Generation of brain pseudo‐CTs using an undersampled, single‐acquisition UTE‐mDixon pulse sequence and unsupervised clustering

Purpose: MR‐based pseudo‐CT has an important role in MR‐based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo‐CT generation of the brain using a...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 42; no. 8; pp. 4974 - 4986
Main Authors: Su, Kuan‐Hao, Hu, Lingzhi, Stehning, Christian, Helle, Michael, Qian, Pengjiang, Thompson, Cheryl L., Pereira, Gisele C., Jordan, David W., Herrmann, Karin A., Traughber, Melanie, Muzic, Raymond F., Traughber, Bryan J.
Format: Journal Article
Language:English
Published: United States American Association of Physicists in Medicine 01.08.2015
Subjects:
ISSN:0094-2405, 2473-4209
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose: MR‐based pseudo‐CT has an important role in MR‐based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo‐CT generation of the brain using a single‐acquisition, undersampled ultrashort echo time (UTE)‐mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190‐s, undersampled, single acquisition UTE‐mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point‐spread functions of three external MR markers. Two‐point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2∗ images (1/T2∗) were then estimated and were used to provide bone information. Three image features, i.e., Dixon‐fat, Dixon‐water, and R2∗, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c‐means (FCM) algorithm. A two‐step, automatic tissue‐assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo‐CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low‐dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM‐estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo‐CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low‐dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo‐CT generation.
AbstractList Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.
MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2(∗) images (1/T2(∗)) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2(∗), were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (-22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.
Purpose: MR‐based pseudo‐CT has an important role in MR‐based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo‐CT generation of the brain using a single‐acquisition, undersampled ultrashort echo time (UTE)‐mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190‐s, undersampled, single acquisition UTE‐mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point‐spread functions of three external MR markers. Two‐point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2∗ images (1/T2∗) were then estimated and were used to provide bone information. Three image features, i.e., Dixon‐fat, Dixon‐water, and R2∗, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c‐means (FCM) algorithm. A two‐step, automatic tissue‐assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo‐CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low‐dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM‐estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo‐CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low‐dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo‐CT generation.
PURPOSEMR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence.METHODSNine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2(∗) images (1/T2(∗)) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2(∗), were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison.RESULTSThe contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (-22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT.CONCLUSIONSThe MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.
Author Pereira, Gisele C.
Muzic, Raymond F.
Hu, Lingzhi
Jordan, David W.
Traughber, Melanie
Su, Kuan‐Hao
Qian, Pengjiang
Herrmann, Karin A.
Helle, Michael
Thompson, Cheryl L.
Traughber, Bryan J.
Stehning, Christian
Author_xml – sequence: 1
  givenname: Kuan‐Hao
  surname: Su
  fullname: Su, Kuan‐Hao
– sequence: 2
  givenname: Lingzhi
  surname: Hu
  fullname: Hu, Lingzhi
– sequence: 3
  givenname: Christian
  surname: Stehning
  fullname: Stehning, Christian
– sequence: 4
  givenname: Michael
  surname: Helle
  fullname: Helle, Michael
– sequence: 5
  givenname: Pengjiang
  surname: Qian
  fullname: Qian, Pengjiang
– sequence: 6
  givenname: Cheryl L.
  surname: Thompson
  fullname: Thompson, Cheryl L.
– sequence: 7
  givenname: Gisele C.
  surname: Pereira
  fullname: Pereira, Gisele C.
– sequence: 8
  givenname: David W.
  surname: Jordan
  fullname: Jordan, David W.
– sequence: 9
  givenname: Karin A.
  surname: Herrmann
  fullname: Herrmann, Karin A.
– sequence: 10
  givenname: Melanie
  surname: Traughber
  fullname: Traughber, Melanie
– sequence: 11
  givenname: Raymond F.
  surname: Muzic
  fullname: Muzic, Raymond F.
– sequence: 12
  givenname: Bryan J.
  surname: Traughber
  fullname: Traughber, Bryan J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26233223$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22581339$$D View this record in Osti.gov
BookMark eNp1ks1u1DAQgC1URLeFAy-AInEBibT-T3JBQkspSEVw2J4tx560Rlk7teNCbxx4AJ6RJ8Hd3SJAcLI8_uabsWYO0J4PHhB6TPARIaQ9Jke8o7IR8h5aUN6wmlPc7aEFxh2vKcdiHx2k9AljLJnAD9A-lZQxStkCfTsFD1HPLvgqDFUftfPVlCDb8OPr9-UqVTk5f1FpX2VvISa9nkawL6rb6AiF0eYqu-Q2hvPVSYmsX7sv5TLlMUGV4CqDN1AMtihSniBeuwS2MmNOM8TieYjuD7rAj3bnITp_c7Javq3PPpy-W746qw3nRNZg6CAa0eABE95T6E0HHeuBDKI3fcdka6W1QAhjlsoORCex5kRo3hjdcskO0cutd8r9GqwBP0c9qim6tY43Kmin_nzx7lJdhGslCG9Jy4vg6VYQ0uxUMm4Gc2mC92BmRaloS-muUM92ZWIon0-zWrtkYBy1h5CTIg0mDOMWNwV98ntHv1q5G1ABjreAiSGlCIMqRTfjKg26URGsbldAEbVbgZLx_K-MO-m_2HrLfnYj3PwfVO8_bvif3IDDPw
CitedBy_id crossref_primary_10_3390_app9122521
crossref_primary_10_1002_acm2_13731
crossref_primary_10_1038_s41598_024_73363_2
crossref_primary_10_1002_mrm_29078
crossref_primary_10_3233_JIFS_213367
crossref_primary_10_1002_mp_16556
crossref_primary_10_1016_j_ijrobp_2018_06_024
crossref_primary_10_1088_1757_899X_914_1_012030
crossref_primary_10_1002_mp_12303
crossref_primary_10_1088_1361_6560_aac711
crossref_primary_10_1016_j_ijrobp_2016_11_053
crossref_primary_10_1002_mp_15936
crossref_primary_10_1088_0031_9155_61_15_5547
crossref_primary_10_1002_mp_12155
crossref_primary_10_1016_j_jmir_2019_03_184
crossref_primary_10_1016_j_canrad_2018_09_005
crossref_primary_10_1007_s10278_020_00361_x
crossref_primary_10_3389_fphy_2019_00243
crossref_primary_10_1002_mp_15174
crossref_primary_10_1007_s42835_023_01602_z
crossref_primary_10_1016_j_jksuci_2019_06_002
crossref_primary_10_1038_s41598_020_64842_3
crossref_primary_10_1088_2057_1976_ab27a6
crossref_primary_10_1109_ACCESS_2019_2937124
crossref_primary_10_1097_RMR_0000000000000279
crossref_primary_10_1038_s41598_024_59014_6
crossref_primary_10_1016_j_bspc_2024_106819
crossref_primary_10_1109_TMI_2019_2935916
crossref_primary_10_5812_iranjradiol_82804
crossref_primary_10_1016_j_ijrobp_2018_05_058
crossref_primary_10_1007_s00330_022_09061_2
crossref_primary_10_1016_j_procs_2023_01_171
crossref_primary_10_1016_j_compbiomed_2023_106738
crossref_primary_10_1088_1361_6560_aacfb1
crossref_primary_10_3389_fninf_2024_1440304
crossref_primary_10_1109_TMI_2021_3059265
crossref_primary_10_1002_mrm_28008
crossref_primary_10_1016_j_compbiomed_2022_105964
crossref_primary_10_1007_s10723_020_09513_3
crossref_primary_10_1016_j_patrec_2020_06_017
crossref_primary_10_1002_mp_14180
crossref_primary_10_1109_ACCESS_2019_2951924
crossref_primary_10_1002_hbm_23981
crossref_primary_10_1007_s11042_019_07974_7
crossref_primary_10_1007_s00259_019_04380_x
crossref_primary_10_1109_TCBB_2020_2979841
crossref_primary_10_1002_acm2_14499
crossref_primary_10_1002_mp_13574
crossref_primary_10_1007_s10916_019_1245_1
crossref_primary_10_1186_s13014_016_0747_y
crossref_primary_10_1016_j_neuroimage_2016_12_010
crossref_primary_10_1186_s40658_023_00569_0
Cites_doi 10.1118/1.4842575
10.1007/s00259‐013‐2660‐z
10.1007/s00259‐011‐1842‐9
10.1088/0031‐9155/45/2/314
10.1118/1.3651640
10.1002/mrm.21879
10.1007/s10334‐012‐0328‐5
10.1007/s11307‐014‐0777‐5
10.1007/s00259‐013‐2652‐z
10.1007/s00259‐014‐2751‐5
10.1002/jmri.24680
10.1118/1.4873315
10.1007/s00259‐012‐2113‐0
10.2967/jnumed.111.092577
10.3109/0284186X.2013.819119
10.1118/1.4711807
10.1097/RLI.0b013e318283292f
10.1016/j.ejrad.2014.03.022
10.1186/1748‐717X‐8‐51
10.1088/0031‐9155/58/23/8419
10.1118/1.4886766
10.1016/j.nima.2012.09.005
10.1002/mrm.23217
10.1007/s10334‐014‐0445‐4
10.1007/s10334‐012‐0330‐y
10.1016/j.radonc.2011.01.012
10.1016/0730‐725X(88)90472‐9
10.1097/00004424‐198703000‐00005
10.1088/0031‐9155/56/10/013
10.1109/91.413225
10.1118/1.4729716
10.1002/mrm.20128
10.1088/0031‐9155/59/23/7501
10.2967/jnumed.109.064824
10.2967/jnumed.109.069112
10.1088/0031‐9155/59/21/6595
10.1016/S0167‐8140(02)00440‐1
10.2967/jnumed.113.126813
10.2967/jnumed.112.113209
10.3109/0284186X.2012.692883
10.2967/jnumed.110.085076
10.1002/jmri.24232
10.1118/1.4894709
10.1006/jmre.1998.1396
10.1120/jacmp.v12i4.3522
10.1118/1.3578928
10.1007/s00259‐013‐2467‐y
10.1016/j.ejrad.2011.10.005
10.1007/s10334‐012‐0339‐2
10.2967/jnumed.108.054726
10.1002/mrm.22578
10.2967/jnumed.109.065425
10.1118/1.4812685
10.1002/mrm.1081
ContentType Journal Article
Copyright 2015 American Association of Physicists in Medicine
Copyright © 2015 American Association of Physicists in Medicine 2015 American Association of Physicists in Medicine
Copyright_xml – notice: 2015 American Association of Physicists in Medicine
– notice: Copyright © 2015 American Association of Physicists in Medicine 2015 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1118/1.4926756
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate UTE-based, pseudo-CT using unsupervised clustering
EISSN 2473-4209
EndPage 4986
ExternalDocumentID PMC5148184
22581339
26233223
10_1118_1_4926756
MP6756
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Philips Healthcare
  funderid: Research agreement
– fundername: Ohio Department of Development
  funderid: TECH 11‐063
– fundername: NCI NIH HHS
  grantid: R01 CA196687
– fundername: ;
  grantid: Research agreement
– fundername: ;
  grantid: TECH 11-063
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
476
AAJUZ
AAPBV
ABCVL
ABPTK
ACSMX
ADDAD
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c4416-ec2f57570f014b2ebc9e93be1f5bcb9368d6dde1133d269e5960a415a47ca8463
IEDL.DBID DRFUL
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358933000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 01:52:47 EST 2025
Thu May 18 22:31:59 EDT 2023
Fri Sep 05 11:17:55 EDT 2025
Thu Apr 03 06:59:04 EDT 2025
Tue Nov 18 22:31:10 EST 2025
Sat Nov 29 01:33:00 EST 2025
Wed Jan 22 16:40:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
0094-2405/2015/42(8)/4974/13/$30.00
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4416-ec2f57570f014b2ebc9e93be1f5bcb9368d6dde1133d269e5960a415a47ca8463
Notes Author to whom correspondence should be addressed. Electronic mail
bryan.traughber@case.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: bryan.traughber@case.edu
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5148184
PMID 26233223
PQID 1701300807
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5148184
osti_scitechconnect_22581339
proquest_miscellaneous_1701300807
pubmed_primary_26233223
crossref_citationtrail_10_1118_1_4926756
crossref_primary_10_1118_1_4926756
wiley_primary_10_1118_1_4926756_MP6756
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2015
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References 2012; 81
2013; 48
2013; 26
2013; 702
2009; 61
2000; 45
2013; 40
2011; 52
2011; 98
2012; 39
2011; 12
2011; 56
2003
2014; 28
2014; 41
2011; 38
1998; 132
2001; 45
2013; 8
2014; 83
1995; 3
2012; 53
2001; 42
2004; 52
1987; 22
2013; 58
2013; 54
2009; 50
1988; 6
2013; 52
2014; 59
2011; 65
2014; 17
2014; 39
2012; 68
2014; 55
2010; 51
2003; 66
2007; 48
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Teplinsky E. (e_1_2_7_2_1)
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
Muzic R. F. (e_1_2_7_38_1) 2001; 42
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Surti S. (e_1_2_7_34_1) 2007; 48
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
23927344 - Med Phys. 2013 Aug;40(8):082301
25321341 - Phys Med Biol. 2014 Nov 7;59(21):6595-606
24123342 - J Magn Reson Imaging. 2014 Apr;39(4):988-97
3054380 - Magn Reson Imaging. 1988 Jul-Aug;6(4):355-68
3557896 - Invest Radiol. 1987 Mar;22(3):209-15
24784377 - Med Phys. 2014 May;41(5):051711
25096328 - Mol Imaging Biol. 2015 Apr;17(2):264-76
24965907 - J Magn Reson Imaging. 2015 May;41(5):1465-74
23442772 - Invest Radiol. 2013 May;48(5):323-32
22712634 - Acta Oncol. 2013 Apr;52(3):612-8
24425423 - Eur J Nucl Med Mol Imaging. 2014 Jun;41(6):1176-89
15236387 - Magn Reson Med. 2004 Jul;52(1):197-203
12648793 - Radiother Oncol. 2003 Feb;66(2):203-16
20008992 - J Nucl Med. 2010 Jan;51(1):77-84
23984810 - Acta Oncol. 2013 Oct;52(7):1369-73
24217183 - Phys Med Biol. 2013 Dec 7;58(23 ):8419-35
23817684 - Eur J Nucl Med Mol Imaging. 2013 Oct;40(10 ):1486-99
22089006 - J Appl Clin Med Phys. 2011 Nov 15;12(4):3522
22047365 - Med Phys. 2011 Nov;38(11):6010-9
22505568 - J Nucl Med. 2012 May;53(5):796-804
20439508 - J Nucl Med. 2010 May;51(5):812-8
17332626 - J Nucl Med. 2007 Mar;48(3):471-80
24352789 - Eur J Nucl Med Mol Imaging. 2014 May;41(5):887-97
25393873 - Phys Med Biol. 2014 Dec 7;59(23):7501-19
24833495 - J Nucl Med. 2014 Jun;55(6):923-31
22830764 - Med Phys. 2012 Jul;39(7):4306-15
21724984 - J Nucl Med. 2011 Jul;52(7):1142-9
19235919 - Magn Reson Med. 2009 May;61(5):1083-9
9615415 - J Magn Reson. 1998 May;132(1):150-3
22189904 - Magn Reson Med. 2012 Jul;68(1):120-9
11337554 - J Nucl Med. 2001 Apr;42(4):636-45
21339009 - Radiother Oncol. 2011 Mar;98 (3):330-4
22923020 - MAGMA. 2013 Feb;26(1):115-26
24387496 - Med Phys. 2014 Jan;41(1):011704
23497586 - Radiat Oncol. 2013 Mar 06;8:51
22755711 - Med Phys. 2012 Jun;39(6):3283-90
20860006 - Magn Reson Med. 2011 Jan;65(1):96-107
19289430 - J Nucl Med. 2009 Apr;50(4):520-6
22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60
10701515 - Phys Med Biol. 2000 Feb;45(2):459-78
22955943 - MAGMA. 2013 Feb;26(1):127-36
21776807 - Med Phys. 2011 May;38(5):2708-14
24780817 - Eur J Radiol. 2014 Jul;83(7):1177-83
11283987 - Magn Reson Med. 2001 Apr;45(4):595-604
24652234 - Eur J Nucl Med Mol Imaging. 2014 Aug;41(8):1574-84
25086551 - Med Phys. 2014 Aug;41(8):082302
21688050 - Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1691-701
24009273 - J Nucl Med. 2013 Oct;54(10 ):1768-74
22078793 - Eur J Radiol. 2012 Oct;81(10):2658-65
25281971 - Med Phys. 2014 Oct;41(10):102301
21508443 - Phys Med Biol. 2011 May 21;56(10):3091-106
22868642 - MAGMA. 2013 Feb;26(1):5-23
20810759 - J Nucl Med. 2010 Sep;51(9):1431-8
References_xml – volume: 51
  start-page: 77
  year: 2010
  end-page: 84
  article-title: Integrated software environment based on for analyzing tracer pharmacokinetics with molecular imaging
  publication-title: J. Nucl. Med.
– volume: 41
  start-page: 051711
  year: 2014
  article-title: MRI‐based treatment planning with pseudo CT generated through atlas registration
  publication-title: Med. Phys.
– volume: 45
  start-page: 459
  year: 2000
  end-page: 478
  article-title: Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 1574
  year: 2014
  end-page: 1584
  article-title: Comparison of MR‐based attenuation correction and CT‐based attenuation correction of whole‐body PET/MR imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 66
  start-page: 203
  year: 2003
  end-page: 216
  article-title: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone
  publication-title: Radiother. Oncol.
– volume: 65
  start-page: 96
  year: 2011
  end-page: 107
  article-title: Dual‐echo Dixon imaging with flexible choice of echo times
  publication-title: Magn. Reson. Med.
– volume: 52
  start-page: 197
  year: 2004
  end-page: 203
  article-title: Fast isotropic volumetric coronary MR angiography using free‐breathing 3D radial balanced FFE acquisition
  publication-title: Magn. Reson. Med.
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  article-title: On cluster validity for the fuzzy c‐means model
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 41
  start-page: 887
  year: 2014
  end-page: 897
  article-title: Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga‐labelled PSMA ligand for the diagnosis of recurrent prostate cancer: Initial experience
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 38
  start-page: 1691
  year: 2011
  end-page: 1701
  article-title: Value of a Dixon‐based MR/PET attenuation correction sequence for the localization and evaluation of PET‐positive lesions
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 58
  start-page: 8419
  year: 2013
  end-page: 8435
  article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 55
  start-page: 923
  year: 2014
  end-page: 931
  article-title: Systematic comparison of the performance of integrated whole‐body PET/MR imaging to conventional PET/CT for 18F‐FDG brain imaging in patients examined for suspected dementia
  publication-title: J. Nucl. Med.
– volume: 52
  start-page: 1369
  year: 2013
  end-page: 1373
  article-title: Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information‐potential application for MR‐only radiotherapy and attenuation correction in positron emission tomography
  publication-title: Acta Oncol.
– volume: 51
  start-page: 812
  year: 2010
  end-page: 818
  article-title: MRI‐based attenuation correction for PET/MRI using ultrashort echo time sequences
  publication-title: J. Nucl. Med.
– volume: 41
  start-page: 1176
  year: 2014
  end-page: 1189
  article-title: A comparison of CT‐and MR‐based attenuation correction in neurological PET
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 132
  start-page: 150
  year: 1998
  end-page: 153
  article-title: Simple correction method fork‐space trajectory deviations in MRI
  publication-title: J. Magn. Reson.
– volume: 26
  start-page: 127
  year: 2013
  end-page: 136
  article-title: Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 39
  start-page: 4306
  year: 2012
  end-page: 4315
  article-title: Simultaneous PET/MR imaging: MR‐based attenuation correction of local radiofrequency surface coils
  publication-title: Med. Phys.
– volume: 54
  start-page: 1768
  year: 2013
  end-page: 1774
  article-title: MR‐based attenuation correction methods for improved PET quantification in lesions within bone and susceptibility artifact regions
  publication-title: J. Nucl. Med.
– volume: 48
  start-page: 471
  year: 2007
  end-page: 480
  article-title: Performance of Philips Gemini TF PET/CT scanner with special consideration for its time‐of‐flight imaging capabilities
  publication-title: J. Nucl. Med.
– volume: 39
  start-page: 1154
  year: 2012
  end-page: 1160
  article-title: PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 83
  start-page: 1177
  year: 2014
  end-page: 1183
  article-title: Whole‐body PET/MRI: The effect of bone attenuation during MR‐based attenuation correction in oncology imaging
  publication-title: Eur. J. Radiol.
– volume: 51
  start-page: 1431
  year: 2010
  end-page: 1438
  article-title: Toward implementing an MRI‐based PET attenuation‐correction method for neurologic studies on the MR‐PET brain prototype
  publication-title: J. Nucl. Med.
– volume: 42
  start-page: 636
  year: 2001
  end-page: 645
  article-title: : Compartment model kinetic analysis tool
  publication-title: J. Nucl. Med.
– volume: 39
  start-page: 988
  year: 2014
  end-page: 997
  article-title: Pulmonary 3 T MRI with ultrashort TEs: Influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers
  publication-title: J. Magn. Reson. Imaging
– volume: 52
  start-page: 1142
  year: 2011
  end-page: 1149
  article-title: Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: A comparison of tissue atlas and template attenuation map approaches
  publication-title: J. Nucl. Med.
– volume: 56
  start-page: 3091
  year: 2011
  end-page: 3106
  article-title: Design and performance evaluation of a whole‐body ingenuity TF PET–MRI system
  publication-title: Phys. Med. Biol.
– volume: 702
  start-page: 114
  year: 2013
  end-page: 116
  article-title: Skull segmentation of UTE MR images by probabilistic neural network for attenuation correction in PET/MR
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 41
  start-page: 102301
  year: 2014
  article-title: K‐space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR‐based PET attenuation correction
  publication-title: Med. Phys.
– volume: 26
  start-page: 115
  year: 2013
  end-page: 126
  article-title: Quantitative accuracy of attenuation correction in the Philips ingenuity TF whole‐body PET/MR system: A direct comparison with transmission‐based attenuation correction
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 41
  start-page: 082302
  year: 2014
  article-title: CT substitutes derived from MR images reconstructed with parallel imaging
  publication-title: Med. Phys.
– volume: 53
  start-page: 796
  year: 2012
  end-page: 804
  article-title: MRI‐based attenuation correction for hybrid PET/MRI systems: A 4‐Class tissue segmentation technique using a combined ultrashort‐echo‐time/Dixon MRI sequence
  publication-title: J. Nucl. Med.
– volume: 38
  start-page: 6010
  year: 2011
  end-page: 6019
  article-title: The effect of errors in segmented attenuation maps on PET quantification
  publication-title: Med. Phys.
– year: 2003
  article-title: Correction of trajectory errors in radial acquisitions
– volume: 8
  start-page: 1
  year: 2013
  end-page: 13
  article-title: MRI‐based treatment plan simulation and adaptation for ion radiotherapy using a classification‐based approach
  publication-title: Radiat. Oncol.
– volume: 41
  start-page: 011704
  year: 2014
  article-title: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI‐based radiotherapy treatment planning of prostate cancer
  publication-title: Med. Phys.
– volume: 39
  start-page: 3283
  year: 2012
  end-page: 3290
  article-title: Voxel‐wise uncertainty in CT substitute derived from MRI
  publication-title: Med. Phys.
– volume: 45
  start-page: 595
  year: 2001
  end-page: 604
  article-title: Neuroimaging at 1.5 T and 3.0 T: Comparison of oxygenation‐sensitive magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 101
  year: 2014
  article-title: Erratum to: Quantitative accuracy of attenuation correction in the Philips ingenuity TF whole‐body PET/MR system: A direct comparison with transmission‐based attenuation correction
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 52
  start-page: 612
  year: 2013
  end-page: 618
  article-title: T1/T2 ‐weighted MRI provides clinically relevant pseudo‐CT density data for the pelvic bones in MRI‐only based radiotherapy treatment planning
  publication-title: Acta Oncol.
– volume: 40
  start-page: 1486
  year: 2013
  end-page: 1499
  article-title: Comparison of integrated whole‐body [11C]choline PET/MR with PET/CT in patients with prostate cancer
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 68
  start-page: 120
  year: 2012
  end-page: 129
  article-title: Simple method for MR gradient system characterization and k‐space trajectory estimation
  publication-title: Magn. Reson. Med.
– volume: 38
  start-page: 2708
  year: 2011
  end-page: 2714
  article-title: CT substitute derived from MRI sequences with ultrashort echo time
  publication-title: Med. Phys.
– volume: 48
  start-page: 323
  year: 2013
  end-page: 332
  article-title: Magnetic resonance–based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps
  publication-title: Invest. Radiol.
– article-title: Detection of metastases in breast cancer: Is whole body PET/MR better than PET/CT?
  publication-title: Journal of Clinical Oncology
– volume: 26
  start-page: 5
  year: 2013
  end-page: 23
  article-title: Sequential whole‐body PET/MR scanner: Concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 41
  start-page: 1465
  year: 2014
  end-page: 1474
  article-title: Ultra‐short echo‐time pulmonary MRI: Evaluation and reproducibility in COPD subjects with and without bronchiectasis
  publication-title: J. Magn. Reson. Imaging
– volume: 61
  start-page: 1083
  year: 2009
  end-page: 1089
  article-title: Double half RF pulses for reduced sensitivity to eddy currents in UTE imaging
  publication-title: Magn. Reson. Med.
– volume: 22
  start-page: 209
  year: 1987
  end-page: 215
  article-title: Two postprocessing CT techniques for determining the composition of trabecular bone
  publication-title: Invest. Radiol.
– volume: 59
  start-page: 7501
  year: 2014
  end-page: 7519
  article-title: A voxel‐based investigation for MRI‐only radiotherapy of the brain using ultra short echo times
  publication-title: Phys. Med. Biol.
– volume: 81
  start-page: 2658
  year: 2012
  end-page: 2665
  article-title: Simulation of a MR–PET protocol for staging of head‐and‐neck cancer including Dixon MR for attenuation correction
  publication-title: Eur. J. Radiol.
– volume: 98
  start-page: 330
  year: 2011
  end-page: 334
  article-title: MRI‐guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI‐based dose planning
  publication-title: Radiother. Oncol.
– volume: 59
  start-page: 6595
  year: 2014
  end-page: 6606
  article-title: A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning
  publication-title: Phys. Med. Biol.
– volume: 17
  start-page: 264
  year: 2014
  end-page: 276
  article-title: Clinical assessment of MR‐guided 3‐Class and 4‐Class attenuation correction in PET/MR
  publication-title: Mol. Imaging Biol.
– volume: 50
  start-page: 520
  year: 2009
  end-page: 526
  article-title: Tissue classification as a potential approach for attenuation correction in whole‐body PET/MRI: Evaluation with PET/CT data
  publication-title: J. Nucl. Med.
– volume: 6
  start-page: 355
  year: 1988
  end-page: 368
  article-title: Fast field echo imaging: An overview and contrast calculations
  publication-title: Magn. Reson. Imaging
– volume: 12
  start-page: 97
  year: 2011
  end-page: 104
  article-title: Comparison of bulk electron density and voxel‐based electron density treatment planning
  publication-title: J. Appl. Clin. Med. Phys.
– volume: 40
  start-page: 082301
  year: 2013
  article-title: Integrated PET/MR imaging: Automatic attenuation correction of flexible RF coils
  publication-title: Med. Phys.
– ident: e_1_2_7_60_1
  doi: 10.1118/1.4842575
– ident: e_1_2_7_3_1
  doi: 10.1007/s00259‐013‐2660‐z
– ident: e_1_2_7_23_1
  doi: 10.1007/s00259‐011‐1842‐9
– ident: e_1_2_7_41_1
  doi: 10.1088/0031‐9155/45/2/314
– volume: 42
  start-page: 636
  year: 2001
  ident: e_1_2_7_38_1
  article-title: comkat: Compartment model kinetic analysis tool
  publication-title: J. Nucl. Med.
– ident: e_1_2_7_17_1
  doi: 10.1118/1.3651640
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.21879
– ident: e_1_2_7_11_1
  doi: 10.1007/s10334‐012‐0328‐5
– ident: e_1_2_7_13_1
  doi: 10.1007/s11307‐014‐0777‐5
– ident: e_1_2_7_5_1
  doi: 10.1007/s00259‐013‐2652‐z
– ident: e_1_2_7_16_1
  doi: 10.1007/s00259‐014‐2751‐5
– ident: e_1_2_7_33_1
– ident: e_1_2_7_58_1
  doi: 10.1002/jmri.24680
– ident: e_1_2_7_50_1
  doi: 10.1118/1.4873315
– ident: e_1_2_7_10_1
  doi: 10.1007/s00259‐012‐2113‐0
– ident: e_1_2_7_6_1
  doi: 10.2967/jnumed.111.092577
– ident: e_1_2_7_43_1
  doi: 10.3109/0284186X.2013.819119
– ident: e_1_2_7_44_1
  doi: 10.1118/1.4711807
– ident: e_1_2_7_9_1
  doi: 10.1097/RLI.0b013e318283292f
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ejrad.2014.03.022
– ident: e_1_2_7_47_1
  doi: 10.1186/1748‐717X‐8‐51
– ident: e_1_2_7_25_1
  doi: 10.1088/0031‐9155/58/23/8419
– ident: e_1_2_7_42_1
  doi: 10.1118/1.4886766
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nima.2012.09.005
– ident: e_1_2_7_2_1
  article-title: Detection of metastases in breast cancer: Is whole body PET/MR better than PET/CT?
  publication-title: Journal of Clinical Oncology
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.23217
– ident: e_1_2_7_12_1
  doi: 10.1007/s10334‐014‐0445‐4
– ident: e_1_2_7_31_1
  doi: 10.1007/s10334‐012‐0330‐y
– ident: e_1_2_7_19_1
  doi: 10.1016/j.radonc.2011.01.012
– ident: e_1_2_7_57_1
  doi: 10.1016/0730‐725X(88)90472‐9
– ident: e_1_2_7_40_1
  doi: 10.1097/00004424‐198703000‐00005
– ident: e_1_2_7_32_1
  doi: 10.1088/0031‐9155/56/10/013
– ident: e_1_2_7_39_1
  doi: 10.1109/91.413225
– ident: e_1_2_7_53_1
  doi: 10.1118/1.4729716
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.20128
– ident: e_1_2_7_46_1
  doi: 10.1088/0031‐9155/59/23/7501
– ident: e_1_2_7_37_1
  doi: 10.2967/jnumed.109.064824
– ident: e_1_2_7_28_1
– ident: e_1_2_7_21_1
  doi: 10.2967/jnumed.109.069112
– ident: e_1_2_7_51_1
  doi: 10.1088/0031‐9155/59/21/6595
– ident: e_1_2_7_20_1
  doi: 10.1016/S0167‐8140(02)00440‐1
– ident: e_1_2_7_7_1
  doi: 10.2967/jnumed.113.126813
– ident: e_1_2_7_15_1
  doi: 10.2967/jnumed.112.113209
– ident: e_1_2_7_49_1
  doi: 10.3109/0284186X.2012.692883
– ident: e_1_2_7_52_1
  doi: 10.2967/jnumed.110.085076
– ident: e_1_2_7_59_1
  doi: 10.1002/jmri.24232
– ident: e_1_2_7_22_1
  doi: 10.1118/1.4894709
– ident: e_1_2_7_27_1
  doi: 10.1006/jmre.1998.1396
– ident: e_1_2_7_18_1
  doi: 10.1120/jacmp.v12i4.3522
– ident: e_1_2_7_26_1
  doi: 10.1118/1.3578928
– ident: e_1_2_7_4_1
  doi: 10.1007/s00259‐013‐2467‐y
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ejrad.2011.10.005
– ident: e_1_2_7_56_1
  doi: 10.1007/s10334‐012‐0339‐2
– ident: e_1_2_7_55_1
  doi: 10.2967/jnumed.108.054726
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.22578
– ident: e_1_2_7_8_1
  doi: 10.2967/jnumed.109.065425
– volume: 48
  start-page: 471
  year: 2007
  ident: e_1_2_7_34_1
  article-title: Performance of Philips Gemini TF PET/CT scanner with special consideration for its time‐of‐flight imaging capabilities
  publication-title: J. Nucl. Med.
– ident: e_1_2_7_54_1
  doi: 10.1118/1.4812685
– ident: e_1_2_7_45_1
  doi: 10.1002/mrm.1081
– reference: 22923020 - MAGMA. 2013 Feb;26(1):115-26
– reference: 25321341 - Phys Med Biol. 2014 Nov 7;59(21):6595-606
– reference: 23442772 - Invest Radiol. 2013 May;48(5):323-32
– reference: 24009273 - J Nucl Med. 2013 Oct;54(10 ):1768-74
– reference: 22955943 - MAGMA. 2013 Feb;26(1):127-36
– reference: 21776807 - Med Phys. 2011 May;38(5):2708-14
– reference: 23927344 - Med Phys. 2013 Aug;40(8):082301
– reference: 23497586 - Radiat Oncol. 2013 Mar 06;8:51
– reference: 9615415 - J Magn Reson. 1998 May;132(1):150-3
– reference: 21724984 - J Nucl Med. 2011 Jul;52(7):1142-9
– reference: 24652234 - Eur J Nucl Med Mol Imaging. 2014 Aug;41(8):1574-84
– reference: 24123342 - J Magn Reson Imaging. 2014 Apr;39(4):988-97
– reference: 25086551 - Med Phys. 2014 Aug;41(8):082302
– reference: 24425423 - Eur J Nucl Med Mol Imaging. 2014 Jun;41(6):1176-89
– reference: 10701515 - Phys Med Biol. 2000 Feb;45(2):459-78
– reference: 12648793 - Radiother Oncol. 2003 Feb;66(2):203-16
– reference: 20860006 - Magn Reson Med. 2011 Jan;65(1):96-107
– reference: 22868642 - MAGMA. 2013 Feb;26(1):5-23
– reference: 21508443 - Phys Med Biol. 2011 May 21;56(10):3091-106
– reference: 22078793 - Eur J Radiol. 2012 Oct;81(10):2658-65
– reference: 17332626 - J Nucl Med. 2007 Mar;48(3):471-80
– reference: 20810759 - J Nucl Med. 2010 Sep;51(9):1431-8
– reference: 22712634 - Acta Oncol. 2013 Apr;52(3):612-8
– reference: 11337554 - J Nucl Med. 2001 Apr;42(4):636-45
– reference: 22755711 - Med Phys. 2012 Jun;39(6):3283-90
– reference: 22505568 - J Nucl Med. 2012 May;53(5):796-804
– reference: 22089006 - J Appl Clin Med Phys. 2011 Nov 15;12(4):3522
– reference: 22189904 - Magn Reson Med. 2012 Jul;68(1):120-9
– reference: 22047365 - Med Phys. 2011 Nov;38(11):6010-9
– reference: 3557896 - Invest Radiol. 1987 Mar;22(3):209-15
– reference: 24352789 - Eur J Nucl Med Mol Imaging. 2014 May;41(5):887-97
– reference: 25096328 - Mol Imaging Biol. 2015 Apr;17(2):264-76
– reference: 19289430 - J Nucl Med. 2009 Apr;50(4):520-6
– reference: 24833495 - J Nucl Med. 2014 Jun;55(6):923-31
– reference: 25393873 - Phys Med Biol. 2014 Dec 7;59(23):7501-19
– reference: 24387496 - Med Phys. 2014 Jan;41(1):011704
– reference: 21339009 - Radiother Oncol. 2011 Mar;98 (3):330-4
– reference: 21688050 - Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1691-701
– reference: 19235919 - Magn Reson Med. 2009 May;61(5):1083-9
– reference: 24780817 - Eur J Radiol. 2014 Jul;83(7):1177-83
– reference: 11283987 - Magn Reson Med. 2001 Apr;45(4):595-604
– reference: 3054380 - Magn Reson Imaging. 1988 Jul-Aug;6(4):355-68
– reference: 20008992 - J Nucl Med. 2010 Jan;51(1):77-84
– reference: 20439508 - J Nucl Med. 2010 May;51(5):812-8
– reference: 23984810 - Acta Oncol. 2013 Oct;52(7):1369-73
– reference: 23817684 - Eur J Nucl Med Mol Imaging. 2013 Oct;40(10 ):1486-99
– reference: 24784377 - Med Phys. 2014 May;41(5):051711
– reference: 15236387 - Magn Reson Med. 2004 Jul;52(1):197-203
– reference: 24965907 - J Magn Reson Imaging. 2015 May;41(5):1465-74
– reference: 22526955 - Eur J Nucl Med Mol Imaging. 2012 Jul;39(7):1154-60
– reference: 24217183 - Phys Med Biol. 2013 Dec 7;58(23 ):8419-35
– reference: 25281971 - Med Phys. 2014 Oct;41(10):102301
– reference: 22830764 - Med Phys. 2012 Jul;39(7):4306-15
SSID ssj0006350
Score 2.41633
Snippet Purpose: MR‐based pseudo‐CT has an important role in MR‐based radiation therapy planning and PET attenuation correction. The purpose of this study is to...
MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a...
PURPOSEMR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to...
Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4974
SubjectTerms 60 APPLIED LIFE SCIENCES
ALGORITHMS
Animal or vegetable oils, fats, fatty substances or waxes; Fatty acids therefrom; Detergents; Candles
ANIMAL TISSUES
biomedical MRI
bone
BRAIN
Brain - anatomy & histology
Clinical applications
Cluster Analysis
clustering
Compositions of oils, fats or waxes; Compositions of derivatives thereof
Computed tomography
Computerised tomographs
computerised tomography
CORRECTIONS
data acquisition
Digital computing or data processing equipment or methods, specially adapted for specific applications
FATS
Feasibility Studies
feature extraction
FUZZY LOGIC
fuzzy set theory
Humans
image classification
Image data processing or generation, in general
image enhancement
Image enhancement or restoration, e.g. from bit‐mapped to bit‐mapped creating a similar image
image matching
image reconstruction
image sampling
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical image artifacts
medical image processing
Medical image reconstruction
Methods or arrangements for processing data by operating upon the order or content of the data handled
MRI
neurophysiology
PATIENTS
pattern clustering
POSITRON COMPUTED TOMOGRAPHY
Pulse sequences
RADIATION DOSES
RADIATION PROTECTION AND DOSIMETRY
Radiation Therapy Physics
RADIOTHERAPY
Reconstruction
SKULL
Skull - anatomy & histology
Spatial resolution
spin‐spin relaxation
Tissues
Tomography - methods
undersampling
UTE
water
Title Generation of brain pseudo‐CTs using an undersampled, single‐acquisition UTE‐mDixon pulse sequence and unsupervised clustering
URI https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4926756
https://www.ncbi.nlm.nih.gov/pubmed/26233223
https://www.proquest.com/docview/1701300807
https://www.osti.gov/biblio/22581339
https://pubmed.ncbi.nlm.nih.gov/PMC5148184
Volume 42
WOSCitedRecordID wos000358933000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61KaBeeBRKXUq1IIQ41DS21_auOKG2EQdaVSiRcrPW-4BIwQ51jDhy4AfwG_klnbEdi4giIaEcrDjjtWPP4xvv7DcAL6Jw6BB4O99x5XxupPQFLXaPkqERPA6ixIim2UR6cSGmU3m5AW9Wa2Fafoj-hRtZRuOvycBV3nUhCahwPXhNXHdpnGzCVoh6ywewdfphNHnfO2KMpe0KFMlpEiHuiIXw8OP-4LVwNCjRrG6Cmn9WTP6OZJtQNLr3X3_iPtztECh726rMA9iwxQ7cOe_m2HfgdlMUqquH8KPlpKZHx0rHcuomwRaVrU356_vPk3HFqGr-I1MFq5s1Moqohs0Ro71zizJKf6lnbVUYm4zPcM_n09k3_LKoMSSzVR03jmBwiKpekOeqrGF6XhODA47zCCajs_HJO7_r2uBrhFaJb3XoEAOmQ4fZVx7aXEsro9wGLs51LqNEmAR9aoDJsQkTaWPMoRTCCMVTrRANRbswKMrC7gHD0JkbpZwSoeWxdPhBdCrzhGMamEbSg1erh5fpjtKcOmvMsza1EVmQdffXg-e96KLl8bhJ6IA0IEPwQQy6mkqN9DJDlyfwavF0z1aakaER0syKKmxZVxmR2kcEvlMPHrea0p8lRICJXjPyIF3ToV6ACL7XfylmnxqibwSziKe4By8bHfr7hWfnl7TZ_1fBJ7CNwC9uCxkPYLC8qu1TuKW_LmfV1SFsplNx2FnTNaOUIuE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFAoXHoVSQ4EFoYoDpvHbK3FBbaMikqhCidTbar2PEinYoY4rjhz4AfxGfgkztmMRUSQk5INle7x-zeMb7-y3AC8Dv28ReFvXhtK6oebcTWmwexD3dRpGXhDrtJ5sIhmP07MzfroBb1djYRp-iO6HG1lG7a_JwOmHdGvlVLnuvSGyuySKr8FmiGoU9WDz6ONgOuw8MQbTZggKD6kXIWqZhfD0g-7ktXjUK9CursKaf5ZM_g5l61g0uPN_T3EXbrcYlL1rlOYebJh8G7ZGbS_7Ntyoy0JVeR--N6zU9PFYYVlG80mwRWkqXfz89uNwUjKqmz9nMmdVPUpGEtmwfs1o79ygjFRfqllTF8amk2Pc8_lo9hU3FhUGZbaq5MYWNDZRVgvyXaXRTM0r4nDAdh7AdHA8OTxx23kbXIXgKnaN8i2iwKRvMf_KfJMpbniQGc9Gmcp4EKc6Rq_qYXqs_ZibCLMoiUBChomSiIeCHejlRW52gWHwzLSUVqa-CSNucUF8yrM4xEQwCbgDr1ZfT6iW1Jzm1piLJrlJhSfa9-vAi0500TB5XCW0RyogEH4Qh66iYiO1FOj0UrxbvNzzlWoINEPqW5G5KapSEK19QPA7ceBhoyrdVXyEmOg3AweSNSXqBIjie_1IPvtUU30jnEVEFTqwXyvR329cjE5p9ehfBZ_BzZPJaCiG78cfHsMthIFRU9a4B73lRWWewHV1uZyVF09bo_oFHHcl6Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UrZa-eKmXRquOIuKD0c09A75It4tiuyyyC30bJnPRhTVJm03x0Qd_gL_RX-I5STa4WEGQPIQkJzNJ5ly-yZz5BuBZ4A8tAm_r2lBaN9ScuylNdg_ioU7DyAtinTaLTSSTSXp6yqdb8GY9F6blh-h_uJFlNP6aDNyU2nZWTpnr3isiu0ui-ApshxGP0Sy3Rx_H8-PeE2Mwbaeg8JBGEaKOWQhvf93fvBGPBgXa1WVY88-Uyd-hbBOLxjf-7y1uwvUOg7K3rdLcgi2T78HOSTfKvgfXmrRQVd2G7y0rNTUeKyzLaD0JVlam1sXPbz8OZxWjvPlPTOasbmbJSCIb1i8ZnV0alJHqrF60eWFsPjvCM19Gi694UNYYlNk6kxtL0FhEVZfkuyqjmVrWxOGA5dyB-fhodvjO7dZtcBWCq9g1yreIApOhxf5X5ptMccODzHg2ylTGgzjVMXpVD7vH2o-5wbYbSgQSMkyURDwU3IVBXuRmHxgGz0xLaWXqG2xjixviU57FIXYEk4A78GLdekJ1pOa0tsZStJ2bVHii-74OPO1Fy5bJ4zKhA1IBgfCDOHQVJRuplUCnl-LTYnVP1qoh0AxpbEXmpqgrQbT2AcHvxIF7rar0tfgIMdFvBg4kG0rUCxDF9-aVfPG5ofpGOIuIKnTgeaNEf39wcTKl3f1_FXwMO9PRWBy_n3x4ALuIAqM2q_EABqvz2jyEq-pitajOH3U29QtyPyVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+brain+pseudo-CTs+using+an+undersampled%2C+single-acquisition+UTE-mDixon+pulse+sequence+and+unsupervised+clustering&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Su%2C+Kuan-Hao&rft.au=Hu%2C+Lingzhi&rft.au=Stehning%2C+Christian&rft.au=Helle%2C+Michael&rft.date=2015-08-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.volume=42&rft.issue=8&rft.spage=4974&rft.epage=4986&rft_id=info:doi/10.1118%2F1.4926756&rft_id=info%3Apmid%2F26233223&rft.externalDocID=PMC5148184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon