A classification and regression tree algorithm for heart disease modeling and prediction

Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare analytics (New York, N.Y.) Jg. 3; S. 100130
Hauptverfasser: Ozcan, Mert, Peker, Serhat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.11.2023
Elsevier
Schlagworte:
ISSN:2772-4425, 2772-4425
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification and Regression Tree (CART) algorithm, a supervised machine learning method, has been employed to predict heart disease and extract decision rules in clarifying relationships between input and output variables. In addition, the study’s findings rank the features influencing heart disease based on importance. When considering all performance parameters, the 87% accuracy of the prediction validates the model’s reliability. On the other hand, extracted decision rules reported in the study can simplify the use of clinical purposes without needing additional knowledge. Overall, the proposed algorithm can support not only healthcare professionals but patients who are subjected to cost and time constraints in the diagnosis and treatment processes of heart disease. •We employ a decision tree algorithm to model and predict heart disease.•We build and train the decision model using electronic health records data of 1190 patients.•On the basis of patients’ characteristics and using decision tree analysis, IF–THEN rules are extracted.•The importance of features in the decision tree analysis has been investigated.•The Classification and Regression Tree (CART) algorithm performs reasonably well in predicting heart disease.
AbstractList Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification and Regression Tree (CART) algorithm, a supervised machine learning method, has been employed to predict heart disease and extract decision rules in clarifying relationships between input and output variables. In addition, the study’s findings rank the features influencing heart disease based on importance. When considering all performance parameters, the 87% accuracy of the prediction validates the model’s reliability. On the other hand, extracted decision rules reported in the study can simplify the use of clinical purposes without needing additional knowledge. Overall, the proposed algorithm can support not only healthcare professionals but patients who are subjected to cost and time constraints in the diagnosis and treatment processes of heart disease.
AbstractHeart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification and Regression Tree (CART) algorithm, a supervised machine learning method, has been employed to predict heart disease and extract decision rules in clarifying relationships between input and output variables. In addition, the study’s findings rank the features influencing heart disease based on importance. When considering all performance parameters, the 87% accuracy of the prediction validates the model’s reliability. On the other hand, extracted decision rules reported in the study can simplify the use of clinical purposes without needing additional knowledge. Overall, the proposed algorithm can support not only healthcare professionals but patients who are subjected to cost and time constraints in the diagnosis and treatment processes of heart disease.
Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification and Regression Tree (CART) algorithm, a supervised machine learning method, has been employed to predict heart disease and extract decision rules in clarifying relationships between input and output variables. In addition, the study’s findings rank the features influencing heart disease based on importance. When considering all performance parameters, the 87% accuracy of the prediction validates the model’s reliability. On the other hand, extracted decision rules reported in the study can simplify the use of clinical purposes without needing additional knowledge. Overall, the proposed algorithm can support not only healthcare professionals but patients who are subjected to cost and time constraints in the diagnosis and treatment processes of heart disease. •We employ a decision tree algorithm to model and predict heart disease.•We build and train the decision model using electronic health records data of 1190 patients.•On the basis of patients’ characteristics and using decision tree analysis, IF–THEN rules are extracted.•The importance of features in the decision tree analysis has been investigated.•The Classification and Regression Tree (CART) algorithm performs reasonably well in predicting heart disease.
ArticleNumber 100130
Author Ozcan, Mert
Peker, Serhat
Author_xml – sequence: 1
  givenname: Mert
  surname: Ozcan
  fullname: Ozcan, Mert
  email: ozcanmert87@gmail.com
– sequence: 2
  givenname: Serhat
  surname: Peker
  fullname: Peker, Serhat
  email: serhat.peker@bakircay.edu.tr
BookMark eNqVkt1q3DAQhUVIoWmaN-iFX2C3I1mWvaUUQmh-INCLJJC7YSyNd-V4rSC5hbx95XULpVBCryQNc86Mvpl34ngMIwvxQcJagjQf-_WOaZh2awVK5RDIEo7EiaprtdJaVcd_3N-Ks5R6AFBNTqzhRDyeF3aglHznLU0-jAWNroi8jZyD-TlF5oKGbYh-2u2LLsQi14tT4XxiSlzsg-PBj9uD8Dmy83b2eS_edDQkPvt1noqHy6_3F9er229XNxfntyurtYQVbRogV3Wyrjogk3tqlXVKamqos27TatMabWtdKXBNW5fUbQxTTqtsS7YsT8XN4usC9fgc_Z7iCwbyeAiEuMXcrbcDI5TWNG3VlKYETdIRG6nItJpUVZpKZ69Pi5eNIaXIHVo_HahMkfyAEnBGjj0uyHFGjgvyLNZ_iX8384rsyyLjDOmH54jJeh5t5hjZTvkX_n8NbB5HnubwxC-c-vA9jnkAKDEpBLybl2HeBaVgXoGZ4Od_G7xe_yfsZMfD
CitedBy_id crossref_primary_10_1007_s13042_023_02091_2
crossref_primary_10_1016_j_health_2023_100248
crossref_primary_10_1016_j_jobe_2023_108373
crossref_primary_10_1016_j_jobe_2024_109344
crossref_primary_10_3390_healthcare13050507
crossref_primary_10_1080_23737484_2024_2434837
crossref_primary_10_3233_JIFS_233443
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_3390_electronics13112210
crossref_primary_10_1038_s41598_024_69071_6
crossref_primary_10_32628_IJSRSET2512542
crossref_primary_10_1016_j_acvd_2025_04_055
crossref_primary_10_1016_j_apr_2025_102610
crossref_primary_10_3390_met14050539
crossref_primary_10_1016_j_ijmedinf_2024_105608
crossref_primary_10_3390_computation13050116
crossref_primary_10_1109_ACCESS_2024_3350996
crossref_primary_10_1080_10255842_2024_2310075
crossref_primary_10_1007_s11042_023_17910_5
crossref_primary_10_3389_fmed_2024_1362397
crossref_primary_10_1016_j_bspc_2024_107070
crossref_primary_10_1186_s43067_024_00190_w
crossref_primary_10_1007_s44174_025_00453_8
crossref_primary_10_3390_app131810146
crossref_primary_10_3390_pr11041210
crossref_primary_10_1186_s44147_023_00280_y
crossref_primary_10_1007_s10278_025_01435_4
crossref_primary_10_1080_15435075_2025_2450468
crossref_primary_10_1142_S0219649225500285
crossref_primary_10_1007_s41870_023_01321_8
crossref_primary_10_1371_journal_pone_0295653
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_1016_j_ejor_2025_08_050
crossref_primary_10_1007_s12559_024_10306_z
crossref_primary_10_47992_IJHSP_2581_6411_0130
crossref_primary_10_1109_JSEN_2024_3373429
crossref_primary_10_1007_s00521_025_11347_7
crossref_primary_10_1109_ACCESS_2025_3574310
crossref_primary_10_3390_s24247879
crossref_primary_10_1007_s11042_025_20974_0
crossref_primary_10_1109_ACCESS_2024_3412077
crossref_primary_10_1016_j_health_2024_100312
crossref_primary_10_3390_electronics13010163
crossref_primary_10_3390_admsci15090355
crossref_primary_10_1038_s41598_023_49962_w
crossref_primary_10_1007_s42044_025_00321_0
crossref_primary_10_33003_fjs_2025_0903_3263
crossref_primary_10_1051_bioconf_202414803002
crossref_primary_10_1186_s12911_023_02179_3
crossref_primary_10_3390_a17020078
crossref_primary_10_1038_s41598_024_58489_7
crossref_primary_10_3390_pr12030490
crossref_primary_10_1038_s41598_025_85561_7
crossref_primary_10_3390_bioengineering12050463
crossref_primary_10_62762_TACS_2024_794425
Cites_doi 10.1155/2022/2585235
10.1109/ACCESS.2020.3001149
10.1007/s42979-021-00518-7
10.1007/s00521-016-2604-1
10.1016/j.aap.2012.09.006
10.3390/su14031800
10.1016/j.artmed.2022.102289
10.3390/app11031285
10.1007/s40860-021-00133-6
10.1016/j.amepre.2021.04.016
10.1016/j.eswa.2013.05.027
10.1007/s42979-020-00365-y
10.1016/j.eswa.2014.10.009
10.1016/j.compbiomed.2020.104095
10.1016/j.asoc.2018.09.001
10.1109/ICDABI53623.2021.9655783
10.1007/s10916-011-9710-5
10.1016/j.compbiomed.2019.04.001
10.1016/j.cmpb.2020.105400
10.1007/978-981-10-6747-1_4
10.1016/j.compbiomed.2022.105624
10.1108/K-05-2017-0164
10.1016/j.compbiomed.2021.104672
10.1109/ICOEI.2019.8862604
10.1007/s10741-020-10052-y
10.1016/j.eswa.2011.07.035
10.1109/ISNE.2019.8896650
ContentType Journal Article
Copyright 2022 The Author(s)
The Author(s)
Copyright_xml – notice: 2022 The Author(s)
– notice: The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.health.2022.100130
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2772-4425
EndPage 100130
ExternalDocumentID oai_doaj_org_article_03c68b5836304a1dae612a6b4a253654
10_1016_j_health_2022_100130
S2772442522000703
1_s2_0_S2772442522000703
GroupedDBID .1-
.FO
0R~
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
Z5R
AAHOK
6I.
AAFTH
AFCTW
AAYXX
CITATION
ID FETCH-LOGICAL-c4410-a980ad5f175f0a6070b2cd214a8afcd9b46b64c74520d8b73af96ea70b5cbac33
IEDL.DBID DOA
ISSN 2772-4425
IngestDate Fri Oct 03 12:48:30 EDT 2025
Sat Nov 29 07:32:56 EST 2025
Tue Nov 18 22:25:27 EST 2025
Tue Jul 25 20:56:07 EDT 2023
Tue Feb 25 19:58:46 EST 2025
Tue Aug 26 16:32:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data mining
Decision trees
Predictive analytics
Classification and regression trees
Machine learning
Decision rule
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4410-a980ad5f175f0a6070b2cd214a8afcd9b46b64c74520d8b73af96ea70b5cbac33
OpenAccessLink https://doaj.org/article/03c68b5836304a1dae612a6b4a253654
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_03c68b5836304a1dae612a6b4a253654
crossref_citationtrail_10_1016_j_health_2022_100130
crossref_primary_10_1016_j_health_2022_100130
elsevier_sciencedirect_doi_10_1016_j_health_2022_100130
elsevier_clinicalkeyesjournals_1_s2_0_S2772442522000703
elsevier_clinicalkey_doi_10_1016_j_health_2022_100130
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Healthcare analytics (New York, N.Y.)
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Alalawi, Alsuwat (b28) 2021; 10
Ying (b50) 2019; 1168
Sann, Lai, Liaw, Chen (b35) 2022; 14
Siddhartha (b27) 2020
Yılmaz, Yağın (b29) 2022; 4
Li, Haq, Din, Khan, Khan, Saboor (b20) 2020; 8
Ghiasi, Zendehboudi (b38) 2019; 108
A.N. Repaka, S.D. Ravikanti, R.G. Franklin, Design and Implementing Heart Disease Prediction Using NaiveS Bayesian, in: Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, 2019, pp. 292–297
Bodapati, Krishna Sajja, Mundukur, Veeranjaneyulu (b34) 2019; 24
Yoo (b42) 2012; 36
Diwakar, Tripathi, Joshi, Memoria, Singh, Kumar (b9) 2020; 37
Mirmozaffari, Alinezhad, Gilanpour (b24) 2017; 4
T. Xie, R. Li, X. Zhang, B. Zhou, Z. Wang, Research on heartbeat classification algorithm based on cart decision tree, in: 8th International Symposium on Next Generation Electronics, ISNE 2019, 2019, pp. 27–29
Ahsan, Siddique (b6) 2022; 128
Shah, Patel, Bharti (b19) 2020; 1
Tiwari, Chugh, Sharma (b31) 2022; 146
Chang, Bhavani, Xu, Hossain (b5) 2022; 2
Yewale, Vijayragavan (b16) 2022
Yahaya, David Oye, Joshua Garba (b8) 2020; 4
Alizadehsani (b14) 2021; 128
.
Dwivedi (b45) 2018; 29
Moon, Kang, Jitpitaklert, Kim (b37) 2012; 39
(b4) 2022
De Oña, López, Abellán (b49) 2013; 50
Ayon, Islam, Hossain (b46) 2020
Pandey, Mishra, Gautam (b32) 2020; 9
Jebakumar, Ravanan (b33) 2021; 25
(b41) 2022
Mohd Faizal, Thevarajah, Khor, Chang (b10) 2021; 207
Ali, Paul, Ahmed, Bui, Quinn, Moni (b18) 2021; 136
(b1) 2022
Biswas, Mohammad, Uddin, Tasmin (b11) 2022; 2
Ha, Doumouras, (Nancy) Wang, Tranmer, Lee (b13) 2022; 38
Abellán, López, De Oña (b36) 2013; 40
Alanazi (b7) 2022; 30
Pathan, Nag, Pathan, Dev (b23) 2022; 2
Kodati, Vivekanandam, Ravi (b25) 2019
Zhao, Wood, Mirin, Cook, Chunara (b15) 2021; 61
Peker, Kocyigit, Eren (b47) 2017; 46
Porto, Molina, Berlanga, Patricio (b17) 2021; 11
(b2) 2022
Mpanya, Celik, Klug, Ntsinjana (b12) 2021; 26
Doppala, Bhattacharyya, Janarthanan, Baik (b30) 2022; 2022
Rani, Kumar, Ahmed, Jain (b22) 2021; 7
Batra, Agrawal (b39) 2018; 652
Ripan (b26) 2021; 2
Ghiasi, Zendehboudi, Mohsenipour (b40) 2020; 192
R. Williams, T. Shongwe, A.N. Hasan, V. Rameshar, Heart Disease Prediction using Machine Learning Techniques, in: 2021 International Conference on Data Analytics for Business and Industry, ICDABI 2021, 2021, pp. 118–123
Mistikoglu, Gerek, Erdis, Mumtaz Usmen, Cakan, Kazan (b44) 2015; 42
Khalili-Damghani, Abdi, Abolmakarem (b48) 2018; 73
(10.1016/j.health.2022.100130_b4) 2022
Abellán (10.1016/j.health.2022.100130_b36) 2013; 40
Mpanya (10.1016/j.health.2022.100130_b12) 2021; 26
Mirmozaffari (10.1016/j.health.2022.100130_b24) 2017; 4
Tiwari (10.1016/j.health.2022.100130_b31) 2022; 146
Chang (10.1016/j.health.2022.100130_b5) 2022; 2
Batra (10.1016/j.health.2022.100130_b39) 2018; 652
Jebakumar (10.1016/j.health.2022.100130_b33) 2021; 25
Ahsan (10.1016/j.health.2022.100130_b6) 2022; 128
Peker (10.1016/j.health.2022.100130_b47) 2017; 46
(10.1016/j.health.2022.100130_b1) 2022
Khalili-Damghani (10.1016/j.health.2022.100130_b48) 2018; 73
Ying (10.1016/j.health.2022.100130_b50) 2019; 1168
Moon (10.1016/j.health.2022.100130_b37) 2012; 39
Alalawi (10.1016/j.health.2022.100130_b28) 2021; 10
Zhao (10.1016/j.health.2022.100130_b15) 2021; 61
Alanazi (10.1016/j.health.2022.100130_b7) 2022; 30
Mohd Faizal (10.1016/j.health.2022.100130_b10) 2021; 207
De Oña (10.1016/j.health.2022.100130_b49) 2013; 50
10.1016/j.health.2022.100130_b21
Dwivedi (10.1016/j.health.2022.100130_b45) 2018; 29
Doppala (10.1016/j.health.2022.100130_b30) 2022; 2022
Biswas (10.1016/j.health.2022.100130_b11) 2022; 2
Yılmaz (10.1016/j.health.2022.100130_b29) 2022; 4
Ripan (10.1016/j.health.2022.100130_b26) 2021; 2
Porto (10.1016/j.health.2022.100130_b17) 2021; 11
Mistikoglu (10.1016/j.health.2022.100130_b44) 2015; 42
(10.1016/j.health.2022.100130_b41) 2022
Li (10.1016/j.health.2022.100130_b20) 2020; 8
Yahaya (10.1016/j.health.2022.100130_b8) 2020; 4
Pathan (10.1016/j.health.2022.100130_b23) 2022; 2
10.1016/j.health.2022.100130_b3
(10.1016/j.health.2022.100130_b2) 2022
Ha (10.1016/j.health.2022.100130_b13) 2022; 38
Yewale (10.1016/j.health.2022.100130_b16) 2022
Diwakar (10.1016/j.health.2022.100130_b9) 2020; 37
Sann (10.1016/j.health.2022.100130_b35) 2022; 14
Pandey (10.1016/j.health.2022.100130_b32) 2020; 9
Shah (10.1016/j.health.2022.100130_b19) 2020; 1
Ghiasi (10.1016/j.health.2022.100130_b40) 2020; 192
Rani (10.1016/j.health.2022.100130_b22) 2021; 7
Ali (10.1016/j.health.2022.100130_b18) 2021; 136
Siddhartha (10.1016/j.health.2022.100130_b27) 2020
10.1016/j.health.2022.100130_b43
Yoo (10.1016/j.health.2022.100130_b42) 2012; 36
Ghiasi (10.1016/j.health.2022.100130_b38) 2019; 108
Alizadehsani (10.1016/j.health.2022.100130_b14) 2021; 128
Bodapati (10.1016/j.health.2022.100130_b34) 2019; 24
Ayon (10.1016/j.health.2022.100130_b46) 2020
Kodati (10.1016/j.health.2022.100130_b25) 2019
References_xml – volume: 2
  year: 2022
  ident: b23
  article-title: Analyzing the impact of feature selection on the accuracy of heart disease prediction
  publication-title: Healthc. Anal.
– volume: 24
  start-page: 255
  year: 2019
  end-page: 260
  ident: b34
  article-title: Robust cluster-then-label (RCTL) approach for heart disease prediction
  publication-title: Ing. Des Syst. d’Inf.
– volume: 128
  year: 2021
  ident: b14
  article-title: Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991–2020
  publication-title: Comput. Biol. Med.
– reference: A.N. Repaka, S.D. Ravikanti, R.G. Franklin, Design and Implementing Heart Disease Prediction Using NaiveS Bayesian, in: Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, 2019, pp. 292–297,
– volume: 7
  start-page: 263
  year: 2021
  end-page: 275
  ident: b22
  article-title: A decision support system for heart disease prediction based upon machine learning
  publication-title: J. Reliab. Intell. Environ.
– volume: 29
  start-page: 685
  year: 2018
  end-page: 693
  ident: b45
  article-title: Performance evaluation of different machine learning techniques for prediction of heart disease
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b27
  article-title: Heart Disease Dataset (Comprehensive)
– volume: 128
  year: 2022
  ident: b6
  article-title: Machine learning-based heart disease diagnosis: A systematic literature review
  publication-title: Artif. Intell. Med.
– year: 2022
  ident: b41
  article-title: What is R?
– volume: 73
  start-page: 816
  year: 2018
  end-page: 828
  ident: b48
  article-title: Hybrid soft computing approach based on clustering, rule mining, and decision tree analysis for customer segmentation problem: Real case of customer-centric industries
  publication-title: Appl. Soft Comput.
– volume: 46
  start-page: 1614
  year: 2017
  end-page: 1631
  ident: b47
  article-title: A hybrid approach for predicting customers’ individual purchase behavior
  publication-title: Kybernetes
– volume: 192
  year: 2020
  ident: b40
  article-title: Decision tree-based diagnosis of coronary artery disease: CART model
  publication-title: Comput. Methods Programs Biomed.
– volume: 1168
  year: 2019
  ident: b50
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys. Conf. Ser.
– reference: R. Williams, T. Shongwe, A.N. Hasan, V. Rameshar, Heart Disease Prediction using Machine Learning Techniques, in: 2021 International Conference on Data Analytics for Business and Industry, ICDABI 2021, 2021, pp. 118–123,
– volume: 108
  start-page: 400
  year: 2019
  end-page: 409
  ident: b38
  article-title: Decision tree-based methodology to select a proper approach for wart treatment
  publication-title: Comput. Biol. Med.
– volume: 37
  start-page: 3213
  year: 2020
  end-page: 3218
  ident: b9
  article-title: Latest trends on heart disease prediction using machine learning and image fusion
  publication-title: Mater. Today Proc.
– volume: 14
  year: 2022
  ident: b35
  article-title: Predicting online complaining behavior in the hospitality industry: Application of big data analytics to online reviews
  publication-title: Sustainability
– volume: 10
  start-page: 151
  year: 2021
  end-page: 157
  ident: b28
  article-title: Detection of cardiovascular disease using machine learning classification models
  publication-title: Int. J. Eng. Res. Technol.
– year: 2019
  ident: b25
  article-title: Comparative Analysis of Clustering Algorithms with Heart Disease Datasets using Data Mining Weka Tool
– volume: 50
  start-page: 1151
  year: 2013
  end-page: 1160
  ident: b49
  article-title: Extracting decision rules from police accident reports through decision trees
  publication-title: Accid. Anal. Prev.
– volume: 4
  start-page: 1
  year: 2022
  end-page: 6
  ident: b29
  article-title: Early detection of coronary heart disease based on machine learning methods
  publication-title: Med. Rec. Med. J.
– volume: 136
  year: 2021
  ident: b18
  article-title: Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison
  publication-title: Comput. Biol. Med.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 12
  ident: b26
  article-title: A data-driven heart disease prediction model through K-means clustering-based anomaly detection
  publication-title: SN Comput. Sci.
– volume: 26
  start-page: 545
  year: 2021
  end-page: 552
  ident: b12
  article-title: Machine learning and statistical methods for predicting mortality in heart failure
  publication-title: Heart Fail. Rev.
– volume: 2022
  year: 2022
  ident: b30
  article-title: A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques
  publication-title: J. Healthc. Eng.
– volume: 9
  start-page: 136
  year: 2020
  end-page: 143
  ident: b32
  article-title: Cluster based mining for prediction of heart disease
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– volume: 61
  start-page: 596
  year: 2021
  end-page: 605
  ident: b15
  article-title: Social determinants in machine learning cardiovascular disease prediction models: A systematic review
  publication-title: Am. J. Prev. Med.
– start-page: 1
  year: 2020
  end-page: 20
  ident: b46
  article-title: Coronary artery heart disease prediction : A comparative study of computational intelligence techniques coronary artery heart disease prediction : A comparative study of
  publication-title: IETE J. Res.
– volume: 4
  year: 2017
  ident: b24
  article-title: Heart disease prediction with data mining clustering algorithms
  publication-title: Int. J. Comput. Commun. Instrum. Eng.
– year: 2022
  ident: b16
  article-title: Comprehensive review on machine learning approach for heart disease prediction : Current status and future prospects comprehensive review on machine learning approach for heart disease prediction : Current status and future prospects
– volume: 30
  year: 2022
  ident: b7
  article-title: Using machine learning for healthcare challenges and opportunities
  publication-title: Inform. Med. Unlocked
– volume: 1
  start-page: 345
  year: 2020
  ident: b19
  article-title: Heart disease prediction using machine learning techniques
  publication-title: SN Comput. Sci.
– volume: 40
  start-page: 6047
  year: 2013
  end-page: 6054
  ident: b36
  article-title: Analysis of traffic accident severity using decision rules via decision trees
  publication-title: Expert Syst. Appl.
– volume: 652
  start-page: 31
  year: 2018
  end-page: 36
  ident: b39
  article-title: Comparative analysis of decision tree algorithms
  publication-title: Adv. Intell. Syst. Comput.
– volume: 207
  year: 2021
  ident: b10
  article-title: A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach
  publication-title: Comput. Methods Programs Biomed.
– volume: 36
  start-page: 2431
  year: 2012
  end-page: 2448
  ident: b42
  article-title: Data mining in healthcare and biomedicine: A survey of the literature
  publication-title: J. Med. Syst.
– year: 2022
  ident: b4
  article-title: Cardiovascular Diseases
– year: 2022
  ident: b1
  article-title: Heart Disease Overview
– volume: 25
  start-page: 4269
  year: 2021
  end-page: 4289
  ident: b33
  article-title: A deductive learning of heart disease dataset by using K means clustering
  publication-title: Ann. Rom. Soc. Cell Biol.
– volume: 42
  start-page: 2256
  year: 2015
  end-page: 2263
  ident: b44
  article-title: Decision tree analysis of construction fall accidents involving roofers
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 107562
  year: 2020
  end-page: 107582
  ident: b20
  article-title: Heart disease identification method using machine learning classification in E-healthcare
  publication-title: IEEE Access
– volume: 2
  year: 2022
  ident: b5
  article-title: An artificial intelligence model for heart disease detection using machine learning algorithms
  publication-title: Healthc. Anal.
– volume: 146
  year: 2022
  ident: b31
  article-title: Ensemble framework for cardiovascular disease prediction
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: b2
  article-title: Coronary Heart Disease - Diagnosis
– reference: .
– volume: 4
  start-page: 20
  year: 2020
  ident: b8
  article-title: A comprehensive review on heart disease prediction using data mining and machine learning techniques
  publication-title: Am. J. Artif. Intell.
– volume: 38
  start-page: 465
  year: 2022
  end-page: 478
  ident: b13
  article-title: Prediction of sudden cardiac arrest in the general population: Review of traditional and emerging risk factors
  publication-title: Can. J. Cardiol.
– volume: 2
  year: 2022
  ident: b11
  article-title: Healthcare analytics a comparative analysis of machine learning classifiers for stroke prediction : A predictive analytics approach
  publication-title: Healthc. Anal.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 18
  ident: b17
  article-title: Minimum relevant features to obtain explainable systems for predicting cardiovascular disease using the statlog data set
  publication-title: Appl. Sci.
– volume: 39
  start-page: 445
  year: 2012
  end-page: 451
  ident: b37
  article-title: Decision tree models for characterizing smoking patterns of older adults
  publication-title: Expert Syst. Appl.
– reference: T. Xie, R. Li, X. Zhang, B. Zhou, Z. Wang, Research on heartbeat classification algorithm based on cart decision tree, in: 8th International Symposium on Next Generation Electronics, ISNE 2019, 2019, pp. 27–29,
– volume: 2022
  year: 2022
  ident: 10.1016/j.health.2022.100130_b30
  article-title: A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/2585235
– volume: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.health.2022.100130_b24
  article-title: Heart disease prediction with data mining clustering algorithms
  publication-title: Int. J. Comput. Commun. Instrum. Eng.
– volume: 8
  start-page: 107562
  year: 2020
  ident: 10.1016/j.health.2022.100130_b20
  article-title: Heart disease identification method using machine learning classification in E-healthcare
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001149
– volume: 2
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.health.2022.100130_b26
  article-title: A data-driven heart disease prediction model through K-means clustering-based anomaly detection
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00518-7
– volume: 29
  start-page: 685
  issue: 10
  year: 2018
  ident: 10.1016/j.health.2022.100130_b45
  article-title: Performance evaluation of different machine learning techniques for prediction of heart disease
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2604-1
– year: 2022
  ident: 10.1016/j.health.2022.100130_b16
– volume: 50
  start-page: 1151
  year: 2013
  ident: 10.1016/j.health.2022.100130_b49
  article-title: Extracting decision rules from police accident reports through decision trees
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2012.09.006
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.health.2022.100130_b35
  article-title: Predicting online complaining behavior in the hospitality industry: Application of big data analytics to online reviews
  publication-title: Sustainability
  doi: 10.3390/su14031800
– volume: 128
  year: 2022
  ident: 10.1016/j.health.2022.100130_b6
  article-title: Machine learning-based heart disease diagnosis: A systematic literature review
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102289
– volume: 11
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.health.2022.100130_b17
  article-title: Minimum relevant features to obtain explainable systems for predicting cardiovascular disease using the statlog data set
  publication-title: Appl. Sci.
  doi: 10.3390/app11031285
– volume: 30
  issue: 100924
  year: 2022
  ident: 10.1016/j.health.2022.100130_b7
  article-title: Using machine learning for healthcare challenges and opportunities
  publication-title: Inform. Med. Unlocked
– volume: 7
  start-page: 263
  issue: 3
  year: 2021
  ident: 10.1016/j.health.2022.100130_b22
  article-title: A decision support system for heart disease prediction based upon machine learning
  publication-title: J. Reliab. Intell. Environ.
  doi: 10.1007/s40860-021-00133-6
– volume: 2
  year: 2022
  ident: 10.1016/j.health.2022.100130_b11
  article-title: Healthcare analytics a comparative analysis of machine learning classifiers for stroke prediction : A predictive analytics approach
  publication-title: Healthc. Anal.
– year: 2019
  ident: 10.1016/j.health.2022.100130_b25
– volume: 61
  start-page: 596
  issue: 4
  year: 2021
  ident: 10.1016/j.health.2022.100130_b15
  article-title: Social determinants in machine learning cardiovascular disease prediction models: A systematic review
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2021.04.016
– volume: 40
  start-page: 6047
  issue: 15
  year: 2013
  ident: 10.1016/j.health.2022.100130_b36
  article-title: Analysis of traffic accident severity using decision rules via decision trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.027
– volume: 1
  start-page: 345
  year: 2020
  ident: 10.1016/j.health.2022.100130_b19
  article-title: Heart disease prediction using machine learning techniques
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00365-y
– volume: 42
  start-page: 2256
  issue: 4
  year: 2015
  ident: 10.1016/j.health.2022.100130_b44
  article-title: Decision tree analysis of construction fall accidents involving roofers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.009
– volume: 128
  year: 2021
  ident: 10.1016/j.health.2022.100130_b14
  article-title: Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991–2020
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104095
– volume: 73
  start-page: 816
  year: 2018
  ident: 10.1016/j.health.2022.100130_b48
  article-title: Hybrid soft computing approach based on clustering, rule mining, and decision tree analysis for customer segmentation problem: Real case of customer-centric industries
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.001
– ident: 10.1016/j.health.2022.100130_b3
  doi: 10.1109/ICDABI53623.2021.9655783
– volume: 36
  start-page: 2431
  issue: 4
  year: 2012
  ident: 10.1016/j.health.2022.100130_b42
  article-title: Data mining in healthcare and biomedicine: A survey of the literature
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9710-5
– volume: 1168
  issue: 2
  year: 2019
  ident: 10.1016/j.health.2022.100130_b50
  article-title: An overview of overfitting and its solutions
  publication-title: J. Phys. Conf. Ser.
– volume: 108
  start-page: 400
  issue: April
  year: 2019
  ident: 10.1016/j.health.2022.100130_b38
  article-title: Decision tree-based methodology to select a proper approach for wart treatment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.001
– volume: 192
  year: 2020
  ident: 10.1016/j.health.2022.100130_b40
  article-title: Decision tree-based diagnosis of coronary artery disease: CART model
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105400
– volume: 2
  year: 2022
  ident: 10.1016/j.health.2022.100130_b23
  article-title: Analyzing the impact of feature selection on the accuracy of heart disease prediction
  publication-title: Healthc. Anal.
– year: 2022
  ident: 10.1016/j.health.2022.100130_b1
– volume: 37
  start-page: 3213
  issue: 2
  year: 2020
  ident: 10.1016/j.health.2022.100130_b9
  article-title: Latest trends on heart disease prediction using machine learning and image fusion
  publication-title: Mater. Today Proc.
– year: 2022
  ident: 10.1016/j.health.2022.100130_b41
– volume: 4
  start-page: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.health.2022.100130_b8
  article-title: A comprehensive review on heart disease prediction using data mining and machine learning techniques
  publication-title: Am. J. Artif. Intell.
– volume: 2
  year: 2022
  ident: 10.1016/j.health.2022.100130_b5
  article-title: An artificial intelligence model for heart disease detection using machine learning algorithms
  publication-title: Healthc. Anal.
– volume: 652
  start-page: 31
  year: 2018
  ident: 10.1016/j.health.2022.100130_b39
  article-title: Comparative analysis of decision tree algorithms
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-981-10-6747-1_4
– volume: 207
  year: 2021
  ident: 10.1016/j.health.2022.100130_b10
  article-title: A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach
  publication-title: Comput. Methods Programs Biomed.
– volume: 4
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.health.2022.100130_b29
  article-title: Early detection of coronary heart disease based on machine learning methods
  publication-title: Med. Rec. Med. J.
– volume: 24
  start-page: 255
  issue: 3
  year: 2019
  ident: 10.1016/j.health.2022.100130_b34
  article-title: Robust cluster-then-label (RCTL) approach for heart disease prediction
  publication-title: Ing. Des Syst. d’Inf.
– volume: 146
  year: 2022
  ident: 10.1016/j.health.2022.100130_b31
  article-title: Ensemble framework for cardiovascular disease prediction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105624
– year: 2022
  ident: 10.1016/j.health.2022.100130_b2
– volume: 46
  start-page: 1614
  issue: 10
  year: 2017
  ident: 10.1016/j.health.2022.100130_b47
  article-title: A hybrid approach for predicting customers’ individual purchase behavior
  publication-title: Kybernetes
  doi: 10.1108/K-05-2017-0164
– volume: 136
  year: 2021
  ident: 10.1016/j.health.2022.100130_b18
  article-title: Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104672
– volume: 10
  start-page: 151
  issue: 07
  year: 2021
  ident: 10.1016/j.health.2022.100130_b28
  article-title: Detection of cardiovascular disease using machine learning classification models
  publication-title: Int. J. Eng. Res. Technol.
– volume: 25
  start-page: 4269
  issue: 6
  year: 2021
  ident: 10.1016/j.health.2022.100130_b33
  article-title: A deductive learning of heart disease dataset by using K means clustering
  publication-title: Ann. Rom. Soc. Cell Biol.
– start-page: 1
  year: 2020
  ident: 10.1016/j.health.2022.100130_b46
  article-title: Coronary artery heart disease prediction : A comparative study of computational intelligence techniques coronary artery heart disease prediction : A comparative study of
  publication-title: IETE J. Res.
– volume: 38
  start-page: 465
  issue: 4
  year: 2022
  ident: 10.1016/j.health.2022.100130_b13
  article-title: Prediction of sudden cardiac arrest in the general population: Review of traditional and emerging risk factors
  publication-title: Can. J. Cardiol.
– ident: 10.1016/j.health.2022.100130_b21
  doi: 10.1109/ICOEI.2019.8862604
– year: 2020
  ident: 10.1016/j.health.2022.100130_b27
– volume: 26
  start-page: 545
  issue: 3
  year: 2021
  ident: 10.1016/j.health.2022.100130_b12
  article-title: Machine learning and statistical methods for predicting mortality in heart failure
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-020-10052-y
– volume: 39
  start-page: 445
  issue: 1
  year: 2012
  ident: 10.1016/j.health.2022.100130_b37
  article-title: Decision tree models for characterizing smoking patterns of older adults
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.035
– volume: 9
  start-page: 136
  issue: 7
  year: 2020
  ident: 10.1016/j.health.2022.100130_b32
  article-title: Cluster based mining for prediction of heart disease
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– year: 2022
  ident: 10.1016/j.health.2022.100130_b4
– ident: 10.1016/j.health.2022.100130_b43
  doi: 10.1109/ISNE.2019.8896650
SSID ssj0002810070
Score 2.3483608
Snippet Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions....
AbstractHeart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100130
SubjectTerms Classification and regression trees
Data mining
Decision rule
Decision trees
Health Systems Science
Machine learning
Predictive analytics
Public Health
Title A classification and regression tree algorithm for heart disease modeling and prediction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2772442522000703
https://www.clinicalkey.es/playcontent/1-s2.0-S2772442522000703
https://dx.doi.org/10.1016/j.health.2022.100130
https://doaj.org/article/03c68b5836304a1dae612a6b4a253654
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-4425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810070
  issn: 2772-4425
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-4425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810070
  issn: 2772-4425
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LatwwUIRQSi6lr9DtCx16NdXqZemYloQemlBoEvYmZD2SDakTvNse--2dkezgQ2AvvfhgNGNrNNLMaF6EfJI2x5C1abztUiO9io2JLDQiycQYmHKqpEdffm_PzsxqZX_MWn1hTFgtD1wJ95mJoE2njNBgePtl9Alksted9FwJrUolUNbamTF1U66M0PuPFywc1MdGAmdOeXMluKsmGYJ5yHmpQoRB0DO5VMr3z8TTTOScPCfPRl2RHtV_fEH2Uv-SPD0dveGvyOqIBlR-MdqnEJj6PtIhXdXY1p6ix5n626u7Yb29_kVBP6XYwHpLR7cMLX1wQHgVwPsBMSOe1-Ti5Pj867dm7JTQBFBnGBDaMB9VBl0gM69h5h0PkS-lNz6HaDupOy1DKxVn0XSt8Nnq5GGYCp0PQhyS_f6uT28IzUEELmNehsRl0NyqtmWAM_rMbTJ2QcREJxfGMuLYzeLWTfFiN65S1yF1XaXugjQPUPe1jMaO8V9wCR7GYhHs8gJYw42s4XaxxoKoaQHdlGcKJyMgWu_4ePsYXNqM23vjlm7DHXM_kbmQtzgmPMHZOYccNZiqmez85tv_MeF35ABQipoq-Z7sb4ff6QN5Ev5s15vhY9kh8Dz9e_wPphYTaQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+classification+and+regression+tree+algorithm+for+heart+disease+modeling+and+prediction&rft.jtitle=Healthcare+analytics+%28New+York%2C+N.Y.%29&rft.au=Ozcan%2C+Mert&rft.au=Peker%2C+Serhat&rft.date=2023-11-01&rft.pub=Elsevier+Inc&rft.issn=2772-4425&rft.eissn=2772-4425&rft.volume=3&rft_id=info:doi/10.1016%2Fj.health.2022.100130&rft.externalDocID=S2772442522000703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4425&client=summon