Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN
In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influenc...
Uložené v:
| Vydané v: | Energy conversion and management Ročník 52; číslo 1; s. 538 - 546 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
2011
Elsevier |
| Predmet: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller’s performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible. |
|---|---|
| AbstractList | In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller's performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by [inline image]10% and the efficiency has increased by [inline image]3%, which is in keeping with our optimal result and confirms our method is feasible. In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller’s performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible. |
| Author | Wei, Huan Zhu, Hongwu Yang, Chun Zhang, Jinya Li, Yan |
| Author_xml | – sequence: 1 givenname: Jinya surname: Zhang fullname: Zhang, Jinya email: zhjinya@163.com – sequence: 2 givenname: Hongwu surname: Zhu fullname: Zhu, Hongwu – sequence: 3 givenname: Chun surname: Yang fullname: Yang, Chun – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan – sequence: 5 givenname: Huan surname: Wei fullname: Wei, Huan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23412481$$DView record in Pascal Francis |
| BookMark | eNqNkUFvFCEYQImpidvqXzBcjF5mBYYBJvHgprHtJnV7aD0TBj6ybGaGEWab6q-X7bYXD9YThLz3QXin6GSMIyD0npIlJVR83i1htHEczLhkpBwSuSSsfYUWVMm2YozJE7QgtBWVagl_g05z3hFC6oaIBXLf9_0cqtjtwM7hHnDemglwnOYwhN9mDnHE0eMt9MHGyjwE0-PhoExbkwFP-2HCYZig7yHhrhw5XIzN7eWqWq-xGR1ebTZv0Wtv-gzvntYz9OPi2935VXV9c7k-X11XlnMyV2C9cNb7WtXMu04Jaq3prGVNxwQXzEpHJJfKkZrXTkigxkjPSdly1YKvz9DH49wpxZ97yLMeQrblbWaEuM9a8ZY3kjFVyE__JKmUkopGqvY_UEoYa0jbFPTDE2qyNb1PZrQh6ymFwaRfmtWcMq5o4b4cOZtizgm8tmF-_Os5mdBrSvShrN7p57L6UFYTqUvZoou_9OcbXhS_HkUoEe4DJJ1tKCS4kEp-7WJ4acQfPTbDug |
| CODEN | ECMADL |
| CitedBy_id | crossref_primary_10_1177_0957650918784418 crossref_primary_10_1038_s41598_022_20380_8 crossref_primary_10_1016_j_est_2022_105064 crossref_primary_10_1007_s40430_023_04355_y crossref_primary_10_4028_www_scientific_net_AMM_52_54_399 crossref_primary_10_3390_pr9081402 crossref_primary_10_1016_j_rineng_2025_106796 crossref_primary_10_1088_1755_1315_15_6_062023 crossref_primary_10_1080_0305215X_2021_2015585 crossref_primary_10_1177_1687814016642669 crossref_primary_10_1109_ACCESS_2020_3036913 crossref_primary_10_3390_w13121651 crossref_primary_10_1016_j_jcsr_2024_108695 crossref_primary_10_1016_j_rineng_2024_103040 crossref_primary_10_1016_j_enconman_2014_01_022 crossref_primary_10_1007_s12206_021_0419_1 crossref_primary_10_3390_app10020582 crossref_primary_10_1007_s11831_021_09663_x crossref_primary_10_1080_19942060_2025_2474675 crossref_primary_10_32604_fdmp_2022_019617 crossref_primary_10_1007_s12206_017_0122_4 crossref_primary_10_1108_EC_04_2018_0161 crossref_primary_10_3390_jmse10081063 crossref_primary_10_3390_en16176292 crossref_primary_10_1016_j_oceaneng_2024_117235 crossref_primary_10_1016_S1001_6058_16_60816_8 crossref_primary_10_1177_0957650919844112 crossref_primary_10_1007_s11434_015_0876_y crossref_primary_10_1080_21681015_2015_1126656 crossref_primary_10_3390_pr9030556 crossref_primary_10_1016_j_petsci_2021_10_031 crossref_primary_10_1016_j_renene_2016_03_008 crossref_primary_10_1016_j_icheatmasstransfer_2020_104898 crossref_primary_10_1016_j_petrol_2018_06_011 crossref_primary_10_1016_j_oceaneng_2020_108402 crossref_primary_10_1016_j_energy_2015_06_062 crossref_primary_10_3390_pr10101977 crossref_primary_10_1016_j_energy_2020_118343 crossref_primary_10_1016_j_renene_2020_08_129 crossref_primary_10_3390_en11051216 crossref_primary_10_3390_designs9040079 crossref_primary_10_1002_jor_24072 crossref_primary_10_1016_j_enconman_2013_12_025 crossref_primary_10_1016_j_measurement_2024_114320 crossref_primary_10_1177_0954406220947116 crossref_primary_10_1109_TIM_2019_2906974 crossref_primary_10_1016_j_renene_2019_03_015 crossref_primary_10_1016_j_seta_2021_101850 crossref_primary_10_3390_en13092271 crossref_primary_10_3390_en11051048 crossref_primary_10_1016_j_enconman_2014_06_066 crossref_primary_10_1016_j_nucengdes_2018_07_007 crossref_primary_10_1016_j_icheatmasstransfer_2025_108849 crossref_primary_10_1631_jzus_A1900156 crossref_primary_10_1016_j_enconman_2014_03_033 crossref_primary_10_1088_1742_6596_2854_1_012053 crossref_primary_10_4028_www_scientific_net_AMM_455_286 crossref_primary_10_1177_09576509221098223 crossref_primary_10_4304_jnw_8_6_1300_1306 crossref_primary_10_1016_j_renene_2025_123717 crossref_primary_10_3390_en12030461 crossref_primary_10_3390_jmse11010013 crossref_primary_10_1016_j_renene_2020_04_125 crossref_primary_10_1177_0957650919898983 crossref_primary_10_3389_fenrg_2022_900182 crossref_primary_10_3390_pr10040753 crossref_primary_10_1016_j_cherd_2023_09_028 crossref_primary_10_1063_5_0096600 crossref_primary_10_1155_2019_1467565 crossref_primary_10_1016_j_enconman_2019_01_114 crossref_primary_10_1155_2014_803972 crossref_primary_10_1007_s12206_019_0317_y crossref_primary_10_1007_s12206_022_1217_0 crossref_primary_10_1002_qre_3025 crossref_primary_10_3390_en13020425 crossref_primary_10_1080_15435075_2021_1904942 crossref_primary_10_1016_j_enconman_2025_119936 crossref_primary_10_1016_j_enconman_2012_11_009 crossref_primary_10_1515_tjj_2021_0051 crossref_primary_10_3390_plants13081095 crossref_primary_10_1016_j_mtcomm_2022_104749 crossref_primary_10_1063_5_0284990 crossref_primary_10_1177_1687814020987317 crossref_primary_10_1631_jzus_A1900608 crossref_primary_10_1063_5_0214940 crossref_primary_10_3390_en16052404 crossref_primary_10_1115_1_4069143 crossref_primary_10_1080_19942060_2022_2127913 crossref_primary_10_1007_s12206_019_0516_6 crossref_primary_10_1177_0954406216640303 crossref_primary_10_3390_w16131881 crossref_primary_10_1016_j_petrol_2019_106532 crossref_primary_10_1177_1687814021994976 crossref_primary_10_1007_s40430_022_03684_8 crossref_primary_10_1016_j_ces_2020_115554 crossref_primary_10_1007_s00158_017_1857_3 crossref_primary_10_1007_s00158_021_03108_6 crossref_primary_10_3390_pr10071317 crossref_primary_10_1016_j_renene_2020_01_024 crossref_primary_10_1088_1755_1315_627_1_012024 crossref_primary_10_3390_en10091334 crossref_primary_10_1080_01430750_2017_1303638 crossref_primary_10_3390_pr11113170 crossref_primary_10_3389_fenrg_2024_1364955 crossref_primary_10_1016_j_geoen_2024_213210 crossref_primary_10_1177_0957650920946533 crossref_primary_10_1088_1755_1315_240_3_032029 crossref_primary_10_1088_1757_899X_52_2_022013 crossref_primary_10_3390_pr8030309 crossref_primary_10_1007_s11630_020_1356_5 crossref_primary_10_1108_HFF_06_2017_0252 crossref_primary_10_1002_ese3_252 crossref_primary_10_1088_1742_6596_2752_1_012120 crossref_primary_10_1177_1687814018823356 crossref_primary_10_1007_s00158_019_02280_0 crossref_primary_10_1016_j_energy_2021_122474 crossref_primary_10_3390_pr9050760 crossref_primary_10_3390_jcm8112023 crossref_primary_10_1002_aic_18324 crossref_primary_10_1007_s11431_022_2306_9 crossref_primary_10_1007_s12206_015_1034_9 crossref_primary_10_1007_s12206_016_1014_8 crossref_primary_10_1007_s12206_018_1224_3 crossref_primary_10_1016_j_powtec_2020_06_078 crossref_primary_10_1186_s13018_019_1269_8 crossref_primary_10_3901_CJME_2015_0116_016 |
| Cites_doi | 10.2118/36590-PA 10.2118/71536-MS 10.2118/109785-MS 10.2523/88562-MS 10.1016/j.apenergy.2009.01.001 10.1016/j.enconman.2005.06.023 10.1016/j.wasman.2009.06.027 10.1109/TDEI.2009.4815187 10.2523/11720-MS 10.2516/ogst:2002007 10.1109/4235.996017 10.1162/evco.1994.2.3.221 10.1016/S0010-4485(03)00003-4 10.1243/0954408011530406 10.1115/FEDSM2007-37434 10.1016/j.expthermflusci.2008.06.009 10.2118/30660-MS 10.1163/156855196X00013 10.2118/83910-JPT 10.1115/1.1881697 10.1016/j.buildenv.2008.11.012 10.1115/1.1523062 10.1016/S0094-114X(98)00086-X |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7S9 L.6 7SU 7TB 8FD C1K FR3 7ST SOI |
| DOI | 10.1016/j.enconman.2010.07.029 |
| DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
| DatabaseTitleList | Engineering Research Database AGRICOLA Environment Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1879-2227 |
| EndPage | 546 |
| ExternalDocumentID | 23412481 10_1016_j_enconman_2010_07_029 S0196890410003365 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW 7S9 L.6 7SU 7TB 8FD C1K FR3 7ST SOI |
| ID | FETCH-LOGICAL-c440t-ecf6dcff3832fdb861ccabcc25b26462c7d07478d0343d67e1aa7f40d67489ef3 |
| ISICitedReferencesCount | 142 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284746800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Tue Oct 07 07:42:59 EDT 2025 Tue Oct 07 09:17:19 EDT 2025 Sun Sep 28 09:40:53 EDT 2025 Mon Jul 21 09:17:03 EDT 2025 Sat Nov 29 02:31:40 EST 2025 Tue Nov 18 22:51:12 EST 2025 Fri Feb 23 02:33:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Numerical simulation Multiphase pump Neural network Genetic algorithm Optimization design |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c440t-ecf6dcff3832fdb861ccabcc25b26462c7d07478d0343d67e1aa7f40d67489ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1710225095 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_849457228 proquest_miscellaneous_1777165789 proquest_miscellaneous_1710225095 pascalfrancis_primary_23412481 crossref_citationtrail_10_1016_j_enconman_2010_07_029 crossref_primary_10_1016_j_enconman_2010_07_029 elsevier_sciencedirect_doi_10_1016_j_enconman_2010_07_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2011 2011-1-00 20110101 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – year: 2011 text: 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Deb (bib15) 1999; 24 Renner, Ekart (bib19) 2003; 35 Saadawi H. An overview of multiphase pumping technology and its potential application for oil fields in the gulf region. In: International petroleum technology conference, Dubai; 2007. p. IPTC 11720. Samad A, Kim KY, Lee KS. Multi-objective optimization of a turbomachinery blade using NSGA-II. In: 5th Joint ASME/JSME fluids engineering summer conference, San Diego, CA; 2007. p. 885–91. Deb, Pratap, Agarwal, Meyarivan (bib16) 2002; 6 Tran KD. Elitist non-dominated sorting GA-II (NSGA-II) as a parameter-less multi-objective genetic algorithm. In: Levy Y, editor. IEEE SoutheastCon 2005, Ft. Lauderdale, FL; 2005. p. 359–67. Engin, Kurt (bib28) 2003; 125 Li, Xue, Zhu (bib14) 2005; 26 Li, Xue, Lu (bib12) 1999; 20 Srinivas (bib17) 1995; 2 Karkoub, Gad, Rabie (bib27) 1999; 34 Saadawi H. Operating multiphase helicoaxial pumps in series to develop a satellite oil field in a remote desert location. In: SPE annual technical conference, Califomia; 2007. p. SPE 109785. Li QP. Research on design method of a helico-axial multiphase pump and its experimental studies on performances. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 308–12. Grimstad HJ. Subsea multiphase boosting–maturing technology applied for Santos Ltd.’s Mutineer and Exeter field. In: SPE Asia pacific oil and gas conference, Perth; 2004. p. SPE 88562. Falcimaigne, Brac, Charron, Pagnier, Vilagines (bib7) 2002; 57 Bratu C. Two-phase pump transient behaviour. In: SPE annual technical conference, Dallas; 1995. p. 247–61. Jahandideh, Asadabadi, Askarian, Movahedi, Hosseini, Jahandideh (bib30) 2009; 29 Leporcher Emile, Delaytermoz Alain, Renault Jean-François, Gerbier Alain, Burger O. Deployment of multiphase pumps on a North Sea field. In: SPE annual technical conference, New Orleans; 2001. p. SPE71536. Cao, Peng, Yu (bib24) 2005; 127 Pierre Gié PB, Bratu Christian, Durando P. Poseidon multiphase pump: field test results. In: Offshore technology conference, Houston; 1992. p. 489–502. Scott SL. Multiphase pump survey. In: The 4th annual Texas A&M multiphase pump user roundtable, Houston; 2002. Mahesh, Kishore, Deb (bib18) 1996; 5 Dogru, Hamoud, Barlow (bib2) 2004; 56 Kazanasmaz, Gunaydin, Binol (bib31) 2009; 44 Li QP, Lu WP, Xue DS. Three-dimensional numerical analysis of gas bubble’s behavior in multiphase pump impeller using boundary elemental method. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 313–7. Golcu (bib29) 2006; 47 Rabiger, Maksoud, Ward, Hausmann (bib5) 2008; 32 Shaban, El-Hag, Matveev (bib26) 2009; 16 Lu WQ, Li QP, Xue DS. Boundary element numerical simulation of gas–liquid two-phase flow in multiphase pump impeller. In: Power H, Brebbia CA, editors. 1st International conference on computational methods in multiphase flow, Orlando, FL; 2001. p. 13–22. Mohanraj, Jayaraj, Muraleedharan (bib32) 2009; 86 Feng, Yueyuan, Ziwen, Pengcheng (bib25) 2001; 215 DalPorto DF, Larson LA. Multiphase-pump field trials demonstrate practical applications for the technology. In: 1996 Offshore technology conference, Houston, TX; 1996. p. 159–64. 10.1016/j.enconman.2010.07.029_bib10 Feng (10.1016/j.enconman.2010.07.029_bib25) 2001; 215 Karkoub (10.1016/j.enconman.2010.07.029_bib27) 1999; 34 Deb (10.1016/j.enconman.2010.07.029_bib15) 1999; 24 Falcimaigne (10.1016/j.enconman.2010.07.029_bib7) 2002; 57 Deb (10.1016/j.enconman.2010.07.029_bib16) 2002; 6 Srinivas (10.1016/j.enconman.2010.07.029_bib17) 1995; 2 Renner (10.1016/j.enconman.2010.07.029_bib19) 2003; 35 Cao (10.1016/j.enconman.2010.07.029_bib24) 2005; 127 Mahesh (10.1016/j.enconman.2010.07.029_bib18) 1996; 5 Jahandideh (10.1016/j.enconman.2010.07.029_bib30) 2009; 29 Rabiger (10.1016/j.enconman.2010.07.029_bib5) 2008; 32 10.1016/j.enconman.2010.07.029_bib13 Dogru (10.1016/j.enconman.2010.07.029_bib2) 2004; 56 Shaban (10.1016/j.enconman.2010.07.029_bib26) 2009; 16 10.1016/j.enconman.2010.07.029_bib11 10.1016/j.enconman.2010.07.029_bib9 Li (10.1016/j.enconman.2010.07.029_bib12) 1999; 20 10.1016/j.enconman.2010.07.029_bib20 10.1016/j.enconman.2010.07.029_bib8 10.1016/j.enconman.2010.07.029_bib21 10.1016/j.enconman.2010.07.029_bib1 10.1016/j.enconman.2010.07.029_bib3 Engin (10.1016/j.enconman.2010.07.029_bib28) 2003; 125 10.1016/j.enconman.2010.07.029_bib4 Li (10.1016/j.enconman.2010.07.029_bib14) 2005; 26 10.1016/j.enconman.2010.07.029_bib6 Kazanasmaz (10.1016/j.enconman.2010.07.029_bib31) 2009; 44 Mohanraj (10.1016/j.enconman.2010.07.029_bib32) 2009; 86 Golcu (10.1016/j.enconman.2010.07.029_bib29) 2006; 47 10.1016/j.enconman.2010.07.029_bib22 10.1016/j.enconman.2010.07.029_bib23 |
| References_xml | – reference: Li QP. Research on design method of a helico-axial multiphase pump and its experimental studies on performances. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 308–12. – volume: 2 start-page: 221 year: 1995 end-page: 248 ident: bib17 article-title: Multiobjective function optimization using nondominated sorting genetic algorithms publication-title: Evol Comput – volume: 56 start-page: 64 year: 2004 end-page: 67 ident: bib2 article-title: Multiphase pump recovers more oil in a mature carbonate reservoir publication-title: J Petrol Technol – reference: Bratu C. Two-phase pump transient behaviour. In: SPE annual technical conference, Dallas; 1995. p. 247–61. – reference: Tran KD. Elitist non-dominated sorting GA-II (NSGA-II) as a parameter-less multi-objective genetic algorithm. In: Levy Y, editor. IEEE SoutheastCon 2005, Ft. Lauderdale, FL; 2005. p. 359–67. – volume: 86 start-page: 1442 year: 2009 end-page: 1449 ident: bib32 article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks publication-title: Appl Energy – reference: Scott SL. Multiphase pump survey. In: The 4th annual Texas A&M multiphase pump user roundtable, Houston; 2002. – reference: Samad A, Kim KY, Lee KS. Multi-objective optimization of a turbomachinery blade using NSGA-II. In: 5th Joint ASME/JSME fluids engineering summer conference, San Diego, CA; 2007. p. 885–91. – reference: Li QP, Lu WP, Xue DS. Three-dimensional numerical analysis of gas bubble’s behavior in multiphase pump impeller using boundary elemental method. In: Zhou L, editor. 2nd International symposium on multiphase, non-Newtonian and reacting flows, Hangzhou, People’s Republic of China; 2004. p. 313–7. – volume: 32 start-page: 1694 year: 2008 end-page: 1701 ident: bib5 article-title: Theoretical and experimental analysis of a multiphase screw pump, handling gas–liquid mixtures with very high gas volume fractions publication-title: Exp Therm Fluid Sci – volume: 35 start-page: 709 year: 2003 end-page: 726 ident: bib19 article-title: Genetic algorithms in computer aided design publication-title: Comput-Aided Des – volume: 16 start-page: 516 year: 2009 end-page: 523 ident: bib26 article-title: A cascade of artificial neural networks to predict transformers oil parameters publication-title: IEEE Trans Dielectr Electr Insul – reference: Lu WQ, Li QP, Xue DS. Boundary element numerical simulation of gas–liquid two-phase flow in multiphase pump impeller. In: Power H, Brebbia CA, editors. 1st International conference on computational methods in multiphase flow, Orlando, FL; 2001. p. 13–22. – reference: Leporcher Emile, Delaytermoz Alain, Renault Jean-François, Gerbier Alain, Burger O. Deployment of multiphase pumps on a North Sea field. In: SPE annual technical conference, New Orleans; 2001. p. SPE71536. – reference: Pierre Gié PB, Bratu Christian, Durando P. Poseidon multiphase pump: field test results. In: Offshore technology conference, Houston; 1992. p. 489–502. – volume: 20 start-page: 61 year: 1999 end-page: 64 ident: bib12 article-title: Some discussions about the design of rotodynamic multiphase pump publication-title: J Eng Thermolphys – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib16 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 44 start-page: 1751 year: 2009 end-page: 1757 ident: bib31 article-title: Artificial neural networks to predict daylight illuminance in office buildings publication-title: Build Environ – reference: Grimstad HJ. Subsea multiphase boosting–maturing technology applied for Santos Ltd.’s Mutineer and Exeter field. In: SPE Asia pacific oil and gas conference, Perth; 2004. p. SPE 88562. – volume: 24 start-page: 293 year: 1999 end-page: 315 ident: bib15 article-title: An introduction to genetic algorithms publication-title: Sadhana-Acad Proc Eng Sci – volume: 125 start-page: 199 year: 2003 end-page: 202 ident: bib28 article-title: Prediction of centrifugal slurry pump head reduction: an artificial neural networks approach publication-title: J Fluid Eng – Trans ASME – volume: 26 start-page: 84 year: 2005 end-page: 87 ident: bib14 article-title: Research on hydraulic design concept of an helico-axial multiphase pump and its experimental studies on performances publication-title: J Eng Thermolphys – volume: 127 start-page: 330 year: 2005 end-page: 338 ident: bib24 article-title: Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis publication-title: J Fluid Eng – Trans ASME – volume: 29 start-page: 2874 year: 2009 end-page: 2879 ident: bib30 article-title: The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation publication-title: Waste Manage – reference: Saadawi H. An overview of multiphase pumping technology and its potential application for oil fields in the gulf region. In: International petroleum technology conference, Dubai; 2007. p. IPTC 11720. – volume: 47 start-page: 992 year: 2006 end-page: 1003 ident: bib29 article-title: Neural network analysis of head-flow curves in deep well pumps publication-title: Energy Convers Manage – volume: 34 start-page: 1211 year: 1999 end-page: 1226 ident: bib27 article-title: Predicting axial piston pump performance using neural networks publication-title: Mech Mach Theory – volume: 5 start-page: 87 year: 1996 end-page: 98 ident: bib18 article-title: Optimal design of composite turbine blade using genetic algorithms publication-title: Adv Compos Mater – volume: 57 start-page: 99 year: 2002 end-page: 107 ident: bib7 article-title: Multiphase pumping: achievements and perspectives publication-title: Oil Gas Sci Technol – reference: DalPorto DF, Larson LA. Multiphase-pump field trials demonstrate practical applications for the technology. In: 1996 Offshore technology conference, Houston, TX; 1996. p. 159–64. – volume: 215 start-page: 157 year: 2001 end-page: 163 ident: bib25 article-title: Thermodynamic performance simulation of a twin-screw multiphase pump publication-title: Proc Inst Mech Eng Part E – J Process Mech Eng – reference: Saadawi H. Operating multiphase helicoaxial pumps in series to develop a satellite oil field in a remote desert location. In: SPE annual technical conference, Califomia; 2007. p. SPE 109785. – ident: 10.1016/j.enconman.2010.07.029_bib1 doi: 10.2118/36590-PA – ident: 10.1016/j.enconman.2010.07.029_bib9 doi: 10.2118/71536-MS – ident: 10.1016/j.enconman.2010.07.029_bib22 – ident: 10.1016/j.enconman.2010.07.029_bib20 – ident: 10.1016/j.enconman.2010.07.029_bib11 doi: 10.2118/109785-MS – ident: 10.1016/j.enconman.2010.07.029_bib10 doi: 10.2523/88562-MS – volume: 86 start-page: 1442 year: 2009 ident: 10.1016/j.enconman.2010.07.029_bib32 article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.01.001 – volume: 47 start-page: 992 year: 2006 ident: 10.1016/j.enconman.2010.07.029_bib29 article-title: Neural network analysis of head-flow curves in deep well pumps publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2005.06.023 – volume: 29 start-page: 2874 year: 2009 ident: 10.1016/j.enconman.2010.07.029_bib30 article-title: The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation publication-title: Waste Manage doi: 10.1016/j.wasman.2009.06.027 – volume: 16 start-page: 516 year: 2009 ident: 10.1016/j.enconman.2010.07.029_bib26 article-title: A cascade of artificial neural networks to predict transformers oil parameters publication-title: IEEE Trans Dielectr Electr Insul doi: 10.1109/TDEI.2009.4815187 – ident: 10.1016/j.enconman.2010.07.029_bib4 doi: 10.2523/11720-MS – volume: 57 start-page: 99 year: 2002 ident: 10.1016/j.enconman.2010.07.029_bib7 article-title: Multiphase pumping: achievements and perspectives publication-title: Oil Gas Sci Technol doi: 10.2516/ogst:2002007 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.enconman.2010.07.029_bib16 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 2 start-page: 221 year: 1995 ident: 10.1016/j.enconman.2010.07.029_bib17 article-title: Multiobjective function optimization using nondominated sorting genetic algorithms publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – volume: 35 start-page: 709 year: 2003 ident: 10.1016/j.enconman.2010.07.029_bib19 article-title: Genetic algorithms in computer aided design publication-title: Comput-Aided Des doi: 10.1016/S0010-4485(03)00003-4 – ident: 10.1016/j.enconman.2010.07.029_bib23 – volume: 215 start-page: 157 year: 2001 ident: 10.1016/j.enconman.2010.07.029_bib25 article-title: Thermodynamic performance simulation of a twin-screw multiphase pump publication-title: Proc Inst Mech Eng Part E – J Process Mech Eng doi: 10.1243/0954408011530406 – ident: 10.1016/j.enconman.2010.07.029_bib21 doi: 10.1115/FEDSM2007-37434 – volume: 32 start-page: 1694 year: 2008 ident: 10.1016/j.enconman.2010.07.029_bib5 article-title: Theoretical and experimental analysis of a multiphase screw pump, handling gas–liquid mixtures with very high gas volume fractions publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2008.06.009 – ident: 10.1016/j.enconman.2010.07.029_bib6 – ident: 10.1016/j.enconman.2010.07.029_bib8 – volume: 24 start-page: 293 year: 1999 ident: 10.1016/j.enconman.2010.07.029_bib15 article-title: An introduction to genetic algorithms publication-title: Sadhana-Acad Proc Eng Sci – ident: 10.1016/j.enconman.2010.07.029_bib3 doi: 10.2118/30660-MS – volume: 5 start-page: 87 year: 1996 ident: 10.1016/j.enconman.2010.07.029_bib18 article-title: Optimal design of composite turbine blade using genetic algorithms publication-title: Adv Compos Mater doi: 10.1163/156855196X00013 – volume: 56 start-page: 64 year: 2004 ident: 10.1016/j.enconman.2010.07.029_bib2 article-title: Multiphase pump recovers more oil in a mature carbonate reservoir publication-title: J Petrol Technol doi: 10.2118/83910-JPT – volume: 20 start-page: 61 year: 1999 ident: 10.1016/j.enconman.2010.07.029_bib12 article-title: Some discussions about the design of rotodynamic multiphase pump publication-title: J Eng Thermolphys – ident: 10.1016/j.enconman.2010.07.029_bib13 – volume: 127 start-page: 330 year: 2005 ident: 10.1016/j.enconman.2010.07.029_bib24 article-title: Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis publication-title: J Fluid Eng – Trans ASME doi: 10.1115/1.1881697 – volume: 26 start-page: 84 year: 2005 ident: 10.1016/j.enconman.2010.07.029_bib14 article-title: Research on hydraulic design concept of an helico-axial multiphase pump and its experimental studies on performances publication-title: J Eng Thermolphys – volume: 44 start-page: 1751 year: 2009 ident: 10.1016/j.enconman.2010.07.029_bib31 article-title: Artificial neural networks to predict daylight illuminance in office buildings publication-title: Build Environ doi: 10.1016/j.buildenv.2008.11.012 – volume: 125 start-page: 199 year: 2003 ident: 10.1016/j.enconman.2010.07.029_bib28 article-title: Prediction of centrifugal slurry pump head reduction: an artificial neural networks approach publication-title: J Fluid Eng – Trans ASME doi: 10.1115/1.1523062 – volume: 34 start-page: 1211 year: 1999 ident: 10.1016/j.enconman.2010.07.029_bib27 article-title: Predicting axial piston pump performance using neural networks publication-title: Mech Mach Theory doi: 10.1016/S0094-114X(98)00086-X |
| SSID | ssj0003506 |
| Score | 2.3896961 |
| Snippet | In order to improve the prototype’s performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by... In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 538 |
| SubjectTerms | algorithms Applied sciences Computer simulation Crude oil, natural gas and petroleum products Crude oil, natural gas, oil shales producing equipements and methods Energy Energy. Thermal use of fuels equipment performance Exact sciences and technology experimental design Fuels Genetic algorithm Learning theory Materials and auxiliary equipments used in energy engineering Mathematical analysis Mathematical models Multiphase Multiphase pump Neural network Neural networks Numerical simulation Oil extraction from wells. Pumping. Shale oil extraction. Well workover Optimization design prediction Prospecting and production of crude oil, natural gas, oil shales and tar sands Pump impellers Pumps |
| Title | Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN |
| URI | https://dx.doi.org/10.1016/j.enconman.2010.07.029 https://www.proquest.com/docview/1710225095 https://www.proquest.com/docview/1777165789 https://www.proquest.com/docview/849457228 |
| Volume | 52 |
| WOSCitedRecordID | wos000284746800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMIIa6iXCYj8VZ5JHESx4_VNKB7qJA2pPIUObZDV3Vp1csoP4V_y_ElaUsZAyGkKqoiu076fTnn5PhcEHpDdZDIoMgIlUKQOC0LIsKCEbCcNS9jQRlXttkEGwyy4ZB_bLW-17kwVxNWVdl6zWf_FWo4B2Cb1Nm_gLv5UTgB3wF0OALscPwj4G1KLZkWYyfKuouRmOnuFETDpc-5dAbiBDhAxNp4zF1U4QgUWncG8JrUSePPn3eNjlNmP2Fw9r5H-n271dAbDHb8-S570IavW9-bHXS5F1bTuKZPL6pvYnN2ZbXftPryddWIID_yeLTaRAzZsIPPnsyqdrxu3GZ16swmTsl6MnlKMu56Dx9pJ30zxolJzt0Wz0m0R0MnaxNXFsar7cR5Mvc0gnNOjI9MWdAK7t1H87GjwHtadqttn5nrMpdl9j0oTZNb6CBiCQ_a6KDXPxmeNmqeJrZxa3MfW-nnv17tOsvn3kws4HksXSOVPZvAGjrnD9B9_4aCe45ZD1FLV4_Q3a26lY-R-olj2HIMb3MMT0u8zTG84Rg2HMM1x7DlGIYZnmMY6IOBY0_Qp3cn58cfiG_XQWQcB0uiZZkqWZYUlESpiiwNQToUUkZJAVZ3GkmmbLcGFdCYqpTpUAhWxoEy_W64LulT1K6mlX6GsCzitAhDoQLFYxmmRVSEman0FGVSJ5J2UFL_lbn0texNS5VJXgctjvMagtxAkAcsBwg66G0zb-aqudw4g9dI5d4mdbZmDgS7ce7hDrTNkhE1Pd-zsINe11jnINXNVp2o9HS1yENj-MPbCU9-N4axMAWNCwvha8ZkMY8TFkXZ83-4jxfojttJMZ-XqL2cr_QrdFteLS8W80P_XPwAskbmdw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+shape+optimization+of+helico-axial+multiphase+pump+impeller+based+on+NSGA-II+and+ANN&rft.jtitle=Energy+conversion+and+management&rft.au=Zhang%2C+Jinya&rft.au=Zhu%2C+Hongwu&rft.au=Yang%2C+Chun&rft.au=Li%2C+Yan&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=52&rft.issue=1&rft.spage=538&rft.epage=546&rft_id=info:doi/10.1016%2Fj.enconman.2010.07.029&rft.externalDocID=S0196890410003365 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |