Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN

In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influenc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy conversion and management Ročník 52; číslo 1; s. 538 - 546
Hlavní autori: Zhang, Jinya, Zhu, Hongwu, Yang, Chun, Li, Yan, Wei, Huan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 2011
Elsevier
Predmet:
ISSN:0196-8904, 1879-2227
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller’s performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible.
AbstractList In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller's performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by [inline image]10% and the efficiency has increased by [inline image]3%, which is in keeping with our optimal result and confirms our method is feasible.
In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller’s performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible.
Author Wei, Huan
Zhu, Hongwu
Yang, Chun
Zhang, Jinya
Li, Yan
Author_xml – sequence: 1
  givenname: Jinya
  surname: Zhang
  fullname: Zhang, Jinya
  email: zhjinya@163.com
– sequence: 2
  givenname: Hongwu
  surname: Zhu
  fullname: Zhu, Hongwu
– sequence: 3
  givenname: Chun
  surname: Yang
  fullname: Yang, Chun
– sequence: 4
  givenname: Yan
  surname: Li
  fullname: Li, Yan
– sequence: 5
  givenname: Huan
  surname: Wei
  fullname: Wei, Huan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23412481$$DView record in Pascal Francis
BookMark eNqNkUFvFCEYQImpidvqXzBcjF5mBYYBJvHgprHtJnV7aD0TBj6ybGaGEWab6q-X7bYXD9YThLz3QXin6GSMIyD0npIlJVR83i1htHEczLhkpBwSuSSsfYUWVMm2YozJE7QgtBWVagl_g05z3hFC6oaIBXLf9_0cqtjtwM7hHnDemglwnOYwhN9mDnHE0eMt9MHGyjwE0-PhoExbkwFP-2HCYZig7yHhrhw5XIzN7eWqWq-xGR1ebTZv0Wtv-gzvntYz9OPi2935VXV9c7k-X11XlnMyV2C9cNb7WtXMu04Jaq3prGVNxwQXzEpHJJfKkZrXTkigxkjPSdly1YKvz9DH49wpxZ97yLMeQrblbWaEuM9a8ZY3kjFVyE__JKmUkopGqvY_UEoYa0jbFPTDE2qyNb1PZrQh6ymFwaRfmtWcMq5o4b4cOZtizgm8tmF-_Os5mdBrSvShrN7p57L6UFYTqUvZoou_9OcbXhS_HkUoEe4DJJ1tKCS4kEp-7WJ4acQfPTbDug
CODEN ECMADL
CitedBy_id crossref_primary_10_1177_0957650918784418
crossref_primary_10_1038_s41598_022_20380_8
crossref_primary_10_1016_j_est_2022_105064
crossref_primary_10_1007_s40430_023_04355_y
crossref_primary_10_4028_www_scientific_net_AMM_52_54_399
crossref_primary_10_3390_pr9081402
crossref_primary_10_1016_j_rineng_2025_106796
crossref_primary_10_1088_1755_1315_15_6_062023
crossref_primary_10_1080_0305215X_2021_2015585
crossref_primary_10_1177_1687814016642669
crossref_primary_10_1109_ACCESS_2020_3036913
crossref_primary_10_3390_w13121651
crossref_primary_10_1016_j_jcsr_2024_108695
crossref_primary_10_1016_j_rineng_2024_103040
crossref_primary_10_1016_j_enconman_2014_01_022
crossref_primary_10_1007_s12206_021_0419_1
crossref_primary_10_3390_app10020582
crossref_primary_10_1007_s11831_021_09663_x
crossref_primary_10_1080_19942060_2025_2474675
crossref_primary_10_32604_fdmp_2022_019617
crossref_primary_10_1007_s12206_017_0122_4
crossref_primary_10_1108_EC_04_2018_0161
crossref_primary_10_3390_jmse10081063
crossref_primary_10_3390_en16176292
crossref_primary_10_1016_j_oceaneng_2024_117235
crossref_primary_10_1016_S1001_6058_16_60816_8
crossref_primary_10_1177_0957650919844112
crossref_primary_10_1007_s11434_015_0876_y
crossref_primary_10_1080_21681015_2015_1126656
crossref_primary_10_3390_pr9030556
crossref_primary_10_1016_j_petsci_2021_10_031
crossref_primary_10_1016_j_renene_2016_03_008
crossref_primary_10_1016_j_icheatmasstransfer_2020_104898
crossref_primary_10_1016_j_petrol_2018_06_011
crossref_primary_10_1016_j_oceaneng_2020_108402
crossref_primary_10_1016_j_energy_2015_06_062
crossref_primary_10_3390_pr10101977
crossref_primary_10_1016_j_energy_2020_118343
crossref_primary_10_1016_j_renene_2020_08_129
crossref_primary_10_3390_en11051216
crossref_primary_10_3390_designs9040079
crossref_primary_10_1002_jor_24072
crossref_primary_10_1016_j_enconman_2013_12_025
crossref_primary_10_1016_j_measurement_2024_114320
crossref_primary_10_1177_0954406220947116
crossref_primary_10_1109_TIM_2019_2906974
crossref_primary_10_1016_j_renene_2019_03_015
crossref_primary_10_1016_j_seta_2021_101850
crossref_primary_10_3390_en13092271
crossref_primary_10_3390_en11051048
crossref_primary_10_1016_j_enconman_2014_06_066
crossref_primary_10_1016_j_nucengdes_2018_07_007
crossref_primary_10_1016_j_icheatmasstransfer_2025_108849
crossref_primary_10_1631_jzus_A1900156
crossref_primary_10_1016_j_enconman_2014_03_033
crossref_primary_10_1088_1742_6596_2854_1_012053
crossref_primary_10_4028_www_scientific_net_AMM_455_286
crossref_primary_10_1177_09576509221098223
crossref_primary_10_4304_jnw_8_6_1300_1306
crossref_primary_10_1016_j_renene_2025_123717
crossref_primary_10_3390_en12030461
crossref_primary_10_3390_jmse11010013
crossref_primary_10_1016_j_renene_2020_04_125
crossref_primary_10_1177_0957650919898983
crossref_primary_10_3389_fenrg_2022_900182
crossref_primary_10_3390_pr10040753
crossref_primary_10_1016_j_cherd_2023_09_028
crossref_primary_10_1063_5_0096600
crossref_primary_10_1155_2019_1467565
crossref_primary_10_1016_j_enconman_2019_01_114
crossref_primary_10_1155_2014_803972
crossref_primary_10_1007_s12206_019_0317_y
crossref_primary_10_1007_s12206_022_1217_0
crossref_primary_10_1002_qre_3025
crossref_primary_10_3390_en13020425
crossref_primary_10_1080_15435075_2021_1904942
crossref_primary_10_1016_j_enconman_2025_119936
crossref_primary_10_1016_j_enconman_2012_11_009
crossref_primary_10_1515_tjj_2021_0051
crossref_primary_10_3390_plants13081095
crossref_primary_10_1016_j_mtcomm_2022_104749
crossref_primary_10_1063_5_0284990
crossref_primary_10_1177_1687814020987317
crossref_primary_10_1631_jzus_A1900608
crossref_primary_10_1063_5_0214940
crossref_primary_10_3390_en16052404
crossref_primary_10_1115_1_4069143
crossref_primary_10_1080_19942060_2022_2127913
crossref_primary_10_1007_s12206_019_0516_6
crossref_primary_10_1177_0954406216640303
crossref_primary_10_3390_w16131881
crossref_primary_10_1016_j_petrol_2019_106532
crossref_primary_10_1177_1687814021994976
crossref_primary_10_1007_s40430_022_03684_8
crossref_primary_10_1016_j_ces_2020_115554
crossref_primary_10_1007_s00158_017_1857_3
crossref_primary_10_1007_s00158_021_03108_6
crossref_primary_10_3390_pr10071317
crossref_primary_10_1016_j_renene_2020_01_024
crossref_primary_10_1088_1755_1315_627_1_012024
crossref_primary_10_3390_en10091334
crossref_primary_10_1080_01430750_2017_1303638
crossref_primary_10_3390_pr11113170
crossref_primary_10_3389_fenrg_2024_1364955
crossref_primary_10_1016_j_geoen_2024_213210
crossref_primary_10_1177_0957650920946533
crossref_primary_10_1088_1755_1315_240_3_032029
crossref_primary_10_1088_1757_899X_52_2_022013
crossref_primary_10_3390_pr8030309
crossref_primary_10_1007_s11630_020_1356_5
crossref_primary_10_1108_HFF_06_2017_0252
crossref_primary_10_1002_ese3_252
crossref_primary_10_1088_1742_6596_2752_1_012120
crossref_primary_10_1177_1687814018823356
crossref_primary_10_1007_s00158_019_02280_0
crossref_primary_10_1016_j_energy_2021_122474
crossref_primary_10_3390_pr9050760
crossref_primary_10_3390_jcm8112023
crossref_primary_10_1002_aic_18324
crossref_primary_10_1007_s11431_022_2306_9
crossref_primary_10_1007_s12206_015_1034_9
crossref_primary_10_1007_s12206_016_1014_8
crossref_primary_10_1007_s12206_018_1224_3
crossref_primary_10_1016_j_powtec_2020_06_078
crossref_primary_10_1186_s13018_019_1269_8
crossref_primary_10_3901_CJME_2015_0116_016
Cites_doi 10.2118/36590-PA
10.2118/71536-MS
10.2118/109785-MS
10.2523/88562-MS
10.1016/j.apenergy.2009.01.001
10.1016/j.enconman.2005.06.023
10.1016/j.wasman.2009.06.027
10.1109/TDEI.2009.4815187
10.2523/11720-MS
10.2516/ogst:2002007
10.1109/4235.996017
10.1162/evco.1994.2.3.221
10.1016/S0010-4485(03)00003-4
10.1243/0954408011530406
10.1115/FEDSM2007-37434
10.1016/j.expthermflusci.2008.06.009
10.2118/30660-MS
10.1163/156855196X00013
10.2118/83910-JPT
10.1115/1.1881697
10.1016/j.buildenv.2008.11.012
10.1115/1.1523062
10.1016/S0094-114X(98)00086-X
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
7SU
7TB
8FD
C1K
FR3
7ST
SOI
DOI 10.1016/j.enconman.2010.07.029
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Engineering Research Database
AGRICOLA

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 546
ExternalDocumentID 23412481
10_1016_j_enconman_2010_07_029
S0196890410003365
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
7S9
L.6
7SU
7TB
8FD
C1K
FR3
7ST
SOI
ID FETCH-LOGICAL-c440t-ecf6dcff3832fdb861ccabcc25b26462c7d07478d0343d67e1aa7f40d67489ef3
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284746800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Tue Oct 07 07:42:59 EDT 2025
Tue Oct 07 09:17:19 EDT 2025
Sun Sep 28 09:40:53 EDT 2025
Mon Jul 21 09:17:03 EDT 2025
Sat Nov 29 02:31:40 EST 2025
Tue Nov 18 22:51:12 EST 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Numerical simulation
Multiphase pump
Neural network
Genetic algorithm
Optimization design
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-ecf6dcff3832fdb861ccabcc25b26462c7d07478d0343d67e1aa7f40d67489ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1710225095
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_849457228
proquest_miscellaneous_1777165789
proquest_miscellaneous_1710225095
pascalfrancis_primary_23412481
crossref_citationtrail_10_1016_j_enconman_2010_07_029
crossref_primary_10_1016_j_enconman_2010_07_029
elsevier_sciencedirect_doi_10_1016_j_enconman_2010_07_029
PublicationCentury 2000
PublicationDate 2011
2011-1-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy conversion and management
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Deb (bib15) 1999; 24
Renner, Ekart (bib19) 2003; 35
Saadawi H. An overview of multiphase pumping technology and its potential application for oil fields in the gulf region. In: International petroleum technology conference, Dubai; 2007. p. IPTC 11720.
Samad A, Kim KY, Lee KS. Multi-objective optimization of a turbomachinery blade using NSGA-II. In: 5th Joint ASME/JSME fluids engineering summer conference, San Diego, CA; 2007. p. 885–91.
Deb, Pratap, Agarwal, Meyarivan (bib16) 2002; 6
Tran KD. Elitist non-dominated sorting GA-II (NSGA-II) as a parameter-less multi-objective genetic algorithm. In: Levy Y, editor. IEEE SoutheastCon 2005, Ft. Lauderdale, FL; 2005. p. 359–67.
Engin, Kurt (bib28) 2003; 125
Li, Xue, Zhu (bib14) 2005; 26
Li, Xue, Lu (bib12) 1999; 20
Srinivas (bib17) 1995; 2
Karkoub, Gad, Rabie (bib27) 1999; 34
Saadawi H. Operating multiphase helicoaxial pumps in series to develop a satellite oil field in a remote desert location. In: SPE annual technical conference, Califomia; 2007. p. SPE 109785.
Li QP. Research on design method of a helico-axial multiphase pump and its experimental studies on performances. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 308–12.
Grimstad HJ. Subsea multiphase boosting–maturing technology applied for Santos Ltd.’s Mutineer and Exeter field. In: SPE Asia pacific oil and gas conference, Perth; 2004. p. SPE 88562.
Falcimaigne, Brac, Charron, Pagnier, Vilagines (bib7) 2002; 57
Bratu C. Two-phase pump transient behaviour. In: SPE annual technical conference, Dallas; 1995. p. 247–61.
Jahandideh, Asadabadi, Askarian, Movahedi, Hosseini, Jahandideh (bib30) 2009; 29
Leporcher Emile, Delaytermoz Alain, Renault Jean-François, Gerbier Alain, Burger O. Deployment of multiphase pumps on a North Sea field. In: SPE annual technical conference, New Orleans; 2001. p. SPE71536.
Cao, Peng, Yu (bib24) 2005; 127
Pierre Gié PB, Bratu Christian, Durando P. Poseidon multiphase pump: field test results. In: Offshore technology conference, Houston; 1992. p. 489–502.
Scott SL. Multiphase pump survey. In: The 4th annual Texas A&M multiphase pump user roundtable, Houston; 2002.
Mahesh, Kishore, Deb (bib18) 1996; 5
Dogru, Hamoud, Barlow (bib2) 2004; 56
Kazanasmaz, Gunaydin, Binol (bib31) 2009; 44
Li QP, Lu WP, Xue DS. Three-dimensional numerical analysis of gas bubble’s behavior in multiphase pump impeller using boundary elemental method. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 313–7.
Golcu (bib29) 2006; 47
Rabiger, Maksoud, Ward, Hausmann (bib5) 2008; 32
Shaban, El-Hag, Matveev (bib26) 2009; 16
Lu WQ, Li QP, Xue DS. Boundary element numerical simulation of gas–liquid two-phase flow in multiphase pump impeller. In: Power H, Brebbia CA, editors. 1st International conference on computational methods in multiphase flow, Orlando, FL; 2001. p. 13–22.
Mohanraj, Jayaraj, Muraleedharan (bib32) 2009; 86
Feng, Yueyuan, Ziwen, Pengcheng (bib25) 2001; 215
DalPorto DF, Larson LA. Multiphase-pump field trials demonstrate practical applications for the technology. In: 1996 Offshore technology conference, Houston, TX; 1996. p. 159–64.
10.1016/j.enconman.2010.07.029_bib10
Feng (10.1016/j.enconman.2010.07.029_bib25) 2001; 215
Karkoub (10.1016/j.enconman.2010.07.029_bib27) 1999; 34
Deb (10.1016/j.enconman.2010.07.029_bib15) 1999; 24
Falcimaigne (10.1016/j.enconman.2010.07.029_bib7) 2002; 57
Deb (10.1016/j.enconman.2010.07.029_bib16) 2002; 6
Srinivas (10.1016/j.enconman.2010.07.029_bib17) 1995; 2
Renner (10.1016/j.enconman.2010.07.029_bib19) 2003; 35
Cao (10.1016/j.enconman.2010.07.029_bib24) 2005; 127
Mahesh (10.1016/j.enconman.2010.07.029_bib18) 1996; 5
Jahandideh (10.1016/j.enconman.2010.07.029_bib30) 2009; 29
Rabiger (10.1016/j.enconman.2010.07.029_bib5) 2008; 32
10.1016/j.enconman.2010.07.029_bib13
Dogru (10.1016/j.enconman.2010.07.029_bib2) 2004; 56
Shaban (10.1016/j.enconman.2010.07.029_bib26) 2009; 16
10.1016/j.enconman.2010.07.029_bib11
10.1016/j.enconman.2010.07.029_bib9
Li (10.1016/j.enconman.2010.07.029_bib12) 1999; 20
10.1016/j.enconman.2010.07.029_bib20
10.1016/j.enconman.2010.07.029_bib8
10.1016/j.enconman.2010.07.029_bib21
10.1016/j.enconman.2010.07.029_bib1
10.1016/j.enconman.2010.07.029_bib3
Engin (10.1016/j.enconman.2010.07.029_bib28) 2003; 125
10.1016/j.enconman.2010.07.029_bib4
Li (10.1016/j.enconman.2010.07.029_bib14) 2005; 26
10.1016/j.enconman.2010.07.029_bib6
Kazanasmaz (10.1016/j.enconman.2010.07.029_bib31) 2009; 44
Mohanraj (10.1016/j.enconman.2010.07.029_bib32) 2009; 86
Golcu (10.1016/j.enconman.2010.07.029_bib29) 2006; 47
10.1016/j.enconman.2010.07.029_bib22
10.1016/j.enconman.2010.07.029_bib23
References_xml – reference: Li QP. Research on design method of a helico-axial multiphase pump and its experimental studies on performances. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 308–12.
– volume: 2
  start-page: 221
  year: 1995
  end-page: 248
  ident: bib17
  article-title: Multiobjective function optimization using nondominated sorting genetic algorithms
  publication-title: Evol Comput
– volume: 56
  start-page: 64
  year: 2004
  end-page: 67
  ident: bib2
  article-title: Multiphase pump recovers more oil in a mature carbonate reservoir
  publication-title: J Petrol Technol
– reference: Bratu C. Two-phase pump transient behaviour. In: SPE annual technical conference, Dallas; 1995. p. 247–61.
– reference: Tran KD. Elitist non-dominated sorting GA-II (NSGA-II) as a parameter-less multi-objective genetic algorithm. In: Levy Y, editor. IEEE SoutheastCon 2005, Ft. Lauderdale, FL; 2005. p. 359–67.
– volume: 86
  start-page: 1442
  year: 2009
  end-page: 1449
  ident: bib32
  article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks
  publication-title: Appl Energy
– reference: Scott SL. Multiphase pump survey. In: The 4th annual Texas A&M multiphase pump user roundtable, Houston; 2002.
– reference: Samad A, Kim KY, Lee KS. Multi-objective optimization of a turbomachinery blade using NSGA-II. In: 5th Joint ASME/JSME fluids engineering summer conference, San Diego, CA; 2007. p. 885–91.
– reference: Li QP, Lu WP, Xue DS. Three-dimensional numerical analysis of gas bubble’s behavior in multiphase pump impeller using boundary elemental method. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 313–7.
– volume: 32
  start-page: 1694
  year: 2008
  end-page: 1701
  ident: bib5
  article-title: Theoretical and experimental analysis of a multiphase screw pump, handling gas–liquid mixtures with very high gas volume fractions
  publication-title: Exp Therm Fluid Sci
– volume: 35
  start-page: 709
  year: 2003
  end-page: 726
  ident: bib19
  article-title: Genetic algorithms in computer aided design
  publication-title: Comput-Aided Des
– volume: 16
  start-page: 516
  year: 2009
  end-page: 523
  ident: bib26
  article-title: A cascade of artificial neural networks to predict transformers oil parameters
  publication-title: IEEE Trans Dielectr Electr Insul
– reference: Lu WQ, Li QP, Xue DS. Boundary element numerical simulation of gas–liquid two-phase flow in multiphase pump impeller. In: Power H, Brebbia CA, editors. 1st International conference on computational methods in multiphase flow, Orlando, FL; 2001. p. 13–22.
– reference: Leporcher Emile, Delaytermoz Alain, Renault Jean-François, Gerbier Alain, Burger O. Deployment of multiphase pumps on a North Sea field. In: SPE annual technical conference, New Orleans; 2001. p. SPE71536.
– reference: Pierre Gié PB, Bratu Christian, Durando P. Poseidon multiphase pump: field test results. In: Offshore technology conference, Houston; 1992. p. 489–502.
– volume: 20
  start-page: 61
  year: 1999
  end-page: 64
  ident: bib12
  article-title: Some discussions about the design of rotodynamic multiphase pump
  publication-title: J Eng Thermolphys
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 44
  start-page: 1751
  year: 2009
  end-page: 1757
  ident: bib31
  article-title: Artificial neural networks to predict daylight illuminance in office buildings
  publication-title: Build Environ
– reference: Grimstad HJ. Subsea multiphase boosting–maturing technology applied for Santos Ltd.’s Mutineer and Exeter field. In: SPE Asia pacific oil and gas conference, Perth; 2004. p. SPE 88562.
– volume: 24
  start-page: 293
  year: 1999
  end-page: 315
  ident: bib15
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana-Acad Proc Eng Sci
– volume: 125
  start-page: 199
  year: 2003
  end-page: 202
  ident: bib28
  article-title: Prediction of centrifugal slurry pump head reduction: an artificial neural networks approach
  publication-title: J Fluid Eng – Trans ASME
– volume: 26
  start-page: 84
  year: 2005
  end-page: 87
  ident: bib14
  article-title: Research on hydraulic design concept of an helico-axial multiphase pump and its experimental studies on performances
  publication-title: J Eng Thermolphys
– volume: 127
  start-page: 330
  year: 2005
  end-page: 338
  ident: bib24
  article-title: Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis
  publication-title: J Fluid Eng – Trans ASME
– volume: 29
  start-page: 2874
  year: 2009
  end-page: 2879
  ident: bib30
  article-title: The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation
  publication-title: Waste Manage
– reference: Saadawi H. An overview of multiphase pumping technology and its potential application for oil fields in the gulf region. In: International petroleum technology conference, Dubai; 2007. p. IPTC 11720.
– volume: 47
  start-page: 992
  year: 2006
  end-page: 1003
  ident: bib29
  article-title: Neural network analysis of head-flow curves in deep well pumps
  publication-title: Energy Convers Manage
– volume: 34
  start-page: 1211
  year: 1999
  end-page: 1226
  ident: bib27
  article-title: Predicting axial piston pump performance using neural networks
  publication-title: Mech Mach Theory
– volume: 5
  start-page: 87
  year: 1996
  end-page: 98
  ident: bib18
  article-title: Optimal design of composite turbine blade using genetic algorithms
  publication-title: Adv Compos Mater
– volume: 57
  start-page: 99
  year: 2002
  end-page: 107
  ident: bib7
  article-title: Multiphase pumping: achievements and perspectives
  publication-title: Oil Gas Sci Technol
– reference: DalPorto DF, Larson LA. Multiphase-pump field trials demonstrate practical applications for the technology. In: 1996 Offshore technology conference, Houston, TX; 1996. p. 159–64.
– volume: 215
  start-page: 157
  year: 2001
  end-page: 163
  ident: bib25
  article-title: Thermodynamic performance simulation of a twin-screw multiphase pump
  publication-title: Proc Inst Mech Eng Part E – J Process Mech Eng
– reference: Saadawi H. Operating multiphase helicoaxial pumps in series to develop a satellite oil field in a remote desert location. In: SPE annual technical conference, Califomia; 2007. p. SPE 109785.
– ident: 10.1016/j.enconman.2010.07.029_bib1
  doi: 10.2118/36590-PA
– ident: 10.1016/j.enconman.2010.07.029_bib9
  doi: 10.2118/71536-MS
– ident: 10.1016/j.enconman.2010.07.029_bib22
– ident: 10.1016/j.enconman.2010.07.029_bib20
– ident: 10.1016/j.enconman.2010.07.029_bib11
  doi: 10.2118/109785-MS
– ident: 10.1016/j.enconman.2010.07.029_bib10
  doi: 10.2523/88562-MS
– volume: 86
  start-page: 1442
  year: 2009
  ident: 10.1016/j.enconman.2010.07.029_bib32
  article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.01.001
– volume: 47
  start-page: 992
  year: 2006
  ident: 10.1016/j.enconman.2010.07.029_bib29
  article-title: Neural network analysis of head-flow curves in deep well pumps
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2005.06.023
– volume: 29
  start-page: 2874
  year: 2009
  ident: 10.1016/j.enconman.2010.07.029_bib30
  article-title: The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2009.06.027
– volume: 16
  start-page: 516
  year: 2009
  ident: 10.1016/j.enconman.2010.07.029_bib26
  article-title: A cascade of artificial neural networks to predict transformers oil parameters
  publication-title: IEEE Trans Dielectr Electr Insul
  doi: 10.1109/TDEI.2009.4815187
– ident: 10.1016/j.enconman.2010.07.029_bib4
  doi: 10.2523/11720-MS
– volume: 57
  start-page: 99
  year: 2002
  ident: 10.1016/j.enconman.2010.07.029_bib7
  article-title: Multiphase pumping: achievements and perspectives
  publication-title: Oil Gas Sci Technol
  doi: 10.2516/ogst:2002007
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.enconman.2010.07.029_bib16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 2
  start-page: 221
  year: 1995
  ident: 10.1016/j.enconman.2010.07.029_bib17
  article-title: Multiobjective function optimization using nondominated sorting genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– volume: 35
  start-page: 709
  year: 2003
  ident: 10.1016/j.enconman.2010.07.029_bib19
  article-title: Genetic algorithms in computer aided design
  publication-title: Comput-Aided Des
  doi: 10.1016/S0010-4485(03)00003-4
– ident: 10.1016/j.enconman.2010.07.029_bib23
– volume: 215
  start-page: 157
  year: 2001
  ident: 10.1016/j.enconman.2010.07.029_bib25
  article-title: Thermodynamic performance simulation of a twin-screw multiphase pump
  publication-title: Proc Inst Mech Eng Part E – J Process Mech Eng
  doi: 10.1243/0954408011530406
– ident: 10.1016/j.enconman.2010.07.029_bib21
  doi: 10.1115/FEDSM2007-37434
– volume: 32
  start-page: 1694
  year: 2008
  ident: 10.1016/j.enconman.2010.07.029_bib5
  article-title: Theoretical and experimental analysis of a multiphase screw pump, handling gas–liquid mixtures with very high gas volume fractions
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2008.06.009
– ident: 10.1016/j.enconman.2010.07.029_bib6
– ident: 10.1016/j.enconman.2010.07.029_bib8
– volume: 24
  start-page: 293
  year: 1999
  ident: 10.1016/j.enconman.2010.07.029_bib15
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana-Acad Proc Eng Sci
– ident: 10.1016/j.enconman.2010.07.029_bib3
  doi: 10.2118/30660-MS
– volume: 5
  start-page: 87
  year: 1996
  ident: 10.1016/j.enconman.2010.07.029_bib18
  article-title: Optimal design of composite turbine blade using genetic algorithms
  publication-title: Adv Compos Mater
  doi: 10.1163/156855196X00013
– volume: 56
  start-page: 64
  year: 2004
  ident: 10.1016/j.enconman.2010.07.029_bib2
  article-title: Multiphase pump recovers more oil in a mature carbonate reservoir
  publication-title: J Petrol Technol
  doi: 10.2118/83910-JPT
– volume: 20
  start-page: 61
  year: 1999
  ident: 10.1016/j.enconman.2010.07.029_bib12
  article-title: Some discussions about the design of rotodynamic multiphase pump
  publication-title: J Eng Thermolphys
– ident: 10.1016/j.enconman.2010.07.029_bib13
– volume: 127
  start-page: 330
  year: 2005
  ident: 10.1016/j.enconman.2010.07.029_bib24
  article-title: Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis
  publication-title: J Fluid Eng – Trans ASME
  doi: 10.1115/1.1881697
– volume: 26
  start-page: 84
  year: 2005
  ident: 10.1016/j.enconman.2010.07.029_bib14
  article-title: Research on hydraulic design concept of an helico-axial multiphase pump and its experimental studies on performances
  publication-title: J Eng Thermolphys
– volume: 44
  start-page: 1751
  year: 2009
  ident: 10.1016/j.enconman.2010.07.029_bib31
  article-title: Artificial neural networks to predict daylight illuminance in office buildings
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2008.11.012
– volume: 125
  start-page: 199
  year: 2003
  ident: 10.1016/j.enconman.2010.07.029_bib28
  article-title: Prediction of centrifugal slurry pump head reduction: an artificial neural networks approach
  publication-title: J Fluid Eng – Trans ASME
  doi: 10.1115/1.1523062
– volume: 34
  start-page: 1211
  year: 1999
  ident: 10.1016/j.enconman.2010.07.029_bib27
  article-title: Predicting axial piston pump performance using neural networks
  publication-title: Mech Mach Theory
  doi: 10.1016/S0094-114X(98)00086-X
SSID ssj0003506
Score 2.3896961
Snippet In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by...
In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 538
SubjectTerms algorithms
Applied sciences
Computer simulation
Crude oil, natural gas and petroleum products
Crude oil, natural gas, oil shales producing equipements and methods
Energy
Energy. Thermal use of fuels
equipment performance
Exact sciences and technology
experimental design
Fuels
Genetic algorithm
Learning theory
Materials and auxiliary equipments used in energy engineering
Mathematical analysis
Mathematical models
Multiphase
Multiphase pump
Neural network
Neural networks
Numerical simulation
Oil extraction from wells. Pumping. Shale oil extraction. Well workover
Optimization design
prediction
Prospecting and production of crude oil, natural gas, oil shales and tar sands
Pump impellers
Pumps
Title Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN
URI https://dx.doi.org/10.1016/j.enconman.2010.07.029
https://www.proquest.com/docview/1710225095
https://www.proquest.com/docview/1777165789
https://www.proquest.com/docview/849457228
Volume 52
WOSCitedRecordID wos000284746800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMIIa6iXCYj8VZ5JHESx4_VNKB7qJA2pPIUObZDV3Vp1csoP4V_y_ElaUsZAyGkKqoiu076fTnn5PhcEHpDdZDIoMgIlUKQOC0LIsKCEbCcNS9jQRlXttkEGwyy4ZB_bLW-17kwVxNWVdl6zWf_FWo4B2Cb1Nm_gLv5UTgB3wF0OALscPwj4G1KLZkWYyfKuouRmOnuFETDpc-5dAbiBDhAxNp4zF1U4QgUWncG8JrUSePPn3eNjlNmP2Fw9r5H-n271dAbDHb8-S570IavW9-bHXS5F1bTuKZPL6pvYnN2ZbXftPryddWIID_yeLTaRAzZsIPPnsyqdrxu3GZ16swmTsl6MnlKMu56Dx9pJ30zxolJzt0Wz0m0R0MnaxNXFsar7cR5Mvc0gnNOjI9MWdAK7t1H87GjwHtadqttn5nrMpdl9j0oTZNb6CBiCQ_a6KDXPxmeNmqeJrZxa3MfW-nnv17tOsvn3kws4HksXSOVPZvAGjrnD9B9_4aCe45ZD1FLV4_Q3a26lY-R-olj2HIMb3MMT0u8zTG84Rg2HMM1x7DlGIYZnmMY6IOBY0_Qp3cn58cfiG_XQWQcB0uiZZkqWZYUlESpiiwNQToUUkZJAVZ3GkmmbLcGFdCYqpTpUAhWxoEy_W64LulT1K6mlX6GsCzitAhDoQLFYxmmRVSEman0FGVSJ5J2UFL_lbn0texNS5VJXgctjvMagtxAkAcsBwg66G0zb-aqudw4g9dI5d4mdbZmDgS7ce7hDrTNkhE1Pd-zsINe11jnINXNVp2o9HS1yENj-MPbCU9-N4axMAWNCwvha8ZkMY8TFkXZ83-4jxfojttJMZ-XqL2cr_QrdFteLS8W80P_XPwAskbmdw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+shape+optimization+of+helico-axial+multiphase+pump+impeller+based+on+NSGA-II+and+ANN&rft.jtitle=Energy+conversion+and+management&rft.au=Zhang%2C+Jinya&rft.au=Zhu%2C+Hongwu&rft.au=Yang%2C+Chun&rft.au=Li%2C+Yan&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=52&rft.issue=1&rft.spage=538&rft.epage=546&rft_id=info:doi/10.1016%2Fj.enconman.2010.07.029&rft.externalDocID=S0196890410003365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon