State of the Art in Transfer Functions for Direct Volume Rendering
A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality,...
Uložené v:
| Vydané v: | Computer graphics forum Ročník 35; číslo 3; s. 669 - 691 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.06.2016
|
| Predmet: | |
| ISSN: | 0167-7055, 1467-8659, 1467-8659 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state‐of‐the‐art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies. |
|---|---|
| AbstractList | A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies. |
| Author | Ljung, Patric Ynnerman, Anders Hadwiger, Markus Krüger, Jens Groller, Eduard Hansen, Charles D. |
| Author_xml | – sequence: 1 givenname: Patric surname: Ljung fullname: Ljung, Patric organization: Linköping University, Sweden – sequence: 2 givenname: Jens surname: Krüger fullname: Krüger, Jens organization: CoViDAG, University of Duisburg-Essen – sequence: 3 givenname: Eduard surname: Groller fullname: Groller, Eduard organization: TU Wien, Austria – sequence: 4 givenname: Markus surname: Hadwiger fullname: Hadwiger, Markus organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Charles D. surname: Hansen fullname: Hansen, Charles D. organization: Seientific Computing and Imaging Institute, University of Utah – sequence: 6 givenname: Anders surname: Ynnerman fullname: Ynnerman, Anders organization: Linköping University, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp1kU9vEzEQxS1UJNLCgW9giQsctrXX_7LHkJKAVFGJlsLNcrzj4LKxg-1V229fl6QcKjqXmcPvjWbeO0QHIQZA6C0lx7TWiV27Y9p2jL9AE8qlaqZSdAdoQmidFRHiFTrM-ZoQwpUUE_TxopgCODpcfgGepYJ9wJfJhOwg4cUYbPExZOxiwqc-gS34Kg7jBvA3CD0kH9av0Utnhgxv9v0IfV98upx_bs7Ol1_ms7PGck5507dM9FQ6BSCFY72UkkpLJQOwnTWdap1RjHe2M60RxPRW8VUvFBd8ZURL2RFqdnvzDWzHld4mvzHpTkfj9am_mumY1nrwo6aMSCkq_37Hb1P8M0IueuOzhWEwAeKYNZ22QrCOtKyi756g13FMoX5TKUK56gh5oE52lE0x5wROW1_dq_6UZPygKdEPGeiagf6bQVV8eKJ4PPp_7H77jR_g7nlQz5eLR8XeEJ8L3P5TmPRbS8WU0D--LrW8-EmomrZ6zu4BbWqkvQ |
| CitedBy_id | crossref_primary_10_1016_j_cag_2016_06_007 crossref_primary_10_1109_TVCG_2018_2867488 crossref_primary_10_1111_cgf_14173 crossref_primary_10_1111_cgf_14296 crossref_primary_10_1111_cgf_14693 crossref_primary_10_1109_TVCG_2018_2796085 crossref_primary_10_1016_j_wneu_2024_03_134 crossref_primary_10_1007_s42243_024_01292_5 crossref_primary_10_1109_ACCESS_2021_3100429 crossref_primary_10_1109_TVCG_2018_2816059 crossref_primary_10_1007_s10055_021_00577_4 crossref_primary_10_1007_s12650_020_00654_x crossref_primary_10_1109_TVCG_2024_3401755 crossref_primary_10_1371_journal_pone_0198335 crossref_primary_10_17341_gazimmfd_416421 crossref_primary_10_1109_TVCG_2018_2864816 crossref_primary_10_1109_TVCG_2017_2776935 crossref_primary_10_1155_2022_5884625 crossref_primary_10_1016_j_compeleceng_2022_108381 crossref_primary_10_1109_TVCG_2017_2784830 crossref_primary_10_1016_j_cag_2019_11_003 crossref_primary_10_1111_cgf_15198 crossref_primary_10_3390_app13053168 crossref_primary_10_1109_TVCG_2020_3030451 crossref_primary_10_1109_TVCG_2022_3189094 crossref_primary_10_1111_cgf_14189 crossref_primary_10_1111_cgf_14543 crossref_primary_10_1145_3373358 crossref_primary_10_1007_s12650_025_01077_2 crossref_primary_10_3390_rs17020294 crossref_primary_10_1109_MCSE_2017_3971156 crossref_primary_10_3390_jimaging11060193 crossref_primary_10_1007_s12650_019_00584_3 crossref_primary_10_1093_mnras_stx1676 crossref_primary_10_1109_TVCG_2023_3327371 crossref_primary_10_1111_cgf_13183 crossref_primary_10_1109_TVCG_2021_3127918 crossref_primary_10_1111_cgf_13663 crossref_primary_10_1007_s10055_025_01121_4 crossref_primary_10_1111_cgf_13148 crossref_primary_10_3390_math12121885 crossref_primary_10_1111_cgf_13306 crossref_primary_10_1007_s00371_023_02932_9 crossref_primary_10_1109_TVCG_2020_3030344 crossref_primary_10_1109_TVCG_2024_3514858 crossref_primary_10_1631_FITEE_2000214 crossref_primary_10_1109_TVCG_2017_2744078 crossref_primary_10_1109_TVCG_2024_3484471 crossref_primary_10_1007_s10278_018_0122_7 crossref_primary_10_1007_s12650_021_00787_7 crossref_primary_10_1111_cgf_70064 crossref_primary_10_1109_TVCG_2020_3037226 crossref_primary_10_1109_TVCG_2024_3516481 crossref_primary_10_1371_journal_pone_0193636 crossref_primary_10_1007_s11390_024_3419_7 crossref_primary_10_1159_000504940 crossref_primary_10_1007_s00371_024_03596_9 crossref_primary_10_1109_TVCG_2023_3263856 crossref_primary_10_1109_TVCG_2023_3340770 crossref_primary_10_1109_TVCG_2025_3549882 crossref_primary_10_11728_cjss2023_03_2022_0011 crossref_primary_10_1007_s00371_023_02828_8 crossref_primary_10_1109_TVCG_2025_3525974 crossref_primary_10_1145_2950040 crossref_primary_10_3389_fphys_2023_1086154 crossref_primary_10_1007_s10278_025_01430_9 |
| Cites_doi | 10.2312/conf/EG2012/stars/075-094 10.1109/VISUAL.2005.1532856 10.1109/VISUAL.1999.809932 10.1109/TVCG.2005.38 10.1111/cgf.12623 10.1111/cgf.12371 10.1109/TVCG.2014.2359462 10.1109/VISUAL.1995.480803 10.1109/TVCG.2009.120 10.1111/cgf.12365 10.1109/LDAV.2014.7013202 10.1109/VISUAL.2005.1532807 10.1109/PacificVis.2013.6596129 10.1109/VISUAL.2005.1532812 10.1109/PCCGA.2004.1348348 10.1109/TVCG.2008.25 10.1111/j.1467-8659.2012.03123.x 10.1111/j.1467-8659.2007.01095.x 10.1109/PACIFICVIS.2009.4906854 10.1007/978-3-540-39903-2_22 10.1109/VISUAL.1999.809886 10.1109/ICIEA.2007.4318542 10.1109/TVCG.2015.2467294 10.2312/VisSym/EuroVis06/243-250 10.1109/VISUAL.2000.885678 10.1109/TVCG.2015.2467431 10.1109/2945.468400 10.2312/VisSym/EuroVis06/251-258 10.1109/TVCG.2008.170 10.1109/TVCG.2014.2346411 10.1109/TVCG.2007.1051 10.1109/VISUAL.2005.1532858 10.1109/TVCG.2009.25 10.2312/VG/VG10/069-076 10.1109/VISUAL.1996.568113 10.1109/TVCG.2012.105 10.1145/1006058.1006066 10.1109/TVCG.2012.231 10.1109/PacificVis.2013.6596130 10.2312/VG/VG07/001-008 10.1109/TVCG.2006.96 10.1109/TVCG.2008.162 10.2312/VisSym/VisSym02/115-124 10.1016/j.cag.2008.08.006 10.1109/TVCG.2006.100 10.1145/258734.258887 10.1109/JBHI.2013.2263227 10.1145/288126.288140 10.1109/TVCG.2006.148 10.1371/journal.pone.0038586 10.1109/TVCG.2015.2467031 10.1145/54852.378484 10.1109/TVCG.2010.195 10.1109/PacificVis.2014.24 10.1109/TVCG.2005.62 10.1016/j.cag.2012.02.007 10.1109/2945.942694 10.1109/LDAV.2011.6092313 10.1016/j.cmpb.2007.03.008 10.2312/VG/VG05/137-145 10.1109/TVCG.2009.189 10.2312/VisSym/EuroVis05/271-278 10.1109/TVCG.2011.23 10.2312/VG/VG10/077-083 10.1111/j.1467-8659.2009.01474.x 10.2312/VisSym/VisSym04/017-024 10.1109/SIBGRAPI.2005.52 10.1109/TVCG.2009.185 10.1109/38.865879 10.1109/VISUAL.2003.1250413 10.1145/964965.808594 10.1109/ICMA.2007.4303986 10.1109/TVCG.2014.2346324 10.1109/TVCG.2011.258 10.2312/VisSym/EuroVis05/069-076 10.1109/PCCGA.2002.1167880 10.1109/TVCG.2012.80 10.1109/VISUAL.2003.1250386 10.1111/1467-8659.00538 10.1109/TVCG.2010.239 10.1057/ivs.2010.6 10.1109/ICICS.2009.5397587 10.1016/j.gmod.2003.08.002 10.1111/j.1467-8659.2005.00855.x 10.1109/VISUAL.2003.1250414 10.1109/TVCG.2011.261 10.1109/TVCG.2008.198 10.1109/VISUAL.2004.48 10.1109/TVCG.2010.170 10.1109/VISUAL.1998.745319 10.1109/38.511 10.5220/0001772701850190 10.1109/TVCG.2006.39 10.1109/TVCG.2011.97 10.1109/TVCG.2002.1021579 10.1109/PACIFICVIS.2011.5742368 10.1111/j.1467-8659.2008.01216.x 10.1007/11893257_74 10.1145/1375714.1375729 10.1109/TVCG.2006.72 10.1109/TVCG.2014.2346351 10.1201/b10629 10.1109/SVV.1998.729588 10.1109/TVCG.2007.70518 10.1109/PACIFICVIS.2010.5429624 10.1109/TVCG.2010.35 10.2312/VG/VG06/001-008 10.1111/j.1467-8659.2011.01944.x 10.1109/2945.998670 10.1109/TVCG.2009.115 10.1109/38.920623 10.1109/PACIFICVIS.2010.5429615 10.1109/TVCG.2007.47 10.1109/TVCG.2006.124 10.2312/VCBM/VCBM08/101-108 10.1109/2945.646238 10.1111/cgf.12624 10.1109/SIBGRAPI.2006.45 10.2312/VisSym/EuroVis07/131-138 10.2312/VisSym/EuroVis06/227-234 10.1109/PACIFICVIS.2009.4906857 10.2312/VisSym/EuroVis07/115-122 10.1109/TVCG.2008.169 10.2312/VG/VG-PBG08/041-048 10.1109/VISUAL.2005.1532854 10.1109/TVCG.2007.70591 10.1111/j.1467-8659.2012.03122.x 10.2312/VisSym/EuroVis05/263-270 10.1109/2945.856994 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1111/cgf.12934 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 691 |
| ExternalDocumentID | oai_DiVA_org_liu_130665 4107220241 10_1111_cgf_12934 CGF12934 ark_67375_WNG_6SX01782_C |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c4414-d235d16f7ee65f3d66616c163eec9ca972fa7349c9a2a50adc74bd57454ba5213 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379912300060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 1467-8659 |
| IngestDate | Tue Nov 04 16:43:38 EST 2025 Fri Sep 05 13:05:40 EDT 2025 Sat Jul 26 00:08:09 EDT 2025 Sat Nov 29 03:41:13 EST 2025 Tue Nov 18 22:04:15 EST 2025 Sun Sep 21 06:19:21 EDT 2025 Sun Sep 21 06:19:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4414-d235d16f7ee65f3d66616c163eec9ca972fa7349c9a2a50adc74bd57454ba5213 |
| Notes | ark:/67375/WNG-6SX01782-C ArticleID:CGF12934 istex:C8EEFFA1F43EB7A6D872BB03D6F7684B15A105E5 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665 |
| PQID | 1801479003 |
| PQPubID | 30877 |
| PageCount | 23 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_130665 proquest_miscellaneous_1825539023 proquest_journals_1801479003 crossref_citationtrail_10_1111_cgf_12934 crossref_primary_10_1111_cgf_12934 wiley_primary_10_1111_cgf_12934_CGF12934 istex_primary_ark_67375_WNG_6SX01782_C |
| PublicationCentury | 2000 |
| PublicationDate | June 2016 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Falk M., Weiskopf D.: Output-sensitive 3D line integral convolution. IEEE TVCG 14, 4 (July 2008), 820-834. doi: 10.1109/TVCG.2008.25. 7 Wang L., Kaufman A.: Importance driven automatic color design for direct volume rendering. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (2012), 1305-1314. doi: 10.1111/j.1467-8659.2012.03123.x. 14 Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE TVCG (Proc. of Vis.) 17, 12 (Dec. 2011), 2106-2114. doi: 10.1109/TVCG.2011.261. 17 Sicat R., Krüger J., Möller T., Hadwiger M.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2417-2426. doi: 10.1109/TVCG.2014.2346324. 13 Pinto F.d. M, Freitas C.M., D. S.: Volume visualization and exploration through flexible transfer function design. Computers & Graphics 32, 5 (Oct. 2008), 540-549. doi: 10.1016/j.cag.2008.08.006. 17 Takahashi S., Takeshima Y., Fujishiro I.: Topological volume skeletonization and its application to transfer function design. Graphical Models 66, 1 (2004), 24-49. doi: 10.1016/j.gmod.2003.08.002. 10 CIBC: 2015. ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging Institute (SCI). URL:http://www.imagevis3d.org. 5 Šereda P., Bartroli A.V., Serlie I. W. O., Gerritsen F.A.: Visualization of boundaries in volumetric data sets using lh histograms. IEEE TVCG 12, 2 (Mar. 2006), 208-218. doi: 10.1109/TVCG.2006.39. 9, 14 Weber G.H., Dillard S.E., Carr H., Pascucci V., Hamann B.: Topology-controlled volume rendering. IEEE TVCG 13, 2 (Mar. 2007), 330-341. doi: 10.1109/TVCG.2007.47. 10 IP C.Y., Varshney A., JÁJÁ J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE TVCG (Proc. of Vis.) 18, 12 (2012), 2355-2363. doi: 10.1109/TVCG.2012.231. 8, 14 Lindholm S., Jönsson D., Hansen C., Ynnerman A.: Boundary aware reconstruction of scalar fields. IEEE TVCG (Proc. of Vis.) 20, 12 (2014), 2447-2455. doi: 10.1109/TVCG.2014.2346351. 12, 13 Bramon R., Ruiz M., Bardera A., Boada I., Feixas M., Sbert M.: Information theory-based automatic multimodal transfer function design. IEEE Journal of Biomedical and Health Informatics 17, 4 (July 2013), 870-880. doi: 10.1109/JBHI.2013.2263227. 14 Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution representation and visualization of volume data. IEEE TVCG 3, 4 (Oct. 1997), 352-369. doi: 10.1109/2945.646238. 15 Selver M.A., Fischer F., Kuntalp M., Hillen W.: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images. Computer Methods and Programs in Biomedicine 86, 3 (June 2007), 270-280. doi: 10.1016/j.cmpb.2007.03.008. 17 Cai L.-L., Nguyen B.P., Chui C.-K., Ong S.-H.: Rule-Enhanced Transfer Function Generation for Medical Volume Visualization. Computer Graphics Forum (Proc. of EuroVis), 3 (2015). doi: 10.1111/cgf.12624. 9 Johnson C., Huang J.: Distribution-driven visualization of volume data. IEEE TVCG 15, 5 (Sept. 2009), 734-746. doi: 10.1109/TVCG.2009.25. 9 Bista S., Zhuo J., Gullapalli R.P., Varshney A.: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio-angular fields. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2516-2525. doi: 10.1109/TVCG.2014.2346411. 10 Jönsson D., Falk M., Ynnerman A.: Intuitive Exploration of Volumetric Data Using Dynamic Galleries. IEEE TVCG (Proc. of Vis.) 22, 1 (2015), 896-905. doi: 10.1109/TVCG.2015.2467294. 17 Henderson A., Ahrens J.: The Paraview guide: a parallel visualization application. Kitware, Inc., New York, 2004. URL:http://opac.inria.fr/record=b1117983. 5 Zhou L., Schott M., Hansen C.: Technical section: Transfer function combinations. Computers & Graphics 36, 6 (Oct. 2012), 596-606. doi: 10.1016/j.cag.2012.02.007. 6, 16 Zhou L., Hansen C.: GuideME: Slice-guided semiautomatic multivariate exploration of volumes. Computer Graphics Forum (Proc. of EuroVis), 3 (2014). doi: 10.1111/cgf.12371. 10, 17 Selver M.A., Guzelis C.: Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. IEEE TVCG 15, 3 (May 2009), 395-409. doi: 10.1109/TVCG.2008.198. 6, 14 Csébfalvi B., Mroz L., Hauser H., König A., Gröller E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum (Proc. of Eurographics) 20, 3 (2001), 452-460. doi: 10.1111/1467-8659.00538. 11, 12 Guo H., Xiao H., Yuan X.: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE TVCG 18, 9 (Sept. 2012), 1397-1410. doi: 10.1109/TVCG.2012.80. 16 Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (Feb. 2011), 192-204. doi: 10.1109/TVCG.2010.35. 14, 15 Patel D., Giertsen C., Thurmond J., Gjelberg J., Gröller M. E: The seismic analyzer: Interpreting and illustrating 2d seismic data. IEEE TVCG 14, 6 (2008), 1571-1578. doi: 10.1109/TVCG.2008.170. 12 Selver M.A.: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs. IEEE TVCG 21, 2 (Feb. 2015), 174-187. doi: 10.1109/TVCG.2014.2359462. 10 Bruckner S., Grimm S., Kanitsar A., Gröller M. E: Illustrative context-preserving exploration of volume data. IEEE TVCG 12, 6 (2006), 1559-1569. doi: 10.1109/TVCG.2006.96. 12 Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE TVCG 8, 3 (July 2002), 270-285. doi: 10.1109/TVCG.2002.1021579. 5, 6, 15, 16, 17 Xiang D., Tian J., Yang F., Yang Q., Zhang X., Li Q., Liu X.: Skeleton cuts - an efficient segmentation method for volume rendering. IEEE TVCG 17, 9 (Sept. 2011), 1295-1306. doi: 10.1109/TVCG.2010.239. 10 Lundstrom C., Ljung P., Persson A., Ynnerman A.: uncertainty visualization in medical volume rendering using probabilistic animation. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1648-1655. doi: 10.1109/TVCG.2007.70518. 3, 7, 12 Kroes T., Post F.H., Botha C.P.: Exposure render: An interactive photo-realistic volume rendering framework. PloS one 7, 7 (2012). doi: 10.1371/journal.pone.0038586. 13 Viola I., Kanitsar A., Gröller M. E: Importance-driven feature enhancement in volume visualization. IEEE TVCG 11, 4 (2005), 408-418. doi: 10.1109/TVCG.2005.62. 11 Wang Y., Chen W., Zhang J., Dong T., Shan G., Chi X.: Efficient volume exploration using the Gaussian mixture model. IEEE TVCG 17, 11 (2011), 1560-1573. doi: 10.1109/TVCG.2011.97. 8 Correa C., Ma K.L.: The occlusion spectrum for volume classification and visualization. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1465-1472. doi: 10.1109/TVCG.2009.189. 7, 8 Lindholm S., Ljung P., Lundstrom C., Persson A., Ynnerman A.: Spatial conditioning of transfer functions using local material distributions. IEEE TVCG (Proc. of Vis.) 16, 6 (Nov. 2010), 1301-1310. doi: 10.1109/TVCG.2010.195. 4, 9 Fritz L., Hadwiger M., Geier G., Pittino G., Gröller M. E: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete. IEEE TVCG (Proc. of Vis.) 15, 6 (2009), 1343-1350. doi: 10.1109/TVCG.2009.115. 7, 8, 12 Tzeng F.-Y., Lum E., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE TVCG 11, 3 (May 2005), 273-284. doi: 10.1109/TVCG.2005.38. 14, 15, 17 Haidacher M., Bruckner S., Gröller E.: Volume analysis using multimodal surface similarity. IEEE TVCG (Proc. of Vis.) 17, 12 (2011), 1969-1978. doi: 10.1109/TVCG.2011.258. 7 Muraki S., Nakai T., Kita Y., Tsuda K.: An attempt for coloring multichannel MR imaging data. IEEE TVCG 7, 3 (July 2001), 265-274. doi: 10.1109/2945.942694. 6, 10 Wang Y., Zhang J., Lehmann D.J., Theisel H., Chi X.: Automating transfer function design with valley cell-based clustering of 2D density plots. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (June 2012), 1295-1304. doi: 10.1111/j.1467-8659.2012.03122.x. 14 Daniels Jr J., Anderson E.W., Nonato L.G., Silva C.T.: Interactive vector field feature identification. IEEE TVCG (Proc. of Vis.) 16, 6 (2010), 1560-8. doi: 10.1109/TVCG.2010.170. 7 Liu X., Shen H.W.: Association analysis for visual exploration of multivariate scientific data sets. IEEE TVCG 22, 1 (Jan. 2016), 955-964. doi: 10.1109/TVCG.2015.2467431. 16 Pfister H., Lorensen B., Bajaj C., Kindlmann g., Schroeder W., Machiraju R., Lee J.: The transfer function bake-off. Computer Graphics and Applications 21, 3 (May 2001), 16-22. doi: 10.1109/38.920623. 1, 4 Kindlmann G., Weinstein D., Hart D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE TVCG 6, 2 (Apr. 2000), 124-138. doi: 10.1109/2945.856994. 10 Max N.: Optical models for direct volume rendering. IEEE TVCG 1, 2 (June 1995), 99-108. doi: 10.1109/2945.468400. 2 Ebert D.S., Morris C.J., Rheingans P., Yoo T.S.: Designing effective transfer functions for volume rendering from photographic volumes. IEEE TVCG 8, 2 (Apr. 2002), 183-197. doi: 10.1109/2945.998670. 6 Rautek P., Bruckner S., Gröller E.: Semantic layers for illustrative volume rendering. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1336-1343. doi: 10.1109/TVCG.2007.70591. 11, 18 Fujishiro I., Takeshima Y., Azuma T., Takahashi S.: Volume data mining using 3D field topology analysis. Computer Graphics and Applications 20, 5 (Sept. 2000), 46-51. doi: 10.1109/38.865879. 10, 14 Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K.P., Ebert D.S.: Abstracting attribute space for transfer function exploration and design. IEEE TVCG 19, 1 (Jan. 2013), 94-107. doi: 10.1109/TVCG.2012.105. 15 Pfaffelmoser T., Reitinger M., Westermann R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Computer Graphics Forum (Proc. of EuroVis) 30, 3 (2011), 951-960. doi: 10.1111/j.1467-8659.2011.01944.x. 7, 14 Hadwiger M., Sigg C., Scharsach H., Bühler K., Gross M.: Real 2004; 66 2010; 16 2000; 6 2012; 18 2008; 32 2011; 17 1997; 3 2005; 24 2014; 20 2013; 19 2013; 17 2014; 3 2000 2008; 27 1984 2001; 17 2009; 15 2007; 26 2010; 9 1988 2015; 3 2012 2006; 12 2011 2010 2002; 8 2000; 20 1998 2008; 14 2009 2008 1997 2011; 30 2007 1996 1995 2006 2005 2004 2003 2002 2012; 36 1995; 1 2007; 13 2012; 31 2001; 20 2009; 28 1999 2001; 21 2001; 7 2015; 22 1988; 8 2015; 21 2015 2014 2013 2007; 86 2012; 7 2005; 11 2014; 33 2016; 22 e_1_2_12_2_2 e_1_2_12_111_2 e_1_2_12_134_2 e_1_2_12_115_2 e_1_2_12_130_2 e_1_2_12_108_2 e_1_2_12_20_2 e_1_2_12_62_2 e_1_2_12_85_2 e_1_2_12_127_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_66_2 e_1_2_12_89_2 König A. (e_1_2_12_59_2) 2001; 17 e_1_2_12_81_2 e_1_2_12_100_2 e_1_2_12_28_2 e_1_2_12_104_2 e_1_2_12_142_2 e_1_2_12_123_2 e_1_2_12_31_2 e_1_2_12_54_2 e_1_2_12_73_2 e_1_2_12_96_2 e_1_2_12_116_2 e_1_2_12_139_2 e_1_2_12_35_2 e_1_2_12_58_2 e_1_2_12_77_2 e_1_2_12_12_2 e_1_2_12_6_2 Castro S. (e_1_2_12_18_2); 1998 e_1_2_12_50_2 e_1_2_12_92_2 e_1_2_12_3_2 e_1_2_12_37_2 e_1_2_12_110_2 e_1_2_12_137_2 e_1_2_12_114_2 e_1_2_12_133_2 e_1_2_12_107_2 e_1_2_12_40_2 e_1_2_12_86_2 e_1_2_12_21_2 e_1_2_12_63_2 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_67_2 CIBC (e_1_2_12_17_2) 2015 e_1_2_12_82_2 e_1_2_12_122_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_103_2 e_1_2_12_126_2 e_1_2_12_141_2 Henderson A. (e_1_2_12_43_2) 2004 e_1_2_12_119_2 e_1_2_12_51_2 e_1_2_12_97_2 e_1_2_12_32_2 e_1_2_12_74_2 e_1_2_12_138_2 e_1_2_12_55_2 e_1_2_12_36_2 e_1_2_12_78_2 e_1_2_12_13_2 e_1_2_12_7_2 e_1_2_12_93_2 e_1_2_12_70_2 e_1_2_12_4_2 e_1_2_12_19_2 Childs H. (e_1_2_12_16_2) 2012 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_136_2 e_1_2_12_113_2 e_1_2_12_132_2 e_1_2_12_41_2 e_1_2_12_64_2 e_1_2_12_87_2 e_1_2_12_129_2 e_1_2_12_106_2 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_68_2 e_1_2_12_60_2 e_1_2_12_83_2 e_1_2_12_140_2 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_121_2 e_1_2_12_125_2 e_1_2_12_102_2 e_1_2_12_52_2 e_1_2_12_75_2 e_1_2_12_98_2 e_1_2_12_118_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_79_2 e_1_2_12_14_2 e_1_2_12_90_2 e_1_2_12_10_2 e_1_2_12_71_2 e_1_2_12_94_2 e_1_2_12_8_2 e_1_2_12_5_2 e_1_2_12_135_2 e_1_2_12_39_2 e_1_2_12_131_2 e_1_2_12_112_2 e_1_2_12_65_2 e_1_2_12_105_2 e_1_2_12_128_2 e_1_2_12_42_2 e_1_2_12_84_2 e_1_2_12_23_2 e_1_2_12_69_2 e_1_2_12_109_2 e_1_2_12_46_2 e_1_2_12_88_2 e_1_2_12_61_2 e_1_2_12_80_2 e_1_2_12_27_2 e_1_2_12_120_2 e_1_2_12_101_2 e_1_2_12_124_2 e_1_2_12_143_2 e_1_2_12_30_2 e_1_2_12_76_2 e_1_2_12_117_2 e_1_2_12_53_2 e_1_2_12_95_2 e_1_2_12_34_2 e_1_2_12_57_2 e_1_2_12_99_2 e_1_2_12_11_2 e_1_2_12_72_2 e_1_2_12_9_2 e_1_2_12_91_2 |
| References_xml | – reference: Max N.: Optical models for direct volume rendering. IEEE TVCG 1, 2 (June 1995), 99-108. doi: 10.1109/2945.468400. 2 – reference: Sicat R., Krüger J., Möller T., Hadwiger M.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2417-2426. doi: 10.1109/TVCG.2014.2346324. 13 – reference: Fritz L., Hadwiger M., Geier G., Pittino G., Gröller M. E: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete. IEEE TVCG (Proc. of Vis.) 15, 6 (2009), 1343-1350. doi: 10.1109/TVCG.2009.115. 7, 8, 12 – reference: Johnson C., Huang J.: Distribution-driven visualization of volume data. IEEE TVCG 15, 5 (Sept. 2009), 734-746. doi: 10.1109/TVCG.2009.25. 9 – reference: Hadwiger M., Sigg C., Scharsach H., Bühler K., Gross M.: Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum (Proc. of Eurographics) 24, 3 (2005), 303-312. 7 – reference: Guo H., Xiao H., Yuan X.: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE TVCG 18, 9 (Sept. 2012), 1397-1410. doi: 10.1109/TVCG.2012.80. 16 – reference: König A., Gröller E.: Mastering transfer function specification by using VolumePro technology. In Spring Conference on Computer Graphics (2001), vol. 17, pp. 279-286. URL:https://www.cg.tuwien.ac.at/research/publications/2000/Koenig-2000-ATFS/TR-186-2-00-07Paper.pdf, doi: 10.1.1.43.5954. 15 – reference: Wang L., Zhao X., Kaufman A.: Modified dendrogram of attribute space for multidimensional transfer function design. IEEE TVCG 18, 1 (Jan. 2012), 121-131. doi: 10.1109/TVCG.2011.23. 8 – reference: IP C.Y., Varshney A., JÁJÁ J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE TVCG (Proc. of Vis.) 18, 12 (2012), 2355-2363. doi: 10.1109/TVCG.2012.231. 8, 14 – reference: Rautek P., Bruckner S., Gröller M. E: Interaction-dependent semantics for illustrative volume rendering. Computer Graphics Forum (Proc. of EuroVis) 27, 3 (May 2008), 847-854. doi: 10.1111/j.1467-8659.2008.01216.x. 11, 18 – reference: Maciejewski R., Woo I., Chen W., Ebert D.S.: Structuring feature space: A non-parametric method for volumetric transfer function generation. IEEE TVCG 15, 6 (2009), 1473-1480. doi: 10.1109/TVCG.2009.185. 8, 14 – reference: Serlie I., Truyen R., Florie J., Post F., Vliet L., Vos F.: MICCAI. Springer, 2003, ch. Computed Cleansing for Virtual Colonoscopy Using a Three-Material Transition Model, pp. 175-183. doi: 10.1007/978-3-540-39903-2_22. 9 – reference: Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE TVCG (Proc. of Vis.) 17, 12 (Dec. 2011), 2106-2114. doi: 10.1109/TVCG.2011.261. 17 – reference: Wang Y., Zhang J., Lehmann D.J., Theisel H., Chi X.: Automating transfer function design with valley cell-based clustering of 2D density plots. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (June 2012), 1295-1304. doi: 10.1111/j.1467-8659.2012.03122.x. 14 – reference: Engel K., Hadwiger M., Kniss J., Rezk-Salama C., Weiskopf D.: Real-time volume graphics. CRC Press, 2006. 2, 3 – reference: Haidacher M., Bruckner S., Gröller E.: Volume analysis using multimodal surface similarity. IEEE TVCG (Proc. of Vis.) 17, 12 (2011), 1969-1978. doi: 10.1109/TVCG.2011.258. 7 – reference: Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE TVCG 8, 3 (July 2002), 270-285. doi: 10.1109/TVCG.2002.1021579. 5, 6, 15, 16, 17 – reference: Wang Y., Chen W., Zhang J., Dong T., Shan G., Chi X.: Efficient volume exploration using the Gaussian mixture model. IEEE TVCG 17, 11 (2011), 1560-1573. doi: 10.1109/TVCG.2011.97. 8 – reference: Bruckner S., Gröller M. E: Instant volume visualization using maximum intensity difference accumulation. Computer Graphics Forum (Proc. of EuroVis) 28, 3 (2009), 775-782. doi: 10.1111/j.1467-8659.2009.01474.x. 11 – reference: Pfaffelmoser T., Reitinger M., Westermann R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Computer Graphics Forum (Proc. of EuroVis) 30, 3 (2011), 951-960. doi: 10.1111/j.1467-8659.2011.01944.x. 7, 14 – reference: Levoy M.: Display of surfaces from volume data. Computer Graphics and Applications 8, 3 (May 1988), 29-37. doi: 10.1109/38.511. 1, 3, 5 – reference: Selver M.A., Fischer F., Kuntalp M., Hillen W.: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images. Computer Methods and Programs in Biomedicine 86, 3 (June 2007), 270-280. doi: 10.1016/j.cmpb.2007.03.008. 17 – reference: Csébfalvi B., Mroz L., Hauser H., König A., Gröller E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum (Proc. of Eurographics) 20, 3 (2001), 452-460. doi: 10.1111/1467-8659.00538. 11, 12 – reference: Fujishiro I., Takeshima Y., Azuma T., Takahashi S.: Volume data mining using 3D field topology analysis. Computer Graphics and Applications 20, 5 (Sept. 2000), 46-51. doi: 10.1109/38.865879. 10, 14 – reference: Lindholm S., Jönsson D., Hansen C., Ynnerman A.: Boundary aware reconstruction of scalar fields. IEEE TVCG (Proc. of Vis.) 20, 12 (2014), 2447-2455. doi: 10.1109/TVCG.2014.2346351. 12, 13 – reference: Yuan X., Nguyen M.X., Chen B., Porter D.H.: HDR VolVis: high dynamic range volume visualization. IEEE TVCG 12, 4 (July 2006), 433-445. doi: 10.1109/TVCG.2006.72. 13, 15 – reference: Zhou J., Takatsuka M.: Automatic transfer function generation using contour tree controlled residue flow model and color harmonics. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1481-1488. doi: 10.1109/TVCG.2009.120. 10 – reference: Šereda P., Bartroli A.V., Serlie I. W. O., Gerritsen F.A.: Visualization of boundaries in volumetric data sets using lh histograms. IEEE TVCG 12, 2 (Mar. 2006), 208-218. doi: 10.1109/TVCG.2006.39. 9, 14 – reference: Wang L., Kaufman A.: Importance driven automatic color design for direct volume rendering. Computer Graphics Forum (Proc. of EuroVis) 31, 3 (2012), 1305-1314. doi: 10.1111/j.1467-8659.2012.03123.x. 14 – reference: Viola I., Kanitsar A., Gröller M. E: Importance-driven feature enhancement in volume visualization. IEEE TVCG 11, 4 (2005), 408-418. doi: 10.1109/TVCG.2005.62. 11 – reference: Selver M.A., Guzelis C.: Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks. IEEE TVCG 15, 3 (May 2009), 395-409. doi: 10.1109/TVCG.2008.198. 6, 14 – reference: Takahashi S., Takeshima Y., Fujishiro I.: Topological volume skeletonization and its application to transfer function design. Graphical Models 66, 1 (2004), 24-49. doi: 10.1016/j.gmod.2003.08.002. 10 – reference: Castro S., König A., Löffelmann H., Gröller E.: Transfer function specification for the visualization of medical data, 1998. Technical Report: TR-186-2-98-12. URL:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7705.5, 13, 14, 15, 17 – reference: Rezk-Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE TVCG (Proc. of Vis.) 12, 5 (Sept. 2006), 1021-1028. doi: 10.1109/TVCG.2006.148. 13, 16, 17 – reference: Xiang D., Tian J., Yang F., Yang Q., Zhang X., Li Q., Liu X.: Skeleton cuts - an efficient segmentation method for volume rendering. IEEE TVCG 17, 9 (Sept. 2011), 1295-1306. doi: 10.1109/TVCG.2010.239. 10 – reference: Correa C., Ma K.L.: The occlusion spectrum for volume classification and visualization. IEEE TVCG (Proc. of Vis.) 15, 6 (Nov. 2009), 1465-1472. doi: 10.1109/TVCG.2009.189. 7, 8 – reference: Daniels Jr J., Anderson E.W., Nonato L.G., Silva C.T.: Interactive vector field feature identification. IEEE TVCG (Proc. of Vis.) 16, 6 (2010), 1560-8. doi: 10.1109/TVCG.2010.170. 7 – reference: Patel D., Giertsen C., Thurmond J., Gjelberg J., Gröller M. E: The seismic analyzer: Interpreting and illustrating 2d seismic data. IEEE TVCG 14, 6 (2008), 1571-1578. doi: 10.1109/TVCG.2008.170. 12 – reference: Zhou L., Schott M., Hansen C.: Technical section: Transfer function combinations. Computers & Graphics 36, 6 (Oct. 2012), 596-606. doi: 10.1016/j.cag.2012.02.007. 6, 16 – reference: Correa C.D., Ma K.-L.: Visibility histograms and visibility-driven transfer functions. IEEE TVCG 17, 2 (Feb. 2011), 192-204. doi: 10.1109/TVCG.2010.35. 14, 15 – reference: Kim H.S., Schulze J.P., Cone A.C., Sosinsky G.E., Martone M.E.: Dimensionality reduction on multi-dimensional transfer functions for multi-channel volume data sets. Information Visualization 9, 3 (June 2010), 167-180. doi: 10.1057/ivs.2010.6. 10 – reference: Muraki S., Nakai T., Kita Y., Tsuda K.: An attempt for coloring multichannel MR imaging data. IEEE TVCG 7, 3 (July 2001), 265-274. doi: 10.1109/2945.942694. 6, 10 – reference: Ebert D.S., Morris C.J., Rheingans P., Yoo T.S.: Designing effective transfer functions for volume rendering from photographic volumes. IEEE TVCG 8, 2 (Apr. 2002), 183-197. doi: 10.1109/2945.998670. 6 – reference: Wu Y., Qu H.: Interactive transfer function design based on editing direct volume rendered images. IEEE TVCG 13, 5 (Sept. 2007), 1027-1040. doi: 10.1109/TVCG.2007.1051. 17 – reference: Jönsson D., Falk M., Ynnerman A.: Intuitive Exploration of Volumetric Data Using Dynamic Galleries. IEEE TVCG (Proc. of Vis.) 22, 1 (2015), 896-905. doi: 10.1109/TVCG.2015.2467294. 17 – reference: Lindholm S., Ljung P., Lundstrom C., Persson A., Ynnerman A.: Spatial conditioning of transfer functions using local material distributions. IEEE TVCG (Proc. of Vis.) 16, 6 (Nov. 2010), 1301-1310. doi: 10.1109/TVCG.2010.195. 4, 9 – reference: Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K.P., Ebert D.S.: Abstracting attribute space for transfer function exploration and design. IEEE TVCG 19, 1 (Jan. 2013), 94-107. doi: 10.1109/TVCG.2012.105. 15 – reference: Caban J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE TVCG (Proc. of Vis.) 14, 6 (Nov. 2008), 1364-1371. doi: 10.1109/TVCG.2008.169. 8 – reference: Kindlmann G., Weinstein D., Hart D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE TVCG 6, 2 (Apr. 2000), 124-138. doi: 10.1109/2945.856994. 10 – reference: Zhou L., Hansen C.: GuideME: Slice-guided semiautomatic multivariate exploration of volumes. Computer Graphics Forum (Proc. of EuroVis), 3 (2014). doi: 10.1111/cgf.12371. 10, 17 – reference: Weber G.H., Dillard S.E., Carr H., Pascucci V., Hamann B.: Topology-controlled volume rendering. IEEE TVCG 13, 2 (Mar. 2007), 330-341. doi: 10.1109/TVCG.2007.47. 10 – reference: Liu X., Shen H.W.: Association analysis for visual exploration of multivariate scientific data sets. IEEE TVCG 22, 1 (Jan. 2016), 955-964. doi: 10.1109/TVCG.2015.2467431. 16 – reference: CIBC: 2015. ImageVis3D: An interactive visualization software system for large-scale volume data. Scientific Computing and Imaging Institute (SCI). URL:http://www.imagevis3d.org. 5 – reference: Bruckner S., Gröller M. E: Style transfer functions for illustrative volume rendering. Computer Graphics Forum (Proc. of Eurographics) 26, 3 (Sept. 2007), 715-724. doi: 10.1111/j.1467-8659.2007.01095.x. 5, 11 – reference: Cignoni P., Montani C., Puppo E., Scopigno R.: Multiresolution representation and visualization of volume data. IEEE TVCG 3, 4 (Oct. 1997), 352-369. doi: 10.1109/2945.646238. 15 – reference: Krüger J., Schneider J., Westermann R.: ClearView: An interactive context preserving hotspot visualization technique. IEEE TVCG (Proc. of Vis.) 12, 5 (Sept. 2006), 941-948. doi: 10.1109/TVCG.2006.124. 7, 12 – reference: Bramon R., Ruiz M., Bardera A., Boada I., Feixas M., Sbert M.: Information theory-based automatic multimodal transfer function design. IEEE Journal of Biomedical and Health Informatics 17, 4 (July 2013), 870-880. doi: 10.1109/JBHI.2013.2263227. 14 – reference: Henderson A., Ahrens J.: The Paraview guide: a parallel visualization application. Kitware, Inc., New York, 2004. URL:http://opac.inria.fr/record=b1117983. 5 – reference: Selver M.A.: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs. IEEE TVCG 21, 2 (Feb. 2015), 174-187. doi: 10.1109/TVCG.2014.2359462. 10 – reference: Cai L.-L., Nguyen B.P., Chui C.-K., Ong S.-H.: Rule-Enhanced Transfer Function Generation for Medical Volume Visualization. Computer Graphics Forum (Proc. of EuroVis), 3 (2015). doi: 10.1111/cgf.12624. 9 – reference: Falk M., Weiskopf D.: Output-sensitive 3D line integral convolution. IEEE TVCG 14, 4 (July 2008), 820-834. doi: 10.1109/TVCG.2008.25. 7 – reference: Pfister H., Lorensen B., Bajaj C., Kindlmann g., Schroeder W., Machiraju R., Lee J.: The transfer function bake-off. Computer Graphics and Applications 21, 3 (May 2001), 16-22. doi: 10.1109/38.920623. 1, 4 – reference: Bruckner S., Grimm S., Kanitsar A., Gröller M. E: Illustrative context-preserving exploration of volume data. IEEE TVCG 12, 6 (2006), 1559-1569. doi: 10.1109/TVCG.2006.96. 12 – reference: Rautek P., Bruckner S., Gröller E.: Semantic layers for illustrative volume rendering. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1336-1343. doi: 10.1109/TVCG.2007.70591. 11, 18 – reference: Amirkhanov A., Fröhler B., Kastner J., Gröller E., Heinzl C.: InSpectr: Multi-modal exploration, visualization, and analysis of spectral data. Computer Graphics Forum (Proc. of EuroVis) 33, 3 (June 2014), 91-100. doi: 10.1111/cgf.12365. 6 – reference: Bista S., Zhuo J., Gullapalli R.P., Varshney A.: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio-angular fields. IEEE TVCG (Proc. of Vis.) 20, 12 (Dec. 2014), 2516-2525. doi: 10.1109/TVCG.2014.2346411. 10 – reference: Kroes T., Post F.H., Botha C.P.: Exposure render: An interactive photo-realistic volume rendering framework. PloS one 7, 7 (2012). doi: 10.1371/journal.pone.0038586. 13 – reference: Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE TVCG (Proc. of Vis.) 14, 6 (Nov. 2008), 1380-1387. doi: 10.1109/TVCG.2008.162. 7 – reference: Lundstrom C., Ljung P., Persson A., Ynnerman A.: uncertainty visualization in medical volume rendering using probabilistic animation. IEEE TVCG (Proc. of Vis.) 13, 6 (Nov. 2007), 1648-1655. doi: 10.1109/TVCG.2007.70518. 3, 7, 12 – reference: Lundström C., Ljung P., Ynnerman A.: Local histograms for design of transfer functions in direct volume rendering. IEEE TVCG 12, 6(2006), 1570-1579. doi: 10.1109/TVCG.2006.100. 5, 8,9 – reference: Pinto F.d. M, Freitas C.M., D. S.: Volume visualization and exploration through flexible transfer function design. Computers & Graphics 32, 5 (Oct. 2008), 540-549. doi: 10.1016/j.cag.2008.08.006. 17 – reference: Tzeng F.-Y., Lum E., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE TVCG 11, 3 (May 2005), 273-284. doi: 10.1109/TVCG.2005.38. 14, 15, 17 – reference: Abbasloo A., Wiens V., Hermann M., Schultz T.: Visualizing tensor normal distributions at multiple levels of detail. IEEE TVCG 22, 1 (Jan. 2016), 975-984. doi: 10.1109/TVCG.2015.2467031. 10 – volume: 17 start-page: 1969 issue: 12 year: 2011 end-page: 1978 article-title: Volume analysis using multimodal surface similarity publication-title: IEEE TVCG (Proc. of Vis.) – volume: 8 start-page: 183 issue: 2 year: 2002 end-page: 197 article-title: Designing effective transfer functions for volume rendering from photographic volumes publication-title: IEEE TVCG – start-page: 263 year: 2005 end-page: 270 – start-page: 655 year: 2005 end-page: 662 – year: 2005 – volume: 31 start-page: 1295 issue: 3 year: 2012 end-page: 1304 article-title: Automating transfer function design with valley cell‐based clustering of 2D density plots publication-title: Computer Graphics Forum (Proc. of EuroVis) – start-page: 2710 year: 2007 end-page: 2715 – volume: 16 start-page: 1301 issue: 6 year: 2010 end-page: 1310 article-title: Spatial conditioning of transfer functions using local material distributions publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 165 year: 1984 end-page: 174 – start-page: 19 year: 2011 end-page: 26 – start-page: 57 year: 2004 end-page: 63 – volume: 15 start-page: 734 issue: 5 year: 2009 end-page: 746 article-title: Distribution‐driven visualization of volume data publication-title: IEEE TVCG – volume: 17 start-page: 2106 issue: 12 year: 2011 end-page: 2114 article-title: WYSIWYG (what you see is what you get) volume visualization publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 115‐ff year: 2002 – start-page: 327 year: 2005 end-page: 334 – volume: 14 start-page: 1364 issue: 6 year: 2008 end-page: 1371 article-title: Texture‐based transfer functions for direct volume rendering publication-title: IEEE TVCG (Proc. of Vis.) – volume: 15 start-page: 1465 issue: 6 year: 2009 end-page: 1472 article-title: The occlusion spectrum for volume classification and visualization publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 265 year: 2005 end-page: 272 – volume: 30 start-page: 951 issue: 3 year: 2011 end-page: 960 article-title: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields publication-title: Computer Graphics Forum (Proc. of EuroVis) – volume: 22 start-page: 896 issue: 1 year: 2015 end-page: 905 article-title: Intuitive Exploration of Volumetric Data Using Dynamic Galleries publication-title: IEEE TVCG (Proc. of Vis.) – volume: 3 start-page: 352 issue: 4 year: 1997 end-page: 369 article-title: Multiresolution representation and visualization of volume data publication-title: IEEE TVCG – volume: 18 start-page: 2355 issue: 12 year: 2012 end-page: 2363 article-title: Hierarchical exploration of volumes using multilevel segmentation of the intensity‐gradient histograms publication-title: IEEE TVCG (Proc. of Vis.) – volume: 11 start-page: 273 issue: 3 year: 2005 end-page: 284 article-title: An intelligent system approach to higher‐dimensional classification of volume data publication-title: IEEE TVCG – volume: 12 start-page: 941 issue: 5 year: 2006 end-page: 948 article-title: ClearView: An interactive context preserving hotspot visualization technique publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 319 year: 1998 end-page: 326 – volume: 18 start-page: 121 issue: 1 year: 2012 end-page: 131 article-title: Modified dendrogram of attribute space for multidimensional transfer function design publication-title: IEEE TVCG – volume: 11 start-page: 408 issue: 4 year: 2005 end-page: 418 article-title: Importance‐driven feature enhancement in volume visualization publication-title: IEEE TVCG – volume: 12 start-page: 1559 issue: 6 year: 2006 end-page: 1569 article-title: Illustrative context‐preserving exploration of volume data publication-title: IEEE TVCG – volume: 28 start-page: 775 issue: 3 year: 2009 end-page: 782 article-title: Instant volume visualization using maximum intensity difference accumulation publication-title: Computer Graphics Forum (Proc. of EuroVis) – volume: 20 start-page: 2417 issue: 12 year: 2014 end-page: 2426 article-title: Sparse PDF volumes for consistent multi‐resolution volume rendering publication-title: IEEE TVCG (Proc. of Vis.) – volume: 27 start-page: 847 issue: 3 year: 2008 end-page: 854 article-title: Interaction‐dependent semantics for illustrative volume rendering publication-title: Computer Graphics Forum (Proc. of EuroVis) – start-page: 357 year: 2000 end-page: 364 – volume: 14 start-page: 820 issue: 4 year: 2008 end-page: 834 article-title: Output‐sensitive 3D line integral convolution publication-title: IEEE TVCG – start-page: 81 year: 2008 end-page: 88 – start-page: 185 year: 2009 end-page: 190 – volume: 20 start-page: 452 issue: 3 year: 2001 end-page: 460 article-title: Fast visualization of object contours by non‐photorealistic volume rendering publication-title: Computer Graphics Forum (Proc. of Eurographics) – start-page: 301 year: 2003 end-page: 308 – start-page: 287 year: 2005 end-page: 294 – year: 2007 – start-page: 139 year: 2004 end-page: 146 – volume: 21 start-page: 16 issue: 3 year: 2001 end-page: 22 article-title: The transfer function bake‐off publication-title: Computer Graphics and Applications – volume: 17 start-page: 1560 issue: 11 year: 2011 end-page: 1573 article-title: Efficient volume exploration using the Gaussian mixture model publication-title: IEEE TVCG – volume: 18 start-page: 1397 issue: 9 year: 2012 end-page: 1410 article-title: Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates publication-title: IEEE TVCG – start-page: 79 year: 1998 end-page: 86 – start-page: 281 year: 2006 end-page: 288 – volume: 1998 publication-title: Transfer function specification for the visualization of medical data – start-page: 366 year: 2002 end-page: 374 – start-page: 227‐ff year: 1996 – start-page: 15 year: 1998 end-page: 22 – volume: 12 start-page: 1021 issue: 5 year: 2006 end-page: 1028 article-title: High‐level user interfaces for transfer function design with semantics publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 357 year: 2012 end-page: 372 – start-page: 857 year: 2009 end-page: 860 – start-page: 41 year: 2008 end-page: 48 – volume: 22 start-page: 955 issue: 1 year: 2016 end-page: 964 article-title: Association analysis for visual exploration of multivariate scientific data sets publication-title: IEEE TVCG – start-page: 389 year: 1997 end-page: 400 – start-page: 65 year: 1988 end-page: 74 – start-page: 23 year: 2011 end-page: 30 – volume: 22 start-page: 975 issue: 1 year: 2016 end-page: 984 article-title: Visualizing tensor normal distributions at multiple levels of detail publication-title: IEEE TVCG – volume: 13 start-page: 1648 issue: 6 year: 2007 end-page: 1655 article-title: uncertainty visualization in medical volume rendering using probabilistic animation publication-title: IEEE TVCG (Proc. of Vis.) – volume: 7 start-page: 7 year: 2012 article-title: Exposure render: An interactive photo‐realistic volume rendering framework publication-title: PloS one – start-page: 513 year: 2003 end-page: 520 – volume: 9 start-page: 167 issue: 3 year: 2010 end-page: 180 article-title: Dimensionality reduction on multi‐dimensional transfer functions for multi‐channel volume data sets publication-title: Information Visualization – volume: 16 start-page: 1560 issue: 6 year: 2010 end-page: 8 article-title: Interactive vector field feature identification publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 17 year: 2010 end-page: 24 – start-page: 69 year: 2010 end-page: 76 – year: 2013 – start-page: 687 year: 2005 end-page: 694 – volume: 32 start-page: 540 issue: 5 year: 2008 end-page: 549 article-title: Volume visualization and exploration through flexible transfer function design publication-title: Computers & Graphics – volume: 12 start-page: 208 issue: 2 year: 2006 end-page: 218 article-title: Visualization of boundaries in volumetric data sets using lh histograms publication-title: IEEE TVCG – volume: 15 start-page: 395 issue: 3 year: 2009 end-page: 409 article-title: Semiautomatic transfer function initialization for abdominal visualization using self‐generating hierarchical radial basis function networks publication-title: IEEE TVCG – volume: 13 start-page: 1027 issue: 5 year: 2007 end-page: 1040 article-title: Interactive transfer function design based on editing direct volume rendered images publication-title: IEEE TVCG – volume: 13 start-page: 1336 issue: 6 year: 2007 end-page: 1343 article-title: Semantic layers for illustrative volume rendering publication-title: IEEE TVCG (Proc. of Vis.) – volume: 15 start-page: 1343 issue: 6 year: 2009 end-page: 1350 article-title: A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 271 year: 2005 end-page: 278 – volume: 13 start-page: 330 issue: 2 year: 2007 end-page: 341 article-title: Topology‐controlled volume rendering publication-title: IEEE TVCG – start-page: 913 year: 2007 end-page: 918 – volume: 17 start-page: 1295 issue: 9 year: 2011 end-page: 1306 article-title: Skeleton cuts — an efficient segmentation method for volume rendering publication-title: IEEE TVCG – volume: 36 start-page: 596 issue: 6 year: 2012 end-page: 606 article-title: Technical section: Transfer function combinations publication-title: Computers & Graphics – start-page: 177 year: 2004 end-page: 185 – start-page: 9 year: 2010 end-page: 16 – volume: 26 start-page: 715 issue: 3 year: 2007 end-page: 724 article-title: Style transfer functions for illustrative volume rendering publication-title: Computer Graphics Forum (Proc. of Eurographics) – start-page: 262 year: 2014 end-page: 266 – volume: 6 start-page: 124 issue: 2 year: 2000 end-page: 138 article-title: Strategies for direct volume rendering of diffusion tensor fields publication-title: IEEE TVCG – start-page: 175 year: 2003 end-page: 183 – start-page: 115 year: 2007 end-page: 122 – volume: 33 start-page: 91 issue: 3 year: 2014 end-page: 100 article-title: InSpectr: Multi‐modal exploration, visualization, and analysis of spectral data publication-title: Computer Graphics Forum (Proc. of EuroVis) – volume: 20 start-page: 46 issue: 5 year: 2000 end-page: 51 article-title: Volume data mining using 3D field topology analysis publication-title: Computer Graphics and Applications – start-page: 209 year: 2005 end-page: 216 – start-page: 58 year: 2000 end-page: 65 – volume: 15 start-page: 1473 issue: 6 year: 2009 end-page: 1480 article-title: Structuring feature space: A non‐parametric method for volumetric transfer function generation publication-title: IEEE TVCG – volume: 86 start-page: 270 issue: 3 year: 2007 end-page: 280 article-title: A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images publication-title: Computer Methods and Programs in Biomedicine – volume: 8 start-page: 270 issue: 3 year: 2002 end-page: 285 article-title: Multidimensional transfer functions for interactive volume rendering publication-title: IEEE TVCG – volume: 3 year: 2014 article-title: GuideME: Slice‐guided semiautomatic multivariate exploration of volumes publication-title: Computer Graphics Forum (Proc. of EuroVis) – start-page: 118 year: 1995 end-page: 125 – year: 2004 – volume: 19 start-page: 94 issue: 1 year: 2013 end-page: 107 article-title: Abstracting attribute space for transfer function exploration and design publication-title: IEEE TVCG – start-page: 35 year: 2014 end-page: 42 – volume: 17 start-page: 279 year: 2001 end-page: 286 article-title: Mastering transfer function specification by using VolumePro technology publication-title: Spring Conference on Computer Graphics – volume: 17 start-page: 192 issue: 2 year: 2011 end-page: 204 article-title: Visibility histograms and visibility‐driven transfer functions publication-title: IEEE TVCG – volume: 17 start-page: 870 issue: 4 year: 2013 end-page: 880 article-title: Information theory‐based automatic multimodal transfer function design publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2015 – volume: 1 start-page: 99 issue: 2 year: 1995 end-page: 108 article-title: Optical models for direct volume rendering publication-title: IEEE TVCG – volume: 14 start-page: 1571 issue: 6 year: 2008 end-page: 1578 article-title: The seismic analyzer: Interpreting and illustrating 2d seismic data publication-title: IEEE TVCG – start-page: 73 year: 2013 end-page: 80 – volume: 21 start-page: 174 issue: 2 year: 2015 end-page: 187 article-title: Exploring brushlet based 3D textures in transfer function specification for direct volume rendering of abdominal organs publication-title: IEEE TVCG – volume: 24 start-page: 303 issue: 3 year: 2005 end-page: 312 article-title: Real‐time ray‐casting and advanced shading of discrete isosurfaces publication-title: Computer Graphics Forum (Proc. of Eurographics) – start-page: 661 year: 2006 end-page: 670 – start-page: 227 year: 2006 end-page: 234 – start-page: 177 year: 2009 end-page: 184 – start-page: 101 year: 2008 end-page: 108 – volume: 3 year: 2015 article-title: Rule‐Enhanced Transfer Function Generation for Medical Volume Visualization publication-title: Computer Graphics Forum (Proc. of EuroVis) – volume: 12 start-page: 1570 issue: 6 year: 2006 end-page: 1579 article-title: Local histograms for design of transfer functions in direct volume rendering publication-title: IEEE TVCG – start-page: 671 year: 2005 end-page: 678 – start-page: 69 year: 2005 end-page: 76 – start-page: 323 year: 2008 end-page: 332 – start-page: 69 year: 2000 end-page: 76 – start-page: 13 year: 2007 end-page: 22 – volume: 15 start-page: 1481 issue: 6 year: 2009 end-page: 1488 article-title: Automatic transfer function generation using contour tree controlled residue flow model and color harmonics publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 467 year: 1999 end-page: 563 – start-page: 17 year: 2004 end-page: 24 – volume: 7 start-page: 265 issue: 3 year: 2001 end-page: 274 article-title: An attempt for coloring multichannel MR imaging data publication-title: IEEE TVCG – volume: 20 start-page: 2447 issue: 12 year: 2014 end-page: 2455 article-title: Boundary aware reconstruction of scalar fields publication-title: IEEE TVCG (Proc. of Vis.) – year: 2012 – start-page: 183 year: 1999 end-page: 524 – start-page: 66‐ year: 2003 – volume: 66 start-page: 24 issue: 1 year: 2004 end-page: 49 article-title: Topological volume skeletonization and its application to transfer function design publication-title: Graphical Models – volume: 20 start-page: 2516 issue: 12 year: 2014 end-page: 2525 article-title: Visualization of brain microstructure through spherical harmonics illumination of high fidelity spatio‐angular fields publication-title: IEEE TVCG (Proc. of Vis.) – volume: 12 start-page: 433 issue: 4 year: 2006 end-page: 445 article-title: HDR VolVis: high dynamic range volume visualization publication-title: IEEE TVCG – start-page: 259 year: 2006 end-page: 274 – year: 2006 – start-page: 77 year: 2010 end-page: 83 – volume: 14 start-page: 1380 issue: 6 year: 2008 end-page: 1387 article-title: Size‐based transfer functions: A new volume exploration technique publication-title: IEEE TVCG (Proc. of Vis.) – start-page: 201 year: 2009 end-page: 208 – volume: 8 start-page: 29 issue: 3 year: 1988 end-page: 37 article-title: Display of surfaces from volume data publication-title: Computer Graphics and Applications – start-page: 65 year: 2013 end-page: 72 – start-page: 131 year: 2007 end-page: 138 – volume: 31 start-page: 1305 issue: 3 year: 2012 end-page: 1314 article-title: Importance driven automatic color design for direct volume rendering publication-title: Computer Graphics Forum (Proc. of EuroVis) – ident: e_1_2_12_6_2 doi: 10.2312/conf/EG2012/stars/075-094 – ident: e_1_2_12_7_2 doi: 10.1109/VISUAL.2005.1532856 – ident: e_1_2_12_33_2 doi: 10.1109/VISUAL.1999.809932 – ident: e_1_2_12_119_2 doi: 10.1109/TVCG.2005.38 – ident: e_1_2_12_56_2 – ident: e_1_2_12_114_2 doi: 10.1111/cgf.12623 – ident: e_1_2_12_140_2 doi: 10.1111/cgf.12371 – ident: e_1_2_12_122_2 – ident: e_1_2_12_108_2 doi: 10.1109/TVCG.2014.2359462 – ident: e_1_2_12_13_2 doi: 10.1109/VISUAL.1995.480803 – ident: e_1_2_12_143_2 doi: 10.1109/TVCG.2009.120 – ident: e_1_2_12_3_2 doi: 10.1111/cgf.12365 – ident: e_1_2_12_78_2 doi: 10.1109/LDAV.2014.7013202 – ident: e_1_2_12_64_2 doi: 10.1109/VISUAL.2005.1532807 – ident: e_1_2_12_42_2 doi: 10.1109/PacificVis.2013.6596129 – ident: e_1_2_12_137_2 doi: 10.1109/VISUAL.2005.1532812 – ident: e_1_2_12_89_2 doi: 10.1109/PCCGA.2004.1348348 – ident: e_1_2_12_37_2 doi: 10.1109/TVCG.2008.25 – ident: e_1_2_12_130_2 doi: 10.1111/j.1467-8659.2012.03123.x – ident: e_1_2_12_8_2 doi: 10.1111/j.1467-8659.2007.01095.x – ident: e_1_2_12_21_2 doi: 10.1109/PACIFICVIS.2009.4906854 – ident: e_1_2_12_115_2 doi: 10.1007/978-3-540-39903-2_22 – ident: e_1_2_12_66_2 doi: 10.1109/VISUAL.1999.809886 – ident: e_1_2_12_80_2 doi: 10.1109/ICIEA.2007.4318542 – ident: e_1_2_12_53_2 doi: 10.1109/TVCG.2015.2467294 – ident: e_1_2_12_116_2 doi: 10.2312/VisSym/EuroVis06/243-250 – ident: e_1_2_12_55_2 doi: 10.1109/VISUAL.2000.885678 – ident: e_1_2_12_77_2 doi: 10.1109/TVCG.2015.2467431 – ident: e_1_2_12_104_2 – ident: e_1_2_12_83_2 doi: 10.1109/2945.468400 – ident: e_1_2_12_136_2 doi: 10.2312/VisSym/EuroVis06/251-258 – volume: 1998 ident: e_1_2_12_18_2 publication-title: Transfer function specification for the visualization of medical data – ident: e_1_2_12_93_2 doi: 10.1109/TVCG.2008.170 – ident: e_1_2_12_15_2 doi: 10.1109/TVCG.2014.2346411 – ident: e_1_2_12_131_2 doi: 10.1109/TVCG.2007.1051 – ident: e_1_2_12_111_2 doi: 10.1109/VISUAL.2005.1532858 – ident: e_1_2_12_54_2 doi: 10.1109/TVCG.2009.25 – ident: e_1_2_12_141_2 doi: 10.2312/VG/VG10/069-076 – ident: e_1_2_12_47_2 doi: 10.1109/VISUAL.1996.568113 – ident: e_1_2_12_85_2 doi: 10.1109/TVCG.2012.105 – ident: e_1_2_12_97_2 doi: 10.1145/1006058.1006066 – ident: e_1_2_12_52_2 doi: 10.1109/TVCG.2012.231 – ident: e_1_2_12_139_2 doi: 10.1109/PacificVis.2013.6596130 – ident: e_1_2_12_49_2 doi: 10.2312/VG/VG07/001-008 – ident: e_1_2_12_11_2 doi: 10.1109/TVCG.2006.96 – ident: e_1_2_12_19_2 doi: 10.1109/TVCG.2008.162 – ident: e_1_2_12_14_2 – ident: e_1_2_12_84_2 doi: 10.2312/VisSym/VisSym02/115-124 – ident: e_1_2_12_91_2 doi: 10.1016/j.cag.2008.08.006 – ident: e_1_2_12_75_2 doi: 10.1109/TVCG.2006.100 – ident: e_1_2_12_82_2 doi: 10.1145/258734.258887 – ident: e_1_2_12_12_2 doi: 10.1109/JBHI.2013.2263227 – ident: e_1_2_12_107_2 doi: 10.1145/288126.288140 – ident: e_1_2_12_105_2 doi: 10.1109/TVCG.2006.148 – ident: e_1_2_12_61_2 doi: 10.1371/journal.pone.0038586 – ident: e_1_2_12_5_2 doi: 10.1109/TVCG.2015.2467031 – volume-title: ImageVis3D: An interactive visualization software system for large‐scale volume data year: 2015 ident: e_1_2_12_17_2 – ident: e_1_2_12_28_2 doi: 10.1145/54852.378484 – ident: e_1_2_12_72_2 doi: 10.1109/TVCG.2010.195 – volume-title: The Paraview guide: a parallel visualization application year: 2004 ident: e_1_2_12_43_2 – ident: e_1_2_12_38_2 doi: 10.1109/PacificVis.2014.24 – ident: e_1_2_12_126_2 doi: 10.1109/TVCG.2005.62 – ident: e_1_2_12_142_2 doi: 10.1016/j.cag.2012.02.007 – ident: e_1_2_12_86_2 doi: 10.1109/2945.942694 – ident: e_1_2_12_117_2 doi: 10.1109/LDAV.2011.6092313 – ident: e_1_2_12_109_2 doi: 10.1016/j.cmpb.2007.03.008 – ident: e_1_2_12_124_2 doi: 10.2312/VG/VG05/137-145 – ident: e_1_2_12_20_2 doi: 10.1109/TVCG.2009.189 – ident: e_1_2_12_102_2 doi: 10.2312/VisSym/EuroVis05/271-278 – ident: e_1_2_12_133_2 doi: 10.1109/TVCG.2011.23 – ident: e_1_2_12_2_2 doi: 10.2312/VG/VG10/077-083 – ident: e_1_2_12_9_2 doi: 10.1111/j.1467-8659.2009.01474.x – ident: e_1_2_12_121_2 doi: 10.2312/VisSym/VisSym04/017-024 – ident: e_1_2_12_92_2 doi: 10.1109/SIBGRAPI.2005.52 – ident: e_1_2_12_48_2 – ident: e_1_2_12_88_2 doi: 10.1109/TVCG.2009.185 – start-page: 357 volume-title: Chapman & Hall/CRC Computational Science year: 2012 ident: e_1_2_12_16_2 – ident: e_1_2_12_36_2 doi: 10.1109/38.865879 – ident: e_1_2_12_118_2 doi: 10.1109/VISUAL.2003.1250413 – ident: e_1_2_12_113_2 – ident: e_1_2_12_65_2 doi: 10.1145/964965.808594 – ident: e_1_2_12_81_2 doi: 10.1109/ICMA.2007.4303986 – ident: e_1_2_12_94_2 – ident: e_1_2_12_112_2 doi: 10.1109/TVCG.2014.2346324 – ident: e_1_2_12_44_2 doi: 10.1109/TVCG.2011.258 – ident: e_1_2_12_10_2 doi: 10.2312/VisSym/EuroVis05/069-076 – ident: e_1_2_12_120_2 doi: 10.1109/PCCGA.2002.1167880 – ident: e_1_2_12_41_2 doi: 10.1109/TVCG.2012.80 – ident: e_1_2_12_45_2 doi: 10.1109/VISUAL.2003.1250386 – ident: e_1_2_12_23_2 doi: 10.1111/1467-8659.00538 – ident: e_1_2_12_135_2 doi: 10.1109/TVCG.2010.239 – ident: e_1_2_12_62_2 doi: 10.1057/ivs.2010.6 – ident: e_1_2_12_132_2 doi: 10.1109/ICICS.2009.5397587 – ident: e_1_2_12_123_2 doi: 10.1016/j.gmod.2003.08.002 – volume: 17 start-page: 279 year: 2001 ident: e_1_2_12_59_2 article-title: Mastering transfer function specification by using VolumePro technology publication-title: Spring Conference on Computer Graphics – ident: e_1_2_12_51_2 doi: 10.1111/j.1467-8659.2005.00855.x – ident: e_1_2_12_68_2 doi: 10.1109/VISUAL.2003.1250414 – ident: e_1_2_12_39_2 doi: 10.1109/TVCG.2011.261 – ident: e_1_2_12_110_2 doi: 10.1109/TVCG.2008.198 – ident: e_1_2_12_125_2 doi: 10.1109/VISUAL.2004.48 – ident: e_1_2_12_27_2 doi: 10.1109/TVCG.2010.170 – ident: e_1_2_12_34_2 doi: 10.1109/VISUAL.1998.745319 – ident: e_1_2_12_70_2 doi: 10.1109/38.511 – ident: e_1_2_12_87_2 doi: 10.5220/0001772701850190 – ident: e_1_2_12_106_2 doi: 10.1109/TVCG.2006.39 – ident: e_1_2_12_128_2 doi: 10.1109/TVCG.2011.97 – ident: e_1_2_12_60_2 doi: 10.1109/TVCG.2002.1021579 – ident: e_1_2_12_40_2 doi: 10.1109/PACIFICVIS.2011.5742368 – ident: e_1_2_12_101_2 doi: 10.1111/j.1467-8659.2008.01216.x – ident: e_1_2_12_127_2 doi: 10.1007/11893257_74 – ident: e_1_2_12_57_2 doi: 10.1145/1375714.1375729 – ident: e_1_2_12_138_2 doi: 10.1109/TVCG.2006.72 – ident: e_1_2_12_71_2 doi: 10.1109/TVCG.2014.2346351 – ident: e_1_2_12_31_2 doi: 10.1201/b10629 – ident: e_1_2_12_29_2 – ident: e_1_2_12_58_2 doi: 10.1109/SVV.1998.729588 – ident: e_1_2_12_73_2 doi: 10.1109/TVCG.2007.70518 – ident: e_1_2_12_98_2 doi: 10.1109/PACIFICVIS.2010.5429624 – ident: e_1_2_12_22_2 doi: 10.1109/TVCG.2010.35 – ident: e_1_2_12_76_2 doi: 10.2312/VG/VG06/001-008 – ident: e_1_2_12_99_2 doi: 10.1111/j.1467-8659.2011.01944.x – ident: e_1_2_12_32_2 doi: 10.1109/2945.998670 – ident: e_1_2_12_35_2 doi: 10.1109/TVCG.2009.115 – ident: e_1_2_12_96_2 doi: 10.1109/38.920623 – ident: e_1_2_12_50_2 doi: 10.1109/PACIFICVIS.2010.5429615 – ident: e_1_2_12_129_2 doi: 10.1109/TVCG.2007.47 – ident: e_1_2_12_63_2 doi: 10.1109/TVCG.2006.124 – ident: e_1_2_12_46_2 doi: 10.2312/VCBM/VCBM08/101-108 – ident: e_1_2_12_24_2 doi: 10.1109/2945.646238 – ident: e_1_2_12_25_2 doi: 10.1111/cgf.12624 – ident: e_1_2_12_90_2 doi: 10.1109/SIBGRAPI.2006.45 – ident: e_1_2_12_30_2 doi: 10.2312/VisSym/EuroVis07/131-138 – ident: e_1_2_12_79_2 doi: 10.2312/VisSym/EuroVis06/227-234 – ident: e_1_2_12_95_2 doi: 10.1109/PACIFICVIS.2009.4906857 – ident: e_1_2_12_4_2 doi: 10.2312/VisSym/EuroVis07/115-122 – ident: e_1_2_12_26_2 doi: 10.1109/TVCG.2008.169 – ident: e_1_2_12_103_2 doi: 10.2312/VG/VG-PBG08/041-048 – ident: e_1_2_12_69_2 doi: 10.1109/VISUAL.2005.1532854 – ident: e_1_2_12_100_2 doi: 10.1109/TVCG.2007.70591 – ident: e_1_2_12_134_2 doi: 10.1111/j.1467-8659.2012.03122.x – ident: e_1_2_12_74_2 doi: 10.2312/VisSym/EuroVis05/263-270 – ident: e_1_2_12_67_2 doi: 10.1109/2945.856994 |
| SSID | ssj0004765 |
| Score | 2.5129168 |
| Snippet | A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and... |
| SourceID | swepub proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 669 |
| SubjectTerms | Analysis and texture Automation Categories and Subject Descriptors (according to ACM CCS) Computer graphics Encoding I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Color I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Color, shading, shadowing, and texture I.3.8 [Computer Graphics]: Applications-Volume Rendering I.4.10 [Computer Graphics]: Image Representation-Volumetric Rendering shading shadowing Stars State of the art Studies Transfer functions Translating Visual Visualization |
| Title | State of the Art in Transfer Functions for Direct Volume Rendering |
| URI | https://api.istex.fr/ark:/67375/WNG-6SX01782-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12934 https://www.proquest.com/docview/1801479003 https://www.proquest.com/docview/1825539023 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130665 |
| Volume | 35 |
| WOSCitedRecordID | wos000379912300060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH4qMxzgwF4xUJBBCHEJyuIlFqcyJeVQjVChZW6W46UaUWVQpoP4-Tw7Cx0JJCRukfISJ8_v-fu8fQZ4VXqti9ywRNSFSxCP80TztE5MmlsWAF3oqK5_IhaLcrmUn_bg3bAXptOHGAfcQmbE9jokuK4315LcXPi3AazoDZjmGLdsAtOj0-rs5Pe2SMHZIO0dRGN6YaGwkGd8eAeOpsGzP3e5ZqcfuktdI_ZUd__rq-_BnZ5yksMuRu7DnmsewO1rQoQP4X3knGTtCfLBYElWDYkw5l1LKsS-GJ4EGS7pGklyHps1chqPosOXPIKz6sOX-cekP10hMUiBaGLzgtmMe-EcZ76w2I_JuEF65pyRRkuRey0KKo3UuWaptkbQ2jJBGa01gn6xD5Nm3bjHQHzptHTG0qxMaWFy7TNDM8Ol9dLR1M7gzeBkZXrp8XACxqUauiDoFhXdMoOXo-n3Tm_jT0avY02NFrr9FhaoCaa-Lo4V_7zEdqbM1XwGB0NVqj43NyoLgjkijODO4MV4G7MqTJXoxq23wQa7WoVEQoNldSEwFhYEuY9W54dq3V6oy9U2zAhyzvAnY8X__bPV_LiKF0_-3fQp3EKKxrvFaQcwuWq37hncND-uVpv2eR_xvwA3WQGR |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7UrqA-eBdXq0YR8WVkLrlMwJe6dVpxXaS2dd9CNpeyWGZl2hV_vieZi11QEHwbmDOTmZNz8n25fQF4WXqti9ywRCwKlyAe54nm6SIxaW5ZAHSho7r-VMxm5XwuP2_B234vTKsPMQy4hcyI7XVI8DAgfSnLzal_E9CKXoERxTDC-B7tHVbH09_7IgVnvbZ3UI3plIXCSp7h4Q08GgXX_twkm62A6CZ3jeBT3fq_z74NNzvSSXbbKLkDW66-CzcuSRHeg3eRdZKVJ8gIgyVZ1iQCmXcNqRD9YoAS5LikbSbJSWzYyGE8jA5fch-Oq_dHk4OkO18hMUiCaGLzgtmMe-EcZ76w2JPJuEGC5pyRRkuRey0KKo3UuWaptkbQhWWCMrrQCPvFA9iuV7V7CMSXTktnLM3KlBYm1z4zNDNcWi8dTe0YXvdeVqYTHw9nYJypvhOCblHRLWN4MZh-bxU3_mT0KlbVYKGbb2GJmmDq62xf8S9zbGnKXE3GsNPXpeqy81xlQTJHhDHcMTwfbmNehckSXbvVOthgZ6uQSGmwrDYGhsKCJPfe8mRXrZpTdbZchzlBzhn-ZKz5v3-2muxX8eLRv5s-g2sHR5-mavph9vExXEfCxtulajuwfdGs3RO4an5cLM-bp134_wKjKQWB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFH6kdintoXup26SdlhJ6UdAyiwZySewqCTUmpFl8G8azBNMgByUu-fmZGS2JIYVCbwI9aaQ3b_lm-x7At9xKmaWKRGyWmcjl4zSSNJ5FKk418QmdycCuP2aTST6d8sM12G7PwtT8EN2Em_eMEK-9g5tLbe95uTq3Wz5b4UfQx76ITA_6o6PiZHx3LpJR0nJ7e9aYhlnI7-TpHl7JR32v2ptVsFkTiK5i15B8ihf_99kv4XkDOtFObSWvYM2Ur-HZPSrCN7AbUCdaWOQQoZdE8xKFRGZNhQqX_YKBIodxUR0m0WkIbOgoFKNzL3kLJ8WP4-F-1NRXiJQDQTjSaUZ0Qi0zhhKbaTeSSahyAM0YxZXkLLWSZZgrLlNJYqkVwzNNGCZ4Jl3az95Br1yU5j0gmxvJjdI4yWOcqVTaROFEUa4tNzjWA_jealmohnzc18C4EO0gxKlFBLUM4GsnelkzbjwktBm6qpOQ1W-_RY0RcTbZE_TX1EWaPBXDAay3fSka77wSiafMYX4OdwBfutvOr_xiiSzNYull3GAr4w7SuLZqG-ga85Tco_npjlhU5-JivvRrgpQS95Oh5__-2WK4V4SLD_8u-hmeHI4KMT6Y_PwITx1eo_VOtXXoXVdLswGP1Z_r-VX1qbH-WyYBBPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+Art+in+Transfer+Functions+for+Direct+Volume+Rendering&rft.jtitle=Computer+graphics+forum&rft.au=Ljung%2C+Patric&rft.au=Kr%C3%BCger%2C+Jens&rft.au=Groller%2C+Eduard&rft.au=Hadwiger%2C+Markus&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=669&rft.epage=691&rft_id=info:doi/10.1111%2Fcgf.12934&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12934 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |