CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN

WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1114
Main Authors: Qin, Feng, Zuo, Tao, Wang, Xing
Format: Journal Article
Language:English
Published: Switzerland MDPI 05.02.2021
MDPI AG
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.
AbstractList WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.
WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.
Author Wang, Xing
Zuo, Tao
Qin, Feng
AuthorAffiliation 2 Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; wangxing199613@163.com
1 College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; QinF7373@163.com
AuthorAffiliation_xml – name: 1 College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; QinF7373@163.com
– name: 2 Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; wangxing199613@163.com
Author_xml – sequence: 1
  givenname: Feng
  surname: Qin
  fullname: Qin, Feng
– sequence: 2
  givenname: Tao
  surname: Zuo
  fullname: Zuo, Tao
– sequence: 3
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33562754$$D View this record in MEDLINE/PubMed
BookMark eNplkU9v1DAQxS1URP_AgS-AcoRDWo_txDYHpBK6ZaWqIAHiaDnOZHGVtbd2FqnfHpdtqxZOHnne_J4975DshRiQkNdAjznX9CQzoAIAxDNyAIKJWjFG9x7V--Qw5ytKGedcvSD7nDctk404IF3XbWJ-X_30C18tfFhh2iQf5moZhhhT9TVmP_sYSqf6dpNnXFcfbcahiqHqPp2e1d3l5UvyfLRTxld35xH5sTj73n2uL76cL7vTi9oJAXMNPfIWpW2da-0oRqdQO8tU37BRK-qgd-UXo-4bh0gpaM05hVEitNgrRfkRWe64Q7RXpjxzbdONidabvxcxrYxNs3cTmsZxJhCFVAKElLr4YTs42TZ80D2wwvqwY222_RoHh2FOdnoCfdoJ_pdZxd9Gamh0owrg7R0gxest5tmsfXY4TTZg3GbDhFKgVQOySN889nowuU-hCE52ApdizglH4_xsb9derP1kgJrbnM1DzmXi3T8T99D_tX8Av0ylag
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3111083
crossref_primary_10_1007_s42979_025_04237_1
crossref_primary_10_1007_s10489_022_04362_x
crossref_primary_10_1109_ACCESS_2023_3296615
crossref_primary_10_1109_JIOT_2025_3575904
crossref_primary_10_1109_JSEN_2024_3432154
crossref_primary_10_1109_JSAC_2024_3423629
crossref_primary_10_1016_j_autcon_2023_104897
crossref_primary_10_3390_s22155891
crossref_primary_10_3390_app13148545
crossref_primary_10_1016_j_comcom_2022_07_003
crossref_primary_10_3390_info13080363
crossref_primary_10_12677_mos_2024_133356
crossref_primary_10_3390_bdcc5030042
crossref_primary_10_3390_biomimetics9090551
crossref_primary_10_1007_s10586_024_04793_w
crossref_primary_10_1038_s41598_025_97715_8
crossref_primary_10_1016_j_comnet_2023_110042
crossref_primary_10_3390_s22124622
crossref_primary_10_1007_s11042_023_17274_w
crossref_primary_10_1016_j_comnet_2022_109041
crossref_primary_10_1016_j_future_2023_10_003
crossref_primary_10_3390_s21113912
crossref_primary_10_3390_s22239127
crossref_primary_10_1109_TIM_2022_3223075
crossref_primary_10_1109_TAES_2023_3328571
crossref_primary_10_3390_s22176629
crossref_primary_10_1016_j_engappai_2022_105509
crossref_primary_10_3390_ijerph19105913
crossref_primary_10_1109_ACCESS_2024_3487901
crossref_primary_10_3390_s22010346
crossref_primary_10_1109_JIOT_2025_3528447
crossref_primary_10_3390_s22155709
crossref_primary_10_3390_s22207920
crossref_primary_10_1109_ACCESS_2022_3157719
crossref_primary_10_3390_electronics13173366
crossref_primary_10_1109_ACCESS_2024_3360228
crossref_primary_10_3390_s23073453
crossref_primary_10_1186_s43020_022_00086_y
crossref_primary_10_3788_AOS250604
crossref_primary_10_3390_electronics14061136
crossref_primary_10_1109_JIOT_2024_3484456
crossref_primary_10_1088_1361_6501_adf3da
crossref_primary_10_32362_2500_316X_2025_13_1_68_75
crossref_primary_10_1016_j_eswa_2023_119778
crossref_primary_10_12677_SEA_2023_124060
crossref_primary_10_1080_10589759_2023_2253493
crossref_primary_10_3390_s23208458
crossref_primary_10_1109_ACCESS_2023_3304334
crossref_primary_10_1016_j_eswa_2024_123389
crossref_primary_10_1109_JISPIN_2025_3558465
crossref_primary_10_1016_j_adhoc_2024_103486
crossref_primary_10_3390_s21248228
crossref_primary_10_1038_s41467_024_48747_7
crossref_primary_10_3390_jtaer20020055
crossref_primary_10_1016_j_asoc_2024_112032
crossref_primary_10_1515_geo_2022_0427
crossref_primary_10_1109_ACCESS_2024_3509516
crossref_primary_10_1109_JIOT_2024_3386889
crossref_primary_10_1038_s41598_024_79647_x
crossref_primary_10_3390_info12030114
Cites_doi 10.1016/j.eswa.2015.08.013
10.1109/ISCC.2018.8538530
10.1109/JIOT.2020.2986685
10.1109/UPINLBS.2018.8559903
10.3390/s17040812
10.1109/JIOT.2018.2864607
10.1016/j.procir.2017.03.085
10.1109/PERCOM.2019.8767421
10.1109/ICUFN.2018.8436598
10.1109/IPIN.2014.7275492
10.1016/j.pmcj.2019.101085
10.1016/j.jfranklin.2019.10.028
10.1016/j.compeleceng.2020.106694
10.1016/j.promfg.2019.02.021
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
10.1109/JIOT.2019.2940368
10.1016/j.sigpro.2019.107375
10.1016/j.icte.2018.04.004
10.1109/UPINLBS.2018.8559705
10.1109/IPIN.2014.7275556
10.1109/IPIN.2017.8115940
10.1016/j.future.2020.03.043
10.3390/s19092114
10.1016/j.future.2018.06.030
10.1109/ICISCE.2017.354
10.1109/ICDSP.2018.8631593
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s21041114
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12
PMC7915958
33562754
10_3390_s21041114
Genre Journal Article
GrantInformation_xml – fundername: Major Project of Hubei Province Technology Innovation
  grantid: 2019AAA071
– fundername: National Natural Science Fund
  grantid: No. 61673304 and 62073249
– fundername: the open research foundation of Institute of Robotics and Intelligent Systems (Wuhan University of Science and Technology)
  grantid: No. F20180
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-1be36e7a6cc6af4fc8e9ca28b52f980c1bc041f9b5cee001993301f7e16eb8803
IEDL.DBID DOA
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624693200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:34:58 EDT 2025
Tue Nov 04 01:59:38 EST 2025
Thu Sep 04 18:03:58 EDT 2025
Wed Feb 19 02:29:03 EST 2025
Sat Nov 29 07:12:42 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords K-means
convolutional denoising autoencoder
convolutional neural network
WiFi fingerprint positioning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-1be36e7a6cc6af4fc8e9ca28b52f980c1bc041f9b5cee001993301f7e16eb8803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/5c324ee478414779af4e6dc7653d9b12
PMID 33562754
PQID 2488198517
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7915958
proquest_miscellaneous_2488198517
pubmed_primary_33562754
crossref_citationtrail_10_3390_s21041114
crossref_primary_10_3390_s21041114
PublicationCentury 2000
PublicationDate 20210205
PublicationDateYYYYMMDD 2021-02-05
PublicationDate_xml – month: 2
  year: 2021
  text: 20210205
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Zhang (ref_13) 2020; 7
Hu (ref_17) 2019; 6
ref_14
Hoang (ref_19) 2019; 6
Bialer (ref_7) 2020; 169
ref_10
ref_30
Thewan (ref_11) 2019; 30
ref_18
ref_16
Orujov (ref_4) 2018; 89
Gao (ref_8) 2020; 86
Zh (ref_2) 2020; 357
Oh (ref_6) 2018; 4
ref_25
ref_24
ref_23
ref_22
ref_21
Huang (ref_3) 2017; 63
ref_20
ref_1
Ninh (ref_12) 2020; 109
Yang (ref_15) 2019; 60
ref_29
Montoliu (ref_27) 2015; 42
ref_26
Song (ref_28) 2020; 31
ref_9
ref_5
References_xml – volume: 42
  start-page: 9263
  year: 2015
  ident: ref_27
  article-title: Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.013
– ident: ref_21
  doi: 10.1109/ISCC.2018.8538530
– volume: 7
  start-page: 10773
  year: 2020
  ident: ref_13
  article-title: WiFi-Based Indoor Robot Positioning Using Deep Fuzzy Forests
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2986685
– ident: ref_18
  doi: 10.1109/UPINLBS.2018.8559903
– ident: ref_24
– ident: ref_26
– ident: ref_5
  doi: 10.3390/s17040812
– volume: 6
  start-page: 891
  year: 2019
  ident: ref_17
  article-title: Experimental Analysis on Weight K -Nearest Neighbor Indoor Fingerprint Positioning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2864607
– volume: 63
  start-page: 132
  year: 2017
  ident: ref_3
  article-title: A Real-time Location System Based on RFID and UWB for Digital Manufacturing Workshop
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.085
– ident: ref_16
– ident: ref_20
  doi: 10.1109/PERCOM.2019.8767421
– ident: ref_22
  doi: 10.1109/ICUFN.2018.8436598
– ident: ref_29
  doi: 10.1109/IPIN.2014.7275492
– volume: 60
  start-page: 101085
  year: 2019
  ident: ref_15
  article-title: WKNN indoor location algorithm based on zone partition by spatial features and restriction of former location
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2019.101085
– volume: 357
  start-page: 1420
  year: 2020
  ident: ref_2
  article-title: Accurate WiFi-based indoor localization by using fuzzy classifier and mlps ensemble in complex environment
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.10.028
– volume: 86
  start-page: 106694
  year: 2020
  ident: ref_8
  article-title: An improved localization method in cyber-social environments with obstacles
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106694
– volume: 30
  start-page: 143
  year: 2019
  ident: ref_11
  article-title: Comparing WiFi RSS Filtering for Wireless Robot Location System
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2019.02.021
– ident: ref_23
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
– volume: 6
  start-page: 10639
  year: 2019
  ident: ref_19
  article-title: Recurrent Neural Networks for Accurate RSSI Indoor Localization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2940368
– volume: 169
  start-page: 107375
  year: 2020
  ident: ref_7
  article-title: A time-of-arrival estimation algorithm for OFDM signals in indoor multipath environments
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107375
– volume: 4
  start-page: 91
  year: 2018
  ident: ref_6
  article-title: Adaptive K-nearest neighbour algorithm for WiFi fingerprint positioning
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.04.004
– ident: ref_9
  doi: 10.1109/UPINLBS.2018.8559705
– ident: ref_14
  doi: 10.1109/IPIN.2014.7275556
– ident: ref_30
  doi: 10.1109/IPIN.2017.8115940
– volume: 109
  start-page: 238
  year: 2020
  ident: ref_12
  article-title: An effective random statistical method for Indoor Positioning System using WiFi fingerprinting
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.043
– ident: ref_1
  doi: 10.3390/s19092114
– volume: 31
  start-page: 25
  year: 2020
  ident: ref_28
  article-title: Image restoration using convolutional denoising autoencoder in images
  publication-title: J. Korean Data Inf. Sci. Soc.
– volume: 89
  start-page: 335
  year: 2018
  ident: ref_4
  article-title: Smartphone based intelligent indoor positioning using fuzzy logic
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.06.030
– ident: ref_10
  doi: 10.1109/ICISCE.2017.354
– ident: ref_25
  doi: 10.1109/ICDSP.2018.8631593
SSID ssj0023338
Score 2.5509133
Snippet WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1114
SubjectTerms convolutional denoising autoencoder
convolutional neural network
K-means
WiFi fingerprint positioning
Title CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN
URI https://www.ncbi.nlm.nih.gov/pubmed/33562754
https://www.proquest.com/docview/2488198517
https://pubmed.ncbi.nlm.nih.gov/PMC7915958
https://doaj.org/article/5c324ee478414779af4e6dc7653d9b12
Volume 21
WOSCitedRecordID wos000624693200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED6kaYdmCNKmbdwkBltkyCJETz6y2YqNeIggFC3qTAJJUYiAQgospWN_e4-SbNhBgC5dOJAEdPpO1N3xDt8BXFBFqU0TOqzwqRMGVDrC59LhkQzRWnGh8qJrNsGShC-XIt1q9WVrwnp64B64q0ijyTcmtPmxkDEhi9DQXDMaBblQXX9h32ViHUwNoVaAkVfPIxRgUH_VYGAT4qkOd6xPR9L_kmf5vEByy-LMj-BwcBXJpBfxHeyZ6j0cbBEIHkMcx491c01-lvOSzLsbOntR15JFldf1iqRDSRaukJ6bnEzRbOWkrkh8M5k5cZJ8gB_z2ff41hnaIjgafZfW8ZQJqGGSak0RjUJzI7T0uYr8QnBXe0rjyxZCRWgArQtn7yy8ghmPGoXHNfgI-1VdmRMg0jBLDiNdxS24rmA5VZ5Br00W3DNsBJdruDI9cIbb1hW_MowdLLLZBtkRfN1sfeyJMl7aNLWYbzZYbutuAjWeDRrP_qXxEXxZayzDs2ATHLIy9VOT-fg38gT6kCj4p16Dm0cFQWQJmVEEtqPbHVl2V6ryoePbZgJ9voh__h_Cn8Jb31bF2Lrv6Az229WTOYc3-ndbNqsxvGJL1o18DK-nsyT9Nu4-bBzv_sxwLl3cpfd_ARnO-v0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCpos%3A+WiFi+Fingerprint+Indoor+Positioning+System+Based+on+CDAE-CNN&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Feng+Qin&rft.au=Tao+Zuo&rft.au=Xing+Wang&rft.date=2021-02-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft.spage=1114&rft_id=info:doi/10.3390%2Fs21041114&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5c324ee478414779af4e6dc7653d9b12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon