2ff41hnaIjgafZfW8ZQJqGGSak0RjUJzI7T0uYr8QnBXe0rjyxZCRWgArQtn7yy8ghmPGoXHNfgI-1VdmRMg0jBLDiNdxS24rmA5VZ5Br00W3DNsBJdruDI9cIbb1hW_MowdLLLZBtkRfN1sfeyJMl7aNLWYbzZYbutuAjWeDRrP_qXxEXxZayzDs2ATHLIy9VOT-fg38gT6kCj4p16Dm0cFQWQJmVEEtqPbHVl2V6ryoePbZgJ9voh__h_Cn8Jb31bF2Lrv6Az229WTOYc3-ndbNqsxvGJL1o18DK-nsyT9Nu4-bBzv_sxwLl3cpfd_ARnO-v0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCpos%3A+WiFi+Fingerprint+Indoor+Positioning+System+Based+on+CDAE-CNN&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Feng+Qin&rft.au=Tao+Zuo&rft.au=Xing+Wang&rft.date=2021-02-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft.spage=1114&rft_id=info:doi/10.3390%2Fs21041114&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |