State of the Art in Transfer Functions for Direct Volume Rendering

A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 35; číslo 3; s. 669 - 691
Hlavní autori: Ljung, Patric, Krüger, Jens, Groller, Eduard, Hadwiger, Markus, Hansen, Charles D., Ynnerman, Anders
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.06.2016
Predmet:
ISSN:0167-7055, 1467-8659, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state‐of‐the‐art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies.
AbstractList A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies.
Author Ljung, Patric
Ynnerman, Anders
Hadwiger, Markus
Krüger, Jens
Groller, Eduard
Hansen, Charles D.
Author_xml – sequence: 1
  givenname: Patric
  surname: Ljung
  fullname: Ljung, Patric
  organization: Linköping University, Sweden
– sequence: 2
  givenname: Jens
  surname: Krüger
  fullname: Krüger, Jens
  organization: CoViDAG, University of Duisburg-Essen
– sequence: 3
  givenname: Eduard
  surname: Groller
  fullname: Groller, Eduard
  organization: TU Wien, Austria
– sequence: 4
  givenname: Markus
  surname: Hadwiger
  fullname: Hadwiger, Markus
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Charles D.
  surname: Hansen
  fullname: Hansen, Charles D.
  organization: Seientific Computing and Imaging Institute, University of Utah
– sequence: 6
  givenname: Anders
  surname: Ynnerman
  fullname: Ynnerman, Anders
  organization: Linköping University, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp1kU9vEzEQxS1UJNLCgW9giQsctrXX_7LHkJKAVFGJlsLNcrzj4LKxg-1V229fl6QcKjqXmcPvjWbeO0QHIQZA6C0lx7TWiV27Y9p2jL9AE8qlaqZSdAdoQmidFRHiFTrM-ZoQwpUUE_TxopgCODpcfgGepYJ9wJfJhOwg4cUYbPExZOxiwqc-gS34Kg7jBvA3CD0kH9av0Utnhgxv9v0IfV98upx_bs7Ol1_ms7PGck5507dM9FQ6BSCFY72UkkpLJQOwnTWdap1RjHe2M60RxPRW8VUvFBd8ZURL2RFqdnvzDWzHld4mvzHpTkfj9am_mumY1nrwo6aMSCkq_37Hb1P8M0IueuOzhWEwAeKYNZ22QrCOtKyi756g13FMoX5TKUK56gh5oE52lE0x5wROW1_dq_6UZPygKdEPGeiagf6bQVV8eKJ4PPp_7H77jR_g7nlQz5eLR8XeEJ8L3P5TmPRbS8WU0D--LrW8-EmomrZ6zu4BbWqkvQ
CitedBy_id crossref_primary_10_1016_j_cag_2016_06_007
crossref_primary_10_1109_TVCG_2018_2867488
crossref_primary_10_1111_cgf_14173
crossref_primary_10_1111_cgf_14296
crossref_primary_10_1111_cgf_14693
crossref_primary_10_1109_TVCG_2018_2796085
crossref_primary_10_1016_j_wneu_2024_03_134
crossref_primary_10_1007_s42243_024_01292_5
crossref_primary_10_1109_ACCESS_2021_3100429
crossref_primary_10_1109_TVCG_2018_2816059
crossref_primary_10_1007_s10055_021_00577_4
crossref_primary_10_1007_s12650_020_00654_x
crossref_primary_10_1109_TVCG_2024_3401755
crossref_primary_10_1371_journal_pone_0198335
crossref_primary_10_17341_gazimmfd_416421
crossref_primary_10_1109_TVCG_2018_2864816
crossref_primary_10_1109_TVCG_2017_2776935
crossref_primary_10_1155_2022_5884625
crossref_primary_10_1016_j_compeleceng_2022_108381
crossref_primary_10_1109_TVCG_2017_2784830
crossref_primary_10_1016_j_cag_2019_11_003
crossref_primary_10_1111_cgf_15198
crossref_primary_10_3390_app13053168
crossref_primary_10_1109_TVCG_2020_3030451
crossref_primary_10_1109_TVCG_2022_3189094
crossref_primary_10_1111_cgf_14189
crossref_primary_10_1111_cgf_14543
crossref_primary_10_1145_3373358
crossref_primary_10_1007_s12650_025_01077_2
crossref_primary_10_3390_rs17020294
crossref_primary_10_1109_MCSE_2017_3971156
crossref_primary_10_3390_jimaging11060193
crossref_primary_10_1007_s12650_019_00584_3
crossref_primary_10_1093_mnras_stx1676
crossref_primary_10_1109_TVCG_2023_3327371
crossref_primary_10_1111_cgf_13183
crossref_primary_10_1109_TVCG_2021_3127918
crossref_primary_10_1111_cgf_13663
crossref_primary_10_1007_s10055_025_01121_4
crossref_primary_10_1111_cgf_13148
crossref_primary_10_3390_math12121885
crossref_primary_10_1111_cgf_13306
crossref_primary_10_1007_s00371_023_02932_9
crossref_primary_10_1109_TVCG_2020_3030344
crossref_primary_10_1109_TVCG_2024_3514858
crossref_primary_10_1631_FITEE_2000214
crossref_primary_10_1109_TVCG_2017_2744078
crossref_primary_10_1109_TVCG_2024_3484471
crossref_primary_10_1007_s10278_018_0122_7
crossref_primary_10_1007_s12650_021_00787_7
crossref_primary_10_1111_cgf_70064
crossref_primary_10_1109_TVCG_2020_3037226
crossref_primary_10_1109_TVCG_2024_3516481
crossref_primary_10_1371_journal_pone_0193636
crossref_primary_10_1007_s11390_024_3419_7
crossref_primary_10_1159_000504940
crossref_primary_10_1007_s00371_024_03596_9
crossref_primary_10_1109_TVCG_2023_3263856
crossref_primary_10_1109_TVCG_2023_3340770
crossref_primary_10_1109_TVCG_2025_3549882
crossref_primary_10_11728_cjss2023_03_2022_0011
crossref_primary_10_1007_s00371_023_02828_8
crossref_primary_10_1109_TVCG_2025_3525974
crossref_primary_10_1145_2950040
crossref_primary_10_3389_fphys_2023_1086154
crossref_primary_10_1007_s10278_025_01430_9
Cites_doi 10.2312/conf/EG2012/stars/075-094
10.1109/VISUAL.2005.1532856
10.1109/VISUAL.1999.809932
10.1109/TVCG.2005.38
10.1111/cgf.12623
10.1111/cgf.12371
10.1109/TVCG.2014.2359462
10.1109/VISUAL.1995.480803
10.1109/TVCG.2009.120
10.1111/cgf.12365
10.1109/LDAV.2014.7013202
10.1109/VISUAL.2005.1532807
10.1109/PacificVis.2013.6596129
10.1109/VISUAL.2005.1532812
10.1109/PCCGA.2004.1348348
10.1109/TVCG.2008.25
10.1111/j.1467-8659.2012.03123.x
10.1111/j.1467-8659.2007.01095.x
10.1109/PACIFICVIS.2009.4906854
10.1007/978-3-540-39903-2_22
10.1109/VISUAL.1999.809886
10.1109/ICIEA.2007.4318542
10.1109/TVCG.2015.2467294
10.2312/VisSym/EuroVis06/243-250
10.1109/VISUAL.2000.885678
10.1109/TVCG.2015.2467431
10.1109/2945.468400
10.2312/VisSym/EuroVis06/251-258
10.1109/TVCG.2008.170
10.1109/TVCG.2014.2346411
10.1109/TVCG.2007.1051
10.1109/VISUAL.2005.1532858
10.1109/TVCG.2009.25
10.2312/VG/VG10/069-076
10.1109/VISUAL.1996.568113
10.1109/TVCG.2012.105
10.1145/1006058.1006066
10.1109/TVCG.2012.231
10.1109/PacificVis.2013.6596130
10.2312/VG/VG07/001-008
10.1109/TVCG.2006.96
10.1109/TVCG.2008.162
10.2312/VisSym/VisSym02/115-124
10.1016/j.cag.2008.08.006
10.1109/TVCG.2006.100
10.1145/258734.258887
10.1109/JBHI.2013.2263227
10.1145/288126.288140
10.1109/TVCG.2006.148
10.1371/journal.pone.0038586
10.1109/TVCG.2015.2467031
10.1145/54852.378484
10.1109/TVCG.2010.195
10.1109/PacificVis.2014.24
10.1109/TVCG.2005.62
10.1016/j.cag.2012.02.007
10.1109/2945.942694
10.1109/LDAV.2011.6092313
10.1016/j.cmpb.2007.03.008
10.2312/VG/VG05/137-145
10.1109/TVCG.2009.189
10.2312/VisSym/EuroVis05/271-278
10.1109/TVCG.2011.23
10.2312/VG/VG10/077-083
10.1111/j.1467-8659.2009.01474.x
10.2312/VisSym/VisSym04/017-024
10.1109/SIBGRAPI.2005.52
10.1109/TVCG.2009.185
10.1109/38.865879
10.1109/VISUAL.2003.1250413
10.1145/964965.808594
10.1109/ICMA.2007.4303986
10.1109/TVCG.2014.2346324
10.1109/TVCG.2011.258
10.2312/VisSym/EuroVis05/069-076
10.1109/PCCGA.2002.1167880
10.1109/TVCG.2012.80
10.1109/VISUAL.2003.1250386
10.1111/1467-8659.00538
10.1109/TVCG.2010.239
10.1057/ivs.2010.6
10.1109/ICICS.2009.5397587
10.1016/j.gmod.2003.08.002
10.1111/j.1467-8659.2005.00855.x
10.1109/VISUAL.2003.1250414
10.1109/TVCG.2011.261
10.1109/TVCG.2008.198
10.1109/VISUAL.2004.48
10.1109/TVCG.2010.170
10.1109/VISUAL.1998.745319
10.1109/38.511
10.5220/0001772701850190
10.1109/TVCG.2006.39
10.1109/TVCG.2011.97
10.1109/TVCG.2002.1021579
10.1109/PACIFICVIS.2011.5742368
10.1111/j.1467-8659.2008.01216.x
10.1007/11893257_74
10.1145/1375714.1375729
10.1109/TVCG.2006.72
10.1109/TVCG.2014.2346351
10.1201/b10629
10.1109/SVV.1998.729588
10.1109/TVCG.2007.70518
10.1109/PACIFICVIS.2010.5429624
10.1109/TVCG.2010.35
10.2312/VG/VG06/001-008
10.1111/j.1467-8659.2011.01944.x
10.1109/2945.998670
10.1109/TVCG.2009.115
10.1109/38.920623
10.1109/PACIFICVIS.2010.5429615
10.1109/TVCG.2007.47
10.1109/TVCG.2006.124
10.2312/VCBM/VCBM08/101-108
10.1109/2945.646238
10.1111/cgf.12624
10.1109/SIBGRAPI.2006.45
10.2312/VisSym/EuroVis07/131-138
10.2312/VisSym/EuroVis06/227-234
10.1109/PACIFICVIS.2009.4906857
10.2312/VisSym/EuroVis07/115-122
10.1109/TVCG.2008.169
10.2312/VG/VG-PBG08/041-048
10.1109/VISUAL.2005.1532854
10.1109/TVCG.2007.70591
10.1111/j.1467-8659.2012.03122.x
10.2312/VisSym/EuroVis05/263-270
10.1109/2945.856994
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1111/cgf.12934
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 691
ExternalDocumentID oai_DiVA_org_liu_130665
4107220241
10_1111_cgf_12934
CGF12934
ark_67375_WNG_6SX01782_C
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c4414-d235d16f7ee65f3d66616c163eec9ca972fa7349c9a2a50adc74bd57454ba5213
IEDL.DBID DRFUL
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379912300060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
1467-8659
IngestDate Tue Nov 04 16:43:38 EST 2025
Fri Sep 05 13:05:40 EDT 2025
Sat Jul 26 00:08:09 EDT 2025
Sat Nov 29 03:41:13 EST 2025
Tue Nov 18 22:04:15 EST 2025
Sun Sep 21 06:19:21 EDT 2025
Sun Sep 21 06:19:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4414-d235d16f7ee65f3d66616c163eec9ca972fa7349c9a2a50adc74bd57454ba5213
Notes ark:/67375/WNG-6SX01782-C
ArticleID:CGF12934
istex:C8EEFFA1F43EB7A6D872BB03D6F7684B15A105E5
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665
PQID 1801479003
PQPubID 30877
PageCount 23
ParticipantIDs swepub_primary_oai_DiVA_org_liu_130665
proquest_miscellaneous_1825539023
proquest_journals_1801479003
crossref_citationtrail_10_1111_cgf_12934
crossref_primary_10_1111_cgf_12934
wiley_primary_10_1111_cgf_12934_CGF12934
istex_primary_ark_67375_WNG_6SX01782_C
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Falk M., Weiskopf D.: Output-sensitive 3D line integral convolution. IEEE TVCG 14, 4 (July 2008), 820-834. doi: 10.1109/TVCG.2008.25. 7
Wang L., Kaufman A.: Importance driven automatic color design for direct volume rendering. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (2012), 1305-1314. doi: 10.1111/j.1467-8659.2012.03123.x. 14
Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE TVCG (Proc. of Vis.) 17, 12 (Dec. 2011), 2106-2114. doi: 10.1109/TVCG.2011.261. 17
Sicat R., Krüger J., Möller T., Hadwiger M.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2417-2426. doi: 10.1109/TVCG.2014.2346324. 13
Pinto F.d. M, Freitas C.M., D. S.: Volume visualization and exploration through flexible transfer function design. Computers & Graphics 32, 5 (Oct. 2008), 540-549. doi: 10.1016/j.cag.2008.08.006. 17
Takahashi S., Takeshima Y., Fujishiro I.: Topological volume skeletonization and its application to transfer function design. Graphical Models 66, 1 (2004), 24-49. doi: 10.1016/j.gmod.2003.08.002. 10
CIBC: 2015. ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging Institute (SCI). URL:http://www.imagevis3d.org. 5
Šereda P., Bartroli A.V., Serlie I. W. O., Gerritsen F.A.: Visualization of boundaries in volumetric data sets using lh histograms. IEEE TVCG 12, 2 (Mar. 2006), 208-218. doi: 10.1109/TVCG.2006.39. 9, 14
Weber G.H., Dillard S.E., Carr H., Pascucci V., Hamann B.: Topology-controlled volume rendering. IEEE TVCG 13, 2 (Mar. 2007), 330-341. doi: 10.1109/TVCG.2007.47. 10
IP C.Y., Varshney A., JÁJÁ J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE TVCG (Proc. of Vis.) 18, 12 (2012), 2355-2363. doi: 10.1109/TVCG.2012.231. 8, 14
Lindholm S., Jönsson D., Hansen C., Ynnerman A.: Boundary aware reconstruction of scalar fields. IEEE TVCG (Proc. of Vis.) 20, 12 (2014), 2447-2455. doi: 10.1109/TVCG.2014.2346351. 12, 13
Bramon R., Ruiz M., Bardera A., Boada I., Feixas M., Sbert M.: Information theory-based automatic multimodal transfer function design. IEEE Journal of Biomedical and Health Informatics 17, 4 (July 2013), 870-880. doi: 10.1109/JBHI.2013.2263227. 14
Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution representation and visualization of volume data. IEEE TVCG 3, 4 (Oct. 1997), 352-369. doi: 10.1109/2945.646238. 15
Selver M.A., Fischer F., Kuntalp M., Hillen W.: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images. Computer Methods and Programs in Biomedicine 86, 3 (June 2007), 270-280. doi: 10.1016/j.cmpb.2007.03.008. 17
Cai L.-L., Nguyen B.P., Chui C.-K., Ong S.-H.: Rule-Enhanced Transfer Function Generation for Medical Volume Visualization. Computer Graphics Forum (Proc. of EuroVis), 3 (2015). doi: 10.1111/cgf.12624. 9
Johnson C., Huang J.: Distribution-driven visualization of volume data. IEEE TVCG 15, 5 (Sept. 2009), 734-746. doi: 10.1109/TVCG.2009.25. 9
Bista S., Zhuo J., Gullapalli R.P., Varshney A.: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio-angular fields. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2516-2525. doi: 10.1109/TVCG.2014.2346411. 10
Jönsson D., Falk M., Ynnerman A.: Intuitive Exploration of Volumetric Data Using Dynamic Galleries. IEEE TVCG (Proc. of Vis.) 22, 1 (2015), 896-905. doi: 10.1109/TVCG.2015.2467294. 17
Henderson A., Ahrens J.: The Paraview guide: a parallel visualization application. Kitware, Inc., New York, 2004. URL:http://opac.inria.fr/record=b1117983. 5
Zhou L., Schott M., Hansen C.: Technical section: Transfer function combinations. Computers & Graphics 36, 6 (Oct. 2012), 596-606. doi: 10.1016/j.cag.2012.02.007. 6, 16
Zhou L., Hansen C.: GuideME: Slice-guided semiautomatic multivariate exploration of volumes. Computer Graphics Forum (Proc. of EuroVis), 3 (2014). doi: 10.1111/cgf.12371. 10, 17
Selver M.A., Guzelis C.: Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. IEEE TVCG 15, 3 (May 2009), 395-409. doi: 10.1109/TVCG.2008.198. 6, 14
Csébfalvi B., Mroz L., Hauser H., König A., Gröller E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum (Proc. of Eurographics) 20, 3 (2001), 452-460. doi: 10.1111/1467-8659.00538. 11, 12
Guo H., Xiao H., Yuan X.: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE TVCG 18, 9 (Sept. 2012), 1397-1410. doi: 10.1109/TVCG.2012.80. 16
Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (Feb. 2011), 192-204. doi: 10.1109/TVCG.2010.35. 14, 15
Patel D., Giertsen C., Thurmond J., Gjelberg J., Gröller M. E: The seismic analyzer: Interpreting and illustrating 2d seismic data. IEEE TVCG 14, 6 (2008), 1571-1578. doi: 10.1109/TVCG.2008.170. 12
Selver M.A.: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs. IEEE TVCG 21, 2 (Feb. 2015), 174-187. doi: 10.1109/TVCG.2014.2359462. 10
Bruckner S., Grimm S., Kanitsar A., Gröller M. E: Illustrative context-preserving exploration of volume data. IEEE TVCG 12, 6 (2006), 1559-1569. doi: 10.1109/TVCG.2006.96. 12
Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE TVCG 8, 3 (July 2002), 270-285. doi: 10.1109/TVCG.2002.1021579. 5, 6, 15, 16, 17
Xiang D., Tian J., Yang F., Yang Q., Zhang X., Li Q., Liu X.: Skeleton cuts - an efficient segmentation method for volume rendering. IEEE TVCG 17, 9 (Sept. 2011), 1295-1306. doi: 10.1109/TVCG.2010.239. 10
Lundstrom C., Ljung P., Persson A., Ynnerman A.: uncertainty visualization in medical volume rendering using probabilistic animation. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1648-1655. doi: 10.1109/TVCG.2007.70518. 3, 7, 12
Kroes T., Post F.H., Botha C.P.: Exposure render: An interactive photo-realistic volume rendering framework. PloS one 7, 7 (2012). doi: 10.1371/journal.pone.0038586. 13
Viola I., Kanitsar A., Gröller M. E: Importance-driven feature enhancement in volume visualization. IEEE TVCG 11, 4 (2005), 408-418. doi: 10.1109/TVCG.2005.62. 11
Wang Y., Chen W., Zhang J., Dong T., Shan G., Chi X.: Efficient volume exploration using the Gaussian mixture model. IEEE TVCG 17, 11 (2011), 1560-1573. doi: 10.1109/TVCG.2011.97. 8
Correa C., Ma K.L.: The occlusion spectrum for volume classification and visualization. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1465-1472. doi: 10.1109/TVCG.2009.189. 7, 8
Lindholm S., Ljung P., Lundstrom C., Persson A., Ynnerman A.: Spatial conditioning of transfer functions using local material distributions. IEEE TVCG (Proc. of Vis.) 16, 6 (Nov. 2010), 1301-1310. doi: 10.1109/TVCG.2010.195. 4, 9
Fritz L., Hadwiger M., Geier G., Pittino G., Gröller M. E: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete. IEEE TVCG (Proc. of Vis.) 15, 6 (2009), 1343-1350. doi: 10.1109/TVCG.2009.115. 7, 8, 12
Tzeng F.-Y., Lum E., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE TVCG 11, 3 (May 2005), 273-284. doi: 10.1109/TVCG.2005.38. 14, 15, 17
Haidacher M., Bruckner S., Gröller E.: Volume analysis using multimodal surface similarity. IEEE TVCG (Proc. of Vis.) 17, 12 (2011), 1969-1978. doi: 10.1109/TVCG.2011.258. 7
Muraki S., Nakai T., Kita Y., Tsuda K.: An attempt for coloring multichannel MR imaging data. IEEE TVCG 7, 3 (July 2001), 265-274. doi: 10.1109/2945.942694. 6, 10
Wang Y., Zhang J., Lehmann D.J., Theisel H., Chi X.: Automating transfer function design with valley cell-based clustering of 2D density plots. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (June 2012), 1295-1304. doi: 10.1111/j.1467-8659.2012.03122.x. 14
Daniels Jr J., Anderson E.W., Nonato L.G., Silva C.T.: Interactive vector field feature identification. IEEE TVCG (Proc. of Vis.) 16, 6 (2010), 1560-8. doi: 10.1109/TVCG.2010.170. 7
Liu X., Shen H.W.: Association analysis for visual exploration of multivariate scientific data sets. IEEE TVCG 22, 1 (Jan. 2016), 955-964. doi: 10.1109/TVCG.2015.2467431. 16
Pfister H., Lorensen B., Bajaj C., Kindlmann g., Schroeder W., Machiraju R., Lee J.: The transfer function bake-off. Computer Graphics and Applications 21, 3 (May 2001), 16-22. doi: 10.1109/38.920623. 1, 4
Kindlmann G., Weinstein D., Hart D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE TVCG 6, 2 (Apr. 2000), 124-138. doi: 10.1109/2945.856994. 10
Max N.: Optical models for direct volume rendering. IEEE TVCG 1, 2 (June 1995), 99-108. doi: 10.1109/2945.468400. 2
Ebert D.S., Morris C.J., Rheingans P., Yoo T.S.: Designing effective transfer functions for volume rendering from photographic volumes. IEEE TVCG 8, 2 (Apr. 2002), 183-197. doi: 10.1109/2945.998670. 6
Rautek P., Bruckner S., Gröller E.: Semantic layers for illustrative volume rendering. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1336-1343. doi: 10.1109/TVCG.2007.70591. 11, 18
Fujishiro I., Takeshima Y., Azuma T., Takahashi S.: Volume data mining using 3D field topology analysis. Computer Graphics and Applications 20, 5 (Sept. 2000), 46-51. doi: 10.1109/38.865879. 10, 14
Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K.P., Ebert D.S.: Abstracting attribute space for transfer function exploration and design. IEEE TVCG 19, 1 (Jan. 2013), 94-107. doi: 10.1109/TVCG.2012.105. 15
Pfaffelmoser T., Reitinger M., Westermann R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Computer Graphics Forum (Proc. of EuroVis) 30, 3 (2011), 951-960. doi: 10.1111/j.1467-8659.2011.01944.x. 7, 14
Hadwiger M., Sigg C., Scharsach H., Bühler K., Gross M.: Real
2004; 66
2010; 16
2000; 6
2012; 18
2008; 32
2011; 17
1997; 3
2005; 24
2014; 20
2013; 19
2013; 17
2014; 3
2000
2008; 27
1984
2001; 17
2009; 15
2007; 26
2010; 9
1988
2015; 3
2012
2006; 12
2011
2010
2002; 8
2000; 20
1998
2008; 14
2009
2008
1997
2011; 30
2007
1996
1995
2006
2005
2004
2003
2002
2012; 36
1995; 1
2007; 13
2012; 31
2001; 20
2009; 28
1999
2001; 21
2001; 7
2015; 22
1988; 8
2015; 21
2015
2014
2013
2007; 86
2012; 7
2005; 11
2014; 33
2016; 22
e_1_2_12_2_2
e_1_2_12_111_2
e_1_2_12_134_2
e_1_2_12_115_2
e_1_2_12_130_2
e_1_2_12_108_2
e_1_2_12_20_2
e_1_2_12_62_2
e_1_2_12_85_2
e_1_2_12_127_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_66_2
e_1_2_12_89_2
König A. (e_1_2_12_59_2) 2001; 17
e_1_2_12_81_2
e_1_2_12_100_2
e_1_2_12_28_2
e_1_2_12_104_2
e_1_2_12_142_2
e_1_2_12_123_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_73_2
e_1_2_12_96_2
e_1_2_12_116_2
e_1_2_12_139_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_77_2
e_1_2_12_12_2
e_1_2_12_6_2
Castro S. (e_1_2_12_18_2); 1998
e_1_2_12_50_2
e_1_2_12_92_2
e_1_2_12_3_2
e_1_2_12_37_2
e_1_2_12_110_2
e_1_2_12_137_2
e_1_2_12_114_2
e_1_2_12_133_2
e_1_2_12_107_2
e_1_2_12_40_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_63_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
CIBC (e_1_2_12_17_2) 2015
e_1_2_12_82_2
e_1_2_12_122_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_103_2
e_1_2_12_126_2
e_1_2_12_141_2
Henderson A. (e_1_2_12_43_2) 2004
e_1_2_12_119_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_138_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_78_2
e_1_2_12_13_2
e_1_2_12_7_2
e_1_2_12_93_2
e_1_2_12_70_2
e_1_2_12_4_2
e_1_2_12_19_2
Childs H. (e_1_2_12_16_2) 2012
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_136_2
e_1_2_12_113_2
e_1_2_12_132_2
e_1_2_12_41_2
e_1_2_12_64_2
e_1_2_12_87_2
e_1_2_12_129_2
e_1_2_12_106_2
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_68_2
e_1_2_12_60_2
e_1_2_12_83_2
e_1_2_12_140_2
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_121_2
e_1_2_12_125_2
e_1_2_12_102_2
e_1_2_12_52_2
e_1_2_12_75_2
e_1_2_12_98_2
e_1_2_12_118_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_14_2
e_1_2_12_90_2
e_1_2_12_10_2
e_1_2_12_71_2
e_1_2_12_94_2
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_135_2
e_1_2_12_39_2
e_1_2_12_131_2
e_1_2_12_112_2
e_1_2_12_65_2
e_1_2_12_105_2
e_1_2_12_128_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_23_2
e_1_2_12_69_2
e_1_2_12_109_2
e_1_2_12_46_2
e_1_2_12_88_2
e_1_2_12_61_2
e_1_2_12_80_2
e_1_2_12_27_2
e_1_2_12_120_2
e_1_2_12_101_2
e_1_2_12_124_2
e_1_2_12_143_2
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_117_2
e_1_2_12_53_2
e_1_2_12_95_2
e_1_2_12_34_2
e_1_2_12_57_2
e_1_2_12_99_2
e_1_2_12_11_2
e_1_2_12_72_2
e_1_2_12_9_2
e_1_2_12_91_2
References_xml – reference: Max N.: Optical models for direct volume rendering. IEEE TVCG 1, 2 (June 1995), 99-108. doi: 10.1109/2945.468400. 2
– reference: Sicat R., Krüger J., Möller T., Hadwiger M.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2417-2426. doi: 10.1109/TVCG.2014.2346324. 13
– reference: Fritz L., Hadwiger M., Geier G., Pittino G., Gröller M. E: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete. IEEE TVCG (Proc. of Vis.) 15, 6 (2009), 1343-1350. doi: 10.1109/TVCG.2009.115. 7, 8, 12
– reference: Johnson C., Huang J.: Distribution-driven visualization of volume data. IEEE TVCG 15, 5 (Sept. 2009), 734-746. doi: 10.1109/TVCG.2009.25. 9
– reference: Hadwiger M., Sigg C., Scharsach H., Bühler K., Gross M.: Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum (Proc. of Eurographics) 24, 3 (2005), 303-312. 7
– reference: Guo H., Xiao H., Yuan X.: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE TVCG 18, 9 (Sept. 2012), 1397-1410. doi: 10.1109/TVCG.2012.80. 16
– reference: König A., Gröller E.: Mastering transfer function specification by using VolumePro technology. In Spring Conference on Computer Graphics (2001), vol. 17, pp. 279-286. URL:https://www.cg.tuwien.ac.at/research/publications/2000/Koenig-2000-ATFS/TR-186-2-00-07Paper.pdf, doi: 10.1.1.43.5954. 15
– reference: Wang L., Zhao X., Kaufman A.: Modified dendrogram of attribute space for multidimensional transfer function design. IEEE TVCG 18, 1 (Jan. 2012), 121-131. doi: 10.1109/TVCG.2011.23. 8
– reference: IP C.Y., Varshney A., JÁJÁ J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE TVCG (Proc. of Vis.) 18, 12 (2012), 2355-2363. doi: 10.1109/TVCG.2012.231. 8, 14
– reference: Rautek P., Bruckner S., Gröller M. E: Interaction-dependent semantics for illustrative volume rendering. Computer Graphics Forum (Proc. of EuroVis) 27, 3 (May 2008), 847-854. doi: 10.1111/j.1467-8659.2008.01216.x. 11, 18
– reference: Maciejewski R., Woo I., Chen W., Ebert D.S.: Structuring feature space: A non-parametric method for volumetric transfer function generation. IEEE TVCG 15, 6 (2009), 1473-1480. doi: 10.1109/TVCG.2009.185. 8, 14
– reference: Serlie I., Truyen R., Florie J., Post F., Vliet L., Vos F.: MICCAI. Springer, 2003, ch. Computed Cleansing for Virtual Colonoscopy Using a Three-Material Transition Model, pp. 175-183. doi: 10.1007/978-3-540-39903-2_22. 9
– reference: Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE TVCG (Proc. of Vis.) 17, 12 (Dec. 2011), 2106-2114. doi: 10.1109/TVCG.2011.261. 17
– reference: Wang Y., Zhang J., Lehmann D.J., Theisel H., Chi X.: Automating transfer function design with valley cell-based clustering of 2D density plots. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (June 2012), 1295-1304. doi: 10.1111/j.1467-8659.2012.03122.x. 14
– reference: Engel K., Hadwiger M., Kniss J., Rezk-Salama C., Weiskopf D.: Real-time volume graphics. CRC Press, 2006. 2, 3
– reference: Haidacher M., Bruckner S., Gröller E.: Volume analysis using multimodal surface similarity. IEEE TVCG (Proc. of Vis.) 17, 12 (2011), 1969-1978. doi: 10.1109/TVCG.2011.258. 7
– reference: Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE TVCG 8, 3 (July 2002), 270-285. doi: 10.1109/TVCG.2002.1021579. 5, 6, 15, 16, 17
– reference: Wang Y., Chen W., Zhang J., Dong T., Shan G., Chi X.: Efficient volume exploration using the Gaussian mixture model. IEEE TVCG 17, 11 (2011), 1560-1573. doi: 10.1109/TVCG.2011.97. 8
– reference: Bruckner S., Gröller M. E: Instant volume visualization using maximum intensity difference accumulation. Computer Graphics Forum (Proc. of EuroVis) 28, 3 (2009), 775-782. doi: 10.1111/j.1467-8659.2009.01474.x. 11
– reference: Pfaffelmoser T., Reitinger M., Westermann R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Computer Graphics Forum (Proc. of EuroVis) 30, 3 (2011), 951-960. doi: 10.1111/j.1467-8659.2011.01944.x. 7, 14
– reference: Levoy M.: Display of surfaces from volume data. Computer Graphics and Applications 8, 3 (May 1988), 29-37. doi: 10.1109/38.511. 1, 3, 5
– reference: Selver M.A., Fischer F., Kuntalp M., Hillen W.: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images. Computer Methods and Programs in Biomedicine 86, 3 (June 2007), 270-280. doi: 10.1016/j.cmpb.2007.03.008. 17
– reference: Csébfalvi B., Mroz L., Hauser H., König A., Gröller E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum (Proc. of Eurographics) 20, 3 (2001), 452-460. doi: 10.1111/1467-8659.00538. 11, 12
– reference: Fujishiro I., Takeshima Y., Azuma T., Takahashi S.: Volume data mining using 3D field topology analysis. Computer Graphics and Applications 20, 5 (Sept. 2000), 46-51. doi: 10.1109/38.865879. 10, 14
– reference: Lindholm S., Jönsson D., Hansen C., Ynnerman A.: Boundary aware reconstruction of scalar fields. IEEE TVCG (Proc. of Vis.) 20, 12 (2014), 2447-2455. doi: 10.1109/TVCG.2014.2346351. 12, 13
– reference: Yuan X., Nguyen M.X., Chen B., Porter D.H.: HDR VolVis: high dynamic range volume visualization. IEEE TVCG 12, 4 (July 2006), 433-445. doi: 10.1109/TVCG.2006.72. 13, 15
– reference: Zhou J., Takatsuka M.: Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1481-1488. doi: 10.1109/TVCG.2009.120. 10
– reference: Šereda P., Bartroli A.V., Serlie I. W. O., Gerritsen F.A.: Visualization of boundaries in volumetric data sets using lh histograms. IEEE TVCG 12, 2 (Mar. 2006), 208-218. doi: 10.1109/TVCG.2006.39. 9, 14
– reference: Wang L., Kaufman A.: Importance driven automatic color design for direct volume rendering. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (2012), 1305-1314. doi: 10.1111/j.1467-8659.2012.03123.x. 14
– reference: Viola I., Kanitsar A., Gröller M. E: Importance-driven feature enhancement in volume visualization. IEEE TVCG 11, 4 (2005), 408-418. doi: 10.1109/TVCG.2005.62. 11
– reference: Selver M.A., Guzelis C.: Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. IEEE TVCG 15, 3 (May 2009), 395-409. doi: 10.1109/TVCG.2008.198. 6, 14
– reference: Takahashi S., Takeshima Y., Fujishiro I.: Topological volume skeletonization and its application to transfer function design. Graphical Models 66, 1 (2004), 24-49. doi: 10.1016/j.gmod.2003.08.002. 10
– reference: Castro S., König A., Löffelmann H., Gröller E.: Transfer function specification for the visualization of medical data, 1998. Technical Report: TR-186-2-98-12. URL:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7705.5, 13, 14, 15, 17
– reference: Rezk-Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE TVCG (Proc. of Vis.) 12, 5 (Sept. 2006), 1021-1028. doi: 10.1109/TVCG.2006.148. 13, 16, 17
– reference: Xiang D., Tian J., Yang F., Yang Q., Zhang X., Li Q., Liu X.: Skeleton cuts - an efficient segmentation method for volume rendering. IEEE TVCG 17, 9 (Sept. 2011), 1295-1306. doi: 10.1109/TVCG.2010.239. 10
– reference: Correa C., Ma K.L.: The occlusion spectrum for volume classification and visualization. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1465-1472. doi: 10.1109/TVCG.2009.189. 7, 8
– reference: Daniels Jr J., Anderson E.W., Nonato L.G., Silva C.T.: Interactive vector field feature identification. IEEE TVCG (Proc. of Vis.) 16, 6 (2010), 1560-8. doi: 10.1109/TVCG.2010.170. 7
– reference: Patel D., Giertsen C., Thurmond J., Gjelberg J., Gröller M. E: The seismic analyzer: Interpreting and illustrating 2d seismic data. IEEE TVCG 14, 6 (2008), 1571-1578. doi: 10.1109/TVCG.2008.170. 12
– reference: Zhou L., Schott M., Hansen C.: Technical section: Transfer function combinations. Computers & Graphics 36, 6 (Oct. 2012), 596-606. doi: 10.1016/j.cag.2012.02.007. 6, 16
– reference: Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (Feb. 2011), 192-204. doi: 10.1109/TVCG.2010.35. 14, 15
– reference: Kim H.S., Schulze J.P., Cone A.C., Sosinsky G.E., Martone M.E.: Dimensionality reduction on multi-dimensional transfer functions for multi-channel volume data sets. Information Visualization 9, 3 (June 2010), 167-180. doi: 10.1057/ivs.2010.6. 10
– reference: Muraki S., Nakai T., Kita Y., Tsuda K.: An attempt for coloring multichannel MR imaging data. IEEE TVCG 7, 3 (July 2001), 265-274. doi: 10.1109/2945.942694. 6, 10
– reference: Ebert D.S., Morris C.J., Rheingans P., Yoo T.S.: Designing effective transfer functions for volume rendering from photographic volumes. IEEE TVCG 8, 2 (Apr. 2002), 183-197. doi: 10.1109/2945.998670. 6
– reference: Wu Y., Qu H.: Interactive transfer function design based on editing direct volume rendered images. IEEE TVCG 13, 5 (Sept. 2007), 1027-1040. doi: 10.1109/TVCG.2007.1051. 17
– reference: Jönsson D., Falk M., Ynnerman A.: Intuitive Exploration of Volumetric Data Using Dynamic Galleries. IEEE TVCG (Proc. of Vis.) 22, 1 (2015), 896-905. doi: 10.1109/TVCG.2015.2467294. 17
– reference: Lindholm S., Ljung P., Lundstrom C., Persson A., Ynnerman A.: Spatial conditioning of transfer functions using local material distributions. IEEE TVCG (Proc. of Vis.) 16, 6 (Nov. 2010), 1301-1310. doi: 10.1109/TVCG.2010.195. 4, 9
– reference: Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K.P., Ebert D.S.: Abstracting attribute space for transfer function exploration and design. IEEE TVCG 19, 1 (Jan. 2013), 94-107. doi: 10.1109/TVCG.2012.105. 15
– reference: Caban J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE TVCG (Proc. of Vis.) 14, 6 (Nov. 2008), 1364-1371. doi: 10.1109/TVCG.2008.169. 8
– reference: Kindlmann G., Weinstein D., Hart D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE TVCG 6, 2 (Apr. 2000), 124-138. doi: 10.1109/2945.856994. 10
– reference: Zhou L., Hansen C.: GuideME: Slice-guided semiautomatic multivariate exploration of volumes. Computer Graphics Forum (Proc. of EuroVis), 3 (2014). doi: 10.1111/cgf.12371. 10, 17
– reference: Weber G.H., Dillard S.E., Carr H., Pascucci V., Hamann B.: Topology-controlled volume rendering. IEEE TVCG 13, 2 (Mar. 2007), 330-341. doi: 10.1109/TVCG.2007.47. 10
– reference: Liu X., Shen H.W.: Association analysis for visual exploration of multivariate scientific data sets. IEEE TVCG 22, 1 (Jan. 2016), 955-964. doi: 10.1109/TVCG.2015.2467431. 16
– reference: CIBC: 2015. ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging Institute (SCI). URL:http://www.imagevis3d.org. 5
– reference: Bruckner S., Gröller M. E: Style transfer functions for illustrative volume rendering. Computer Graphics Forum (Proc. of Eurographics) 26, 3 (Sept. 2007), 715-724. doi: 10.1111/j.1467-8659.2007.01095.x. 5, 11
– reference: Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution representation and visualization of volume data. IEEE TVCG 3, 4 (Oct. 1997), 352-369. doi: 10.1109/2945.646238. 15
– reference: Krüger J., Schneider J., Westermann R.: ClearView: An interactive context preserving hotspot visualization technique. IEEE TVCG (Proc. of Vis.) 12, 5 (Sept. 2006), 941-948. doi: 10.1109/TVCG.2006.124. 7, 12
– reference: Bramon R., Ruiz M., Bardera A., Boada I., Feixas M., Sbert M.: Information theory-based automatic multimodal transfer function design. IEEE Journal of Biomedical and Health Informatics 17, 4 (July 2013), 870-880. doi: 10.1109/JBHI.2013.2263227. 14
– reference: Henderson A., Ahrens J.: The Paraview guide: a parallel visualization application. Kitware, Inc., New York, 2004. URL:http://opac.inria.fr/record=b1117983. 5
– reference: Selver M.A.: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs. IEEE TVCG 21, 2 (Feb. 2015), 174-187. doi: 10.1109/TVCG.2014.2359462. 10
– reference: Cai L.-L., Nguyen B.P., Chui C.-K., Ong S.-H.: Rule-Enhanced Transfer Function Generation for Medical Volume Visualization. Computer Graphics Forum (Proc. of EuroVis), 3 (2015). doi: 10.1111/cgf.12624. 9
– reference: Falk M., Weiskopf D.: Output-sensitive 3D line integral convolution. IEEE TVCG 14, 4 (July 2008), 820-834. doi: 10.1109/TVCG.2008.25. 7
– reference: Pfister H., Lorensen B., Bajaj C., Kindlmann g., Schroeder W., Machiraju R., Lee J.: The transfer function bake-off. Computer Graphics and Applications 21, 3 (May 2001), 16-22. doi: 10.1109/38.920623. 1, 4
– reference: Bruckner S., Grimm S., Kanitsar A., Gröller M. E: Illustrative context-preserving exploration of volume data. IEEE TVCG 12, 6 (2006), 1559-1569. doi: 10.1109/TVCG.2006.96. 12
– reference: Rautek P., Bruckner S., Gröller E.: Semantic layers for illustrative volume rendering. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1336-1343. doi: 10.1109/TVCG.2007.70591. 11, 18
– reference: Amirkhanov A., Fröhler B., Kastner J., Gröller E., Heinzl C.: InSpectr: Multi-modal exploration, visualization, and analysis of spectral data. Computer Graphics Forum (Proc. of EuroVis) 33, 3 (June 2014), 91-100. doi: 10.1111/cgf.12365. 6
– reference: Bista S., Zhuo J., Gullapalli R.P., Varshney A.: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio-angular fields. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2516-2525. doi: 10.1109/TVCG.2014.2346411. 10
– reference: Kroes T., Post F.H., Botha C.P.: Exposure render: An interactive photo-realistic volume rendering framework. PloS one 7, 7 (2012). doi: 10.1371/journal.pone.0038586. 13
– reference: Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE TVCG (Proc. of Vis.) 14, 6 (Nov. 2008), 1380-1387. doi: 10.1109/TVCG.2008.162. 7
– reference: Lundstrom C., Ljung P., Persson A., Ynnerman A.: uncertainty visualization in medical volume rendering using probabilistic animation. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1648-1655. doi: 10.1109/TVCG.2007.70518. 3, 7, 12
– reference: Lundström C., Ljung P., Ynnerman A.: Local histograms for design of transfer functions in direct volume rendering. IEEE TVCG 12, 6(2006), 1570-1579. doi: 10.1109/TVCG.2006.100. 5, 8,9
– reference: Pinto F.d. M, Freitas C.M., D. S.: Volume visualization and exploration through flexible transfer function design. Computers & Graphics 32, 5 (Oct. 2008), 540-549. doi: 10.1016/j.cag.2008.08.006. 17
– reference: Tzeng F.-Y., Lum E., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE TVCG 11, 3 (May 2005), 273-284. doi: 10.1109/TVCG.2005.38. 14, 15, 17
– reference: Abbasloo A., Wiens V., Hermann M., Schultz T.: Visualizing tensor normal distributions at multiple levels of detail. IEEE TVCG 22, 1 (Jan. 2016), 975-984. doi: 10.1109/TVCG.2015.2467031. 10
– volume: 17
  start-page: 1969
  issue: 12
  year: 2011
  end-page: 1978
  article-title: Volume analysis using multimodal surface similarity
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 8
  start-page: 183
  issue: 2
  year: 2002
  end-page: 197
  article-title: Designing effective transfer functions for volume rendering from photographic volumes
  publication-title: IEEE TVCG
– start-page: 263
  year: 2005
  end-page: 270
– start-page: 655
  year: 2005
  end-page: 662
– year: 2005
– volume: 31
  start-page: 1295
  issue: 3
  year: 2012
  end-page: 1304
  article-title: Automating transfer function design with valley cell‐based clustering of 2D density plots
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– start-page: 2710
  year: 2007
  end-page: 2715
– volume: 16
  start-page: 1301
  issue: 6
  year: 2010
  end-page: 1310
  article-title: Spatial conditioning of transfer functions using local material distributions
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 165
  year: 1984
  end-page: 174
– start-page: 19
  year: 2011
  end-page: 26
– start-page: 57
  year: 2004
  end-page: 63
– volume: 15
  start-page: 734
  issue: 5
  year: 2009
  end-page: 746
  article-title: Distribution‐driven visualization of volume data
  publication-title: IEEE TVCG
– volume: 17
  start-page: 2106
  issue: 12
  year: 2011
  end-page: 2114
  article-title: WYSIWYG (what you see is what you get) volume visualization
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 115‐ff
  year: 2002
– start-page: 327
  year: 2005
  end-page: 334
– volume: 14
  start-page: 1364
  issue: 6
  year: 2008
  end-page: 1371
  article-title: Texture‐based transfer functions for direct volume rendering
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 15
  start-page: 1465
  issue: 6
  year: 2009
  end-page: 1472
  article-title: The occlusion spectrum for volume classification and visualization
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 265
  year: 2005
  end-page: 272
– volume: 30
  start-page: 951
  issue: 3
  year: 2011
  end-page: 960
  article-title: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– volume: 22
  start-page: 896
  issue: 1
  year: 2015
  end-page: 905
  article-title: Intuitive Exploration of Volumetric Data Using Dynamic Galleries
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 3
  start-page: 352
  issue: 4
  year: 1997
  end-page: 369
  article-title: Multiresolution representation and visualization of volume data
  publication-title: IEEE TVCG
– volume: 18
  start-page: 2355
  issue: 12
  year: 2012
  end-page: 2363
  article-title: Hierarchical exploration of volumes using multilevel segmentation of the intensity‐gradient histograms
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 11
  start-page: 273
  issue: 3
  year: 2005
  end-page: 284
  article-title: An intelligent system approach to higher‐dimensional classification of volume data
  publication-title: IEEE TVCG
– volume: 12
  start-page: 941
  issue: 5
  year: 2006
  end-page: 948
  article-title: ClearView: An interactive context preserving hotspot visualization technique
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 319
  year: 1998
  end-page: 326
– volume: 18
  start-page: 121
  issue: 1
  year: 2012
  end-page: 131
  article-title: Modified dendrogram of attribute space for multidimensional transfer function design
  publication-title: IEEE TVCG
– volume: 11
  start-page: 408
  issue: 4
  year: 2005
  end-page: 418
  article-title: Importance‐driven feature enhancement in volume visualization
  publication-title: IEEE TVCG
– volume: 12
  start-page: 1559
  issue: 6
  year: 2006
  end-page: 1569
  article-title: Illustrative context‐preserving exploration of volume data
  publication-title: IEEE TVCG
– volume: 28
  start-page: 775
  issue: 3
  year: 2009
  end-page: 782
  article-title: Instant volume visualization using maximum intensity difference accumulation
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– volume: 20
  start-page: 2417
  issue: 12
  year: 2014
  end-page: 2426
  article-title: Sparse PDF volumes for consistent multi‐resolution volume rendering
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 27
  start-page: 847
  issue: 3
  year: 2008
  end-page: 854
  article-title: Interaction‐dependent semantics for illustrative volume rendering
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– start-page: 357
  year: 2000
  end-page: 364
– volume: 14
  start-page: 820
  issue: 4
  year: 2008
  end-page: 834
  article-title: Output‐sensitive 3D line integral convolution
  publication-title: IEEE TVCG
– start-page: 81
  year: 2008
  end-page: 88
– start-page: 185
  year: 2009
  end-page: 190
– volume: 20
  start-page: 452
  issue: 3
  year: 2001
  end-page: 460
  article-title: Fast visualization of object contours by non‐photorealistic volume rendering
  publication-title: Computer Graphics Forum (Proc. of Eurographics)
– start-page: 301
  year: 2003
  end-page: 308
– start-page: 287
  year: 2005
  end-page: 294
– year: 2007
– start-page: 139
  year: 2004
  end-page: 146
– volume: 21
  start-page: 16
  issue: 3
  year: 2001
  end-page: 22
  article-title: The transfer function bake‐off
  publication-title: Computer Graphics and Applications
– volume: 17
  start-page: 1560
  issue: 11
  year: 2011
  end-page: 1573
  article-title: Efficient volume exploration using the Gaussian mixture model
  publication-title: IEEE TVCG
– volume: 18
  start-page: 1397
  issue: 9
  year: 2012
  end-page: 1410
  article-title: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates
  publication-title: IEEE TVCG
– start-page: 79
  year: 1998
  end-page: 86
– start-page: 281
  year: 2006
  end-page: 288
– volume: 1998
  publication-title: Transfer function specification for the visualization of medical data
– start-page: 366
  year: 2002
  end-page: 374
– start-page: 227‐ff
  year: 1996
– start-page: 15
  year: 1998
  end-page: 22
– volume: 12
  start-page: 1021
  issue: 5
  year: 2006
  end-page: 1028
  article-title: High‐level user interfaces for transfer function design with semantics
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 357
  year: 2012
  end-page: 372
– start-page: 857
  year: 2009
  end-page: 860
– start-page: 41
  year: 2008
  end-page: 48
– volume: 22
  start-page: 955
  issue: 1
  year: 2016
  end-page: 964
  article-title: Association analysis for visual exploration of multivariate scientific data sets
  publication-title: IEEE TVCG
– start-page: 389
  year: 1997
  end-page: 400
– start-page: 65
  year: 1988
  end-page: 74
– start-page: 23
  year: 2011
  end-page: 30
– volume: 22
  start-page: 975
  issue: 1
  year: 2016
  end-page: 984
  article-title: Visualizing tensor normal distributions at multiple levels of detail
  publication-title: IEEE TVCG
– volume: 13
  start-page: 1648
  issue: 6
  year: 2007
  end-page: 1655
  article-title: uncertainty visualization in medical volume rendering using probabilistic animation
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 7
  start-page: 7
  year: 2012
  article-title: Exposure render: An interactive photo‐realistic volume rendering framework
  publication-title: PloS one
– start-page: 513
  year: 2003
  end-page: 520
– volume: 9
  start-page: 167
  issue: 3
  year: 2010
  end-page: 180
  article-title: Dimensionality reduction on multi‐dimensional transfer functions for multi‐channel volume data sets
  publication-title: Information Visualization
– volume: 16
  start-page: 1560
  issue: 6
  year: 2010
  end-page: 8
  article-title: Interactive vector field feature identification
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 17
  year: 2010
  end-page: 24
– start-page: 69
  year: 2010
  end-page: 76
– year: 2013
– start-page: 687
  year: 2005
  end-page: 694
– volume: 32
  start-page: 540
  issue: 5
  year: 2008
  end-page: 549
  article-title: Volume visualization and exploration through flexible transfer function design
  publication-title: Computers & Graphics
– volume: 12
  start-page: 208
  issue: 2
  year: 2006
  end-page: 218
  article-title: Visualization of boundaries in volumetric data sets using lh histograms
  publication-title: IEEE TVCG
– volume: 15
  start-page: 395
  issue: 3
  year: 2009
  end-page: 409
  article-title: Semiautomatic transfer function initialization for abdominal visualization using self‐generating hierarchical radial basis function networks
  publication-title: IEEE TVCG
– volume: 13
  start-page: 1027
  issue: 5
  year: 2007
  end-page: 1040
  article-title: Interactive transfer function design based on editing direct volume rendered images
  publication-title: IEEE TVCG
– volume: 13
  start-page: 1336
  issue: 6
  year: 2007
  end-page: 1343
  article-title: Semantic layers for illustrative volume rendering
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 15
  start-page: 1343
  issue: 6
  year: 2009
  end-page: 1350
  article-title: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 271
  year: 2005
  end-page: 278
– volume: 13
  start-page: 330
  issue: 2
  year: 2007
  end-page: 341
  article-title: Topology‐controlled volume rendering
  publication-title: IEEE TVCG
– start-page: 913
  year: 2007
  end-page: 918
– volume: 17
  start-page: 1295
  issue: 9
  year: 2011
  end-page: 1306
  article-title: Skeleton cuts — an efficient segmentation method for volume rendering
  publication-title: IEEE TVCG
– volume: 36
  start-page: 596
  issue: 6
  year: 2012
  end-page: 606
  article-title: Technical section: Transfer function combinations
  publication-title: Computers & Graphics
– start-page: 177
  year: 2004
  end-page: 185
– start-page: 9
  year: 2010
  end-page: 16
– volume: 26
  start-page: 715
  issue: 3
  year: 2007
  end-page: 724
  article-title: Style transfer functions for illustrative volume rendering
  publication-title: Computer Graphics Forum (Proc. of Eurographics)
– start-page: 262
  year: 2014
  end-page: 266
– volume: 6
  start-page: 124
  issue: 2
  year: 2000
  end-page: 138
  article-title: Strategies for direct volume rendering of diffusion tensor fields
  publication-title: IEEE TVCG
– start-page: 175
  year: 2003
  end-page: 183
– start-page: 115
  year: 2007
  end-page: 122
– volume: 33
  start-page: 91
  issue: 3
  year: 2014
  end-page: 100
  article-title: InSpectr: Multi‐modal exploration, visualization, and analysis of spectral data
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– volume: 20
  start-page: 46
  issue: 5
  year: 2000
  end-page: 51
  article-title: Volume data mining using 3D field topology analysis
  publication-title: Computer Graphics and Applications
– start-page: 209
  year: 2005
  end-page: 216
– start-page: 58
  year: 2000
  end-page: 65
– volume: 15
  start-page: 1473
  issue: 6
  year: 2009
  end-page: 1480
  article-title: Structuring feature space: A non‐parametric method for volumetric transfer function generation
  publication-title: IEEE TVCG
– volume: 86
  start-page: 270
  issue: 3
  year: 2007
  end-page: 280
  article-title: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 8
  start-page: 270
  issue: 3
  year: 2002
  end-page: 285
  article-title: Multidimensional transfer functions for interactive volume rendering
  publication-title: IEEE TVCG
– volume: 3
  year: 2014
  article-title: GuideME: Slice‐guided semiautomatic multivariate exploration of volumes
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– start-page: 118
  year: 1995
  end-page: 125
– year: 2004
– volume: 19
  start-page: 94
  issue: 1
  year: 2013
  end-page: 107
  article-title: Abstracting attribute space for transfer function exploration and design
  publication-title: IEEE TVCG
– start-page: 35
  year: 2014
  end-page: 42
– volume: 17
  start-page: 279
  year: 2001
  end-page: 286
  article-title: Mastering transfer function specification by using VolumePro technology
  publication-title: Spring Conference on Computer Graphics
– volume: 17
  start-page: 192
  issue: 2
  year: 2011
  end-page: 204
  article-title: Visibility histograms and visibility‐driven transfer functions
  publication-title: IEEE TVCG
– volume: 17
  start-page: 870
  issue: 4
  year: 2013
  end-page: 880
  article-title: Information theory‐based automatic multimodal transfer function design
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2015
– volume: 1
  start-page: 99
  issue: 2
  year: 1995
  end-page: 108
  article-title: Optical models for direct volume rendering
  publication-title: IEEE TVCG
– volume: 14
  start-page: 1571
  issue: 6
  year: 2008
  end-page: 1578
  article-title: The seismic analyzer: Interpreting and illustrating 2d seismic data
  publication-title: IEEE TVCG
– start-page: 73
  year: 2013
  end-page: 80
– volume: 21
  start-page: 174
  issue: 2
  year: 2015
  end-page: 187
  article-title: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs
  publication-title: IEEE TVCG
– volume: 24
  start-page: 303
  issue: 3
  year: 2005
  end-page: 312
  article-title: Real‐time ray‐casting and advanced shading of discrete isosurfaces
  publication-title: Computer Graphics Forum (Proc. of Eurographics)
– start-page: 661
  year: 2006
  end-page: 670
– start-page: 227
  year: 2006
  end-page: 234
– start-page: 177
  year: 2009
  end-page: 184
– start-page: 101
  year: 2008
  end-page: 108
– volume: 3
  year: 2015
  article-title: Rule‐Enhanced Transfer Function Generation for Medical Volume Visualization
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– volume: 12
  start-page: 1570
  issue: 6
  year: 2006
  end-page: 1579
  article-title: Local histograms for design of transfer functions in direct volume rendering
  publication-title: IEEE TVCG
– start-page: 671
  year: 2005
  end-page: 678
– start-page: 69
  year: 2005
  end-page: 76
– start-page: 323
  year: 2008
  end-page: 332
– start-page: 69
  year: 2000
  end-page: 76
– start-page: 13
  year: 2007
  end-page: 22
– volume: 15
  start-page: 1481
  issue: 6
  year: 2009
  end-page: 1488
  article-title: Automatic transfer function generation using contour tree controlled residue flow model and color harmonics
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 467
  year: 1999
  end-page: 563
– start-page: 17
  year: 2004
  end-page: 24
– volume: 7
  start-page: 265
  issue: 3
  year: 2001
  end-page: 274
  article-title: An attempt for coloring multichannel MR imaging data
  publication-title: IEEE TVCG
– volume: 20
  start-page: 2447
  issue: 12
  year: 2014
  end-page: 2455
  article-title: Boundary aware reconstruction of scalar fields
  publication-title: IEEE TVCG (Proc. of Vis.)
– year: 2012
– start-page: 183
  year: 1999
  end-page: 524
– start-page: 66‐
  year: 2003
– volume: 66
  start-page: 24
  issue: 1
  year: 2004
  end-page: 49
  article-title: Topological volume skeletonization and its application to transfer function design
  publication-title: Graphical Models
– volume: 20
  start-page: 2516
  issue: 12
  year: 2014
  end-page: 2525
  article-title: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio‐angular fields
  publication-title: IEEE TVCG (Proc. of Vis.)
– volume: 12
  start-page: 433
  issue: 4
  year: 2006
  end-page: 445
  article-title: HDR VolVis: high dynamic range volume visualization
  publication-title: IEEE TVCG
– start-page: 259
  year: 2006
  end-page: 274
– year: 2006
– start-page: 77
  year: 2010
  end-page: 83
– volume: 14
  start-page: 1380
  issue: 6
  year: 2008
  end-page: 1387
  article-title: Size‐based transfer functions: A new volume exploration technique
  publication-title: IEEE TVCG (Proc. of Vis.)
– start-page: 201
  year: 2009
  end-page: 208
– volume: 8
  start-page: 29
  issue: 3
  year: 1988
  end-page: 37
  article-title: Display of surfaces from volume data
  publication-title: Computer Graphics and Applications
– start-page: 65
  year: 2013
  end-page: 72
– start-page: 131
  year: 2007
  end-page: 138
– volume: 31
  start-page: 1305
  issue: 3
  year: 2012
  end-page: 1314
  article-title: Importance driven automatic color design for direct volume rendering
  publication-title: Computer Graphics Forum (Proc. of EuroVis)
– ident: e_1_2_12_6_2
  doi: 10.2312/conf/EG2012/stars/075-094
– ident: e_1_2_12_7_2
  doi: 10.1109/VISUAL.2005.1532856
– ident: e_1_2_12_33_2
  doi: 10.1109/VISUAL.1999.809932
– ident: e_1_2_12_119_2
  doi: 10.1109/TVCG.2005.38
– ident: e_1_2_12_56_2
– ident: e_1_2_12_114_2
  doi: 10.1111/cgf.12623
– ident: e_1_2_12_140_2
  doi: 10.1111/cgf.12371
– ident: e_1_2_12_122_2
– ident: e_1_2_12_108_2
  doi: 10.1109/TVCG.2014.2359462
– ident: e_1_2_12_13_2
  doi: 10.1109/VISUAL.1995.480803
– ident: e_1_2_12_143_2
  doi: 10.1109/TVCG.2009.120
– ident: e_1_2_12_3_2
  doi: 10.1111/cgf.12365
– ident: e_1_2_12_78_2
  doi: 10.1109/LDAV.2014.7013202
– ident: e_1_2_12_64_2
  doi: 10.1109/VISUAL.2005.1532807
– ident: e_1_2_12_42_2
  doi: 10.1109/PacificVis.2013.6596129
– ident: e_1_2_12_137_2
  doi: 10.1109/VISUAL.2005.1532812
– ident: e_1_2_12_89_2
  doi: 10.1109/PCCGA.2004.1348348
– ident: e_1_2_12_37_2
  doi: 10.1109/TVCG.2008.25
– ident: e_1_2_12_130_2
  doi: 10.1111/j.1467-8659.2012.03123.x
– ident: e_1_2_12_8_2
  doi: 10.1111/j.1467-8659.2007.01095.x
– ident: e_1_2_12_21_2
  doi: 10.1109/PACIFICVIS.2009.4906854
– ident: e_1_2_12_115_2
  doi: 10.1007/978-3-540-39903-2_22
– ident: e_1_2_12_66_2
  doi: 10.1109/VISUAL.1999.809886
– ident: e_1_2_12_80_2
  doi: 10.1109/ICIEA.2007.4318542
– ident: e_1_2_12_53_2
  doi: 10.1109/TVCG.2015.2467294
– ident: e_1_2_12_116_2
  doi: 10.2312/VisSym/EuroVis06/243-250
– ident: e_1_2_12_55_2
  doi: 10.1109/VISUAL.2000.885678
– ident: e_1_2_12_77_2
  doi: 10.1109/TVCG.2015.2467431
– ident: e_1_2_12_104_2
– ident: e_1_2_12_83_2
  doi: 10.1109/2945.468400
– ident: e_1_2_12_136_2
  doi: 10.2312/VisSym/EuroVis06/251-258
– volume: 1998
  ident: e_1_2_12_18_2
  publication-title: Transfer function specification for the visualization of medical data
– ident: e_1_2_12_93_2
  doi: 10.1109/TVCG.2008.170
– ident: e_1_2_12_15_2
  doi: 10.1109/TVCG.2014.2346411
– ident: e_1_2_12_131_2
  doi: 10.1109/TVCG.2007.1051
– ident: e_1_2_12_111_2
  doi: 10.1109/VISUAL.2005.1532858
– ident: e_1_2_12_54_2
  doi: 10.1109/TVCG.2009.25
– ident: e_1_2_12_141_2
  doi: 10.2312/VG/VG10/069-076
– ident: e_1_2_12_47_2
  doi: 10.1109/VISUAL.1996.568113
– ident: e_1_2_12_85_2
  doi: 10.1109/TVCG.2012.105
– ident: e_1_2_12_97_2
  doi: 10.1145/1006058.1006066
– ident: e_1_2_12_52_2
  doi: 10.1109/TVCG.2012.231
– ident: e_1_2_12_139_2
  doi: 10.1109/PacificVis.2013.6596130
– ident: e_1_2_12_49_2
  doi: 10.2312/VG/VG07/001-008
– ident: e_1_2_12_11_2
  doi: 10.1109/TVCG.2006.96
– ident: e_1_2_12_19_2
  doi: 10.1109/TVCG.2008.162
– ident: e_1_2_12_14_2
– ident: e_1_2_12_84_2
  doi: 10.2312/VisSym/VisSym02/115-124
– ident: e_1_2_12_91_2
  doi: 10.1016/j.cag.2008.08.006
– ident: e_1_2_12_75_2
  doi: 10.1109/TVCG.2006.100
– ident: e_1_2_12_82_2
  doi: 10.1145/258734.258887
– ident: e_1_2_12_12_2
  doi: 10.1109/JBHI.2013.2263227
– ident: e_1_2_12_107_2
  doi: 10.1145/288126.288140
– ident: e_1_2_12_105_2
  doi: 10.1109/TVCG.2006.148
– ident: e_1_2_12_61_2
  doi: 10.1371/journal.pone.0038586
– ident: e_1_2_12_5_2
  doi: 10.1109/TVCG.2015.2467031
– volume-title: ImageVis3D: An interactive visualization software system for large‐scale volume data
  year: 2015
  ident: e_1_2_12_17_2
– ident: e_1_2_12_28_2
  doi: 10.1145/54852.378484
– ident: e_1_2_12_72_2
  doi: 10.1109/TVCG.2010.195
– volume-title: The Paraview guide: a parallel visualization application
  year: 2004
  ident: e_1_2_12_43_2
– ident: e_1_2_12_38_2
  doi: 10.1109/PacificVis.2014.24
– ident: e_1_2_12_126_2
  doi: 10.1109/TVCG.2005.62
– ident: e_1_2_12_142_2
  doi: 10.1016/j.cag.2012.02.007
– ident: e_1_2_12_86_2
  doi: 10.1109/2945.942694
– ident: e_1_2_12_117_2
  doi: 10.1109/LDAV.2011.6092313
– ident: e_1_2_12_109_2
  doi: 10.1016/j.cmpb.2007.03.008
– ident: e_1_2_12_124_2
  doi: 10.2312/VG/VG05/137-145
– ident: e_1_2_12_20_2
  doi: 10.1109/TVCG.2009.189
– ident: e_1_2_12_102_2
  doi: 10.2312/VisSym/EuroVis05/271-278
– ident: e_1_2_12_133_2
  doi: 10.1109/TVCG.2011.23
– ident: e_1_2_12_2_2
  doi: 10.2312/VG/VG10/077-083
– ident: e_1_2_12_9_2
  doi: 10.1111/j.1467-8659.2009.01474.x
– ident: e_1_2_12_121_2
  doi: 10.2312/VisSym/VisSym04/017-024
– ident: e_1_2_12_92_2
  doi: 10.1109/SIBGRAPI.2005.52
– ident: e_1_2_12_48_2
– ident: e_1_2_12_88_2
  doi: 10.1109/TVCG.2009.185
– start-page: 357
  volume-title: Chapman & Hall/CRC Computational Science
  year: 2012
  ident: e_1_2_12_16_2
– ident: e_1_2_12_36_2
  doi: 10.1109/38.865879
– ident: e_1_2_12_118_2
  doi: 10.1109/VISUAL.2003.1250413
– ident: e_1_2_12_113_2
– ident: e_1_2_12_65_2
  doi: 10.1145/964965.808594
– ident: e_1_2_12_81_2
  doi: 10.1109/ICMA.2007.4303986
– ident: e_1_2_12_94_2
– ident: e_1_2_12_112_2
  doi: 10.1109/TVCG.2014.2346324
– ident: e_1_2_12_44_2
  doi: 10.1109/TVCG.2011.258
– ident: e_1_2_12_10_2
  doi: 10.2312/VisSym/EuroVis05/069-076
– ident: e_1_2_12_120_2
  doi: 10.1109/PCCGA.2002.1167880
– ident: e_1_2_12_41_2
  doi: 10.1109/TVCG.2012.80
– ident: e_1_2_12_45_2
  doi: 10.1109/VISUAL.2003.1250386
– ident: e_1_2_12_23_2
  doi: 10.1111/1467-8659.00538
– ident: e_1_2_12_135_2
  doi: 10.1109/TVCG.2010.239
– ident: e_1_2_12_62_2
  doi: 10.1057/ivs.2010.6
– ident: e_1_2_12_132_2
  doi: 10.1109/ICICS.2009.5397587
– ident: e_1_2_12_123_2
  doi: 10.1016/j.gmod.2003.08.002
– volume: 17
  start-page: 279
  year: 2001
  ident: e_1_2_12_59_2
  article-title: Mastering transfer function specification by using VolumePro technology
  publication-title: Spring Conference on Computer Graphics
– ident: e_1_2_12_51_2
  doi: 10.1111/j.1467-8659.2005.00855.x
– ident: e_1_2_12_68_2
  doi: 10.1109/VISUAL.2003.1250414
– ident: e_1_2_12_39_2
  doi: 10.1109/TVCG.2011.261
– ident: e_1_2_12_110_2
  doi: 10.1109/TVCG.2008.198
– ident: e_1_2_12_125_2
  doi: 10.1109/VISUAL.2004.48
– ident: e_1_2_12_27_2
  doi: 10.1109/TVCG.2010.170
– ident: e_1_2_12_34_2
  doi: 10.1109/VISUAL.1998.745319
– ident: e_1_2_12_70_2
  doi: 10.1109/38.511
– ident: e_1_2_12_87_2
  doi: 10.5220/0001772701850190
– ident: e_1_2_12_106_2
  doi: 10.1109/TVCG.2006.39
– ident: e_1_2_12_128_2
  doi: 10.1109/TVCG.2011.97
– ident: e_1_2_12_60_2
  doi: 10.1109/TVCG.2002.1021579
– ident: e_1_2_12_40_2
  doi: 10.1109/PACIFICVIS.2011.5742368
– ident: e_1_2_12_101_2
  doi: 10.1111/j.1467-8659.2008.01216.x
– ident: e_1_2_12_127_2
  doi: 10.1007/11893257_74
– ident: e_1_2_12_57_2
  doi: 10.1145/1375714.1375729
– ident: e_1_2_12_138_2
  doi: 10.1109/TVCG.2006.72
– ident: e_1_2_12_71_2
  doi: 10.1109/TVCG.2014.2346351
– ident: e_1_2_12_31_2
  doi: 10.1201/b10629
– ident: e_1_2_12_29_2
– ident: e_1_2_12_58_2
  doi: 10.1109/SVV.1998.729588
– ident: e_1_2_12_73_2
  doi: 10.1109/TVCG.2007.70518
– ident: e_1_2_12_98_2
  doi: 10.1109/PACIFICVIS.2010.5429624
– ident: e_1_2_12_22_2
  doi: 10.1109/TVCG.2010.35
– ident: e_1_2_12_76_2
  doi: 10.2312/VG/VG06/001-008
– ident: e_1_2_12_99_2
  doi: 10.1111/j.1467-8659.2011.01944.x
– ident: e_1_2_12_32_2
  doi: 10.1109/2945.998670
– ident: e_1_2_12_35_2
  doi: 10.1109/TVCG.2009.115
– ident: e_1_2_12_96_2
  doi: 10.1109/38.920623
– ident: e_1_2_12_50_2
  doi: 10.1109/PACIFICVIS.2010.5429615
– ident: e_1_2_12_129_2
  doi: 10.1109/TVCG.2007.47
– ident: e_1_2_12_63_2
  doi: 10.1109/TVCG.2006.124
– ident: e_1_2_12_46_2
  doi: 10.2312/VCBM/VCBM08/101-108
– ident: e_1_2_12_24_2
  doi: 10.1109/2945.646238
– ident: e_1_2_12_25_2
  doi: 10.1111/cgf.12624
– ident: e_1_2_12_90_2
  doi: 10.1109/SIBGRAPI.2006.45
– ident: e_1_2_12_30_2
  doi: 10.2312/VisSym/EuroVis07/131-138
– ident: e_1_2_12_79_2
  doi: 10.2312/VisSym/EuroVis06/227-234
– ident: e_1_2_12_95_2
  doi: 10.1109/PACIFICVIS.2009.4906857
– ident: e_1_2_12_4_2
  doi: 10.2312/VisSym/EuroVis07/115-122
– ident: e_1_2_12_26_2
  doi: 10.1109/TVCG.2008.169
– ident: e_1_2_12_103_2
  doi: 10.2312/VG/VG-PBG08/041-048
– ident: e_1_2_12_69_2
  doi: 10.1109/VISUAL.2005.1532854
– ident: e_1_2_12_100_2
  doi: 10.1109/TVCG.2007.70591
– ident: e_1_2_12_134_2
  doi: 10.1111/j.1467-8659.2012.03122.x
– ident: e_1_2_12_74_2
  doi: 10.2312/VisSym/EuroVis05/263-270
– ident: e_1_2_12_67_2
  doi: 10.1109/2945.856994
SSID ssj0004765
Score 2.5129168
Snippet A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 669
SubjectTerms Analysis
and texture
Automation
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Encoding
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Color
I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Color, shading, shadowing, and texture
I.3.8 [Computer Graphics]: Applications-Volume Rendering
I.4.10 [Computer Graphics]: Image Representation-Volumetric
Rendering
shading
shadowing
Stars
State of the art
Studies
Transfer functions
Translating
Visual
Visualization
Title State of the Art in Transfer Functions for Direct Volume Rendering
URI https://api.istex.fr/ark:/67375/WNG-6SX01782-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12934
https://www.proquest.com/docview/1801479003
https://www.proquest.com/docview/1825539023
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665
Volume 35
WOSCitedRecordID wos000379912300060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH4qMxzgwF4xUJBBCHEJyuIlFqcyJeVQjVChZW6W46UaUWVQpoP4-Tw7Cx0JJCRukfISJ8_v-fu8fQZ4VXqti9ywRNSFSxCP80TztE5MmlsWAF3oqK5_IhaLcrmUn_bg3bAXptOHGAfcQmbE9jokuK4315LcXPi3AazoDZjmGLdsAtOj0-rs5Pe2SMHZIO0dRGN6YaGwkGd8eAeOpsGzP3e5ZqcfuktdI_ZUd__rq-_BnZ5yksMuRu7DnmsewO1rQoQP4X3knGTtCfLBYElWDYkw5l1LKsS-GJ4EGS7pGklyHps1chqPosOXPIKz6sOX-cekP10hMUiBaGLzgtmMe-EcZ76w2I_JuEF65pyRRkuRey0KKo3UuWaptkbQ2jJBGa01gn6xD5Nm3bjHQHzptHTG0qxMaWFy7TNDM8Ol9dLR1M7gzeBkZXrp8XACxqUauiDoFhXdMoOXo-n3Tm_jT0avY02NFrr9FhaoCaa-Lo4V_7zEdqbM1XwGB0NVqj43NyoLgjkijODO4MV4G7MqTJXoxq23wQa7WoVEQoNldSEwFhYEuY9W54dq3V6oy9U2zAhyzvAnY8X__bPV_LiKF0_-3fQp3EKKxrvFaQcwuWq37hncND-uVpv2eR_xvwA3WQGR
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7UrqA-eBdXq0YR8WVkLrlMwJe6dVpxXaS2dd9CNpeyWGZl2hV_vieZi11QEHwbmDOTmZNz8n25fQF4WXqti9ywRCwKlyAe54nm6SIxaW5ZAHSho7r-VMxm5XwuP2_B234vTKsPMQy4hcyI7XVI8DAgfSnLzal_E9CKXoERxTDC-B7tHVbH09_7IgVnvbZ3UI3plIXCSp7h4Q08GgXX_twkm62A6CZ3jeBT3fq_z74NNzvSSXbbKLkDW66-CzcuSRHeg3eRdZKVJ8gIgyVZ1iQCmXcNqRD9YoAS5LikbSbJSWzYyGE8jA5fch-Oq_dHk4OkO18hMUiCaGLzgtmMe-EcZ76w2JPJuEGC5pyRRkuRey0KKo3UuWaptkbQhWWCMrrQCPvFA9iuV7V7CMSXTktnLM3KlBYm1z4zNDNcWi8dTe0YXvdeVqYTHw9nYJypvhOCblHRLWN4MZh-bxU3_mT0KlbVYKGbb2GJmmDq62xf8S9zbGnKXE3GsNPXpeqy81xlQTJHhDHcMTwfbmNehckSXbvVOthgZ6uQSGmwrDYGhsKCJPfe8mRXrZpTdbZchzlBzhn-ZKz5v3-2muxX8eLRv5s-g2sHR5-mavph9vExXEfCxtulajuwfdGs3RO4an5cLM-bp134_wKjKQWB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFH6kdintoXup26SdlhJ6UdAyiwZySewqCTUmpFl8G8azBNMgByUu-fmZGS2JIYVCbwI9aaQ3b_lm-x7At9xKmaWKRGyWmcjl4zSSNJ5FKk418QmdycCuP2aTST6d8sM12G7PwtT8EN2Em_eMEK-9g5tLbe95uTq3Wz5b4UfQx76ITA_6o6PiZHx3LpJR0nJ7e9aYhlnI7-TpHl7JR32v2ptVsFkTiK5i15B8ihf_99kv4XkDOtFObSWvYM2Ur-HZPSrCN7AbUCdaWOQQoZdE8xKFRGZNhQqX_YKBIodxUR0m0WkIbOgoFKNzL3kLJ8WP4-F-1NRXiJQDQTjSaUZ0Qi0zhhKbaTeSSahyAM0YxZXkLLWSZZgrLlNJYqkVwzNNGCZ4Jl3az95Br1yU5j0gmxvJjdI4yWOcqVTaROFEUa4tNzjWA_jealmohnzc18C4EO0gxKlFBLUM4GsnelkzbjwktBm6qpOQ1W-_RY0RcTbZE_TX1EWaPBXDAay3fSka77wSiafMYX4OdwBfutvOr_xiiSzNYull3GAr4w7SuLZqG-ga85Tco_npjlhU5-JivvRrgpQS95Oh5__-2WK4V4SLD_8u-hmeHI4KMT6Y_PwITx1eo_VOtXXoXVdLswGP1Z_r-VX1qbH-WyYBBPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+in+Transfer+Functions+for+Direct+Volume+Rendering&rft.jtitle=Computer+graphics+forum&rft.au=Ljung%2C+Patric&rft.au=Kr%C3%BCger%2C+Jens&rft.au=Groller%2C+Eduard&rft.au=Hadwiger%2C+Markus&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=669&rft.epage=691&rft_id=info:doi/10.1111%2Fcgf.12934&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon