A higher-order characterization of probabilistic polynomial time
We present RSLR, an implicit higher-order characterization of the class PP of those problems which can be decided in probabilistic polynomial time with error probability smaller than 12. Analogously, a (less implicit) characterization of the class BPP can be obtained. RSLR is an extension of Hofmann...
Gespeichert in:
| Veröffentlicht in: | Information and computation Jg. 241; S. 114 - 141 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.04.2015
Elsevier |
| Schlagworte: | |
| ISSN: | 0890-5401, 1090-2651 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present RSLR, an implicit higher-order characterization of the class PP of those problems which can be decided in probabilistic polynomial time with error probability smaller than 12. Analogously, a (less implicit) characterization of the class BPP can be obtained. RSLR is an extension of Hofmann's SLR with a probabilistic primitive, which enjoys basic properties such as subject reduction and confluence. Polynomial time soundness of RSLR is obtained by syntactical means, as opposed to the standard literature on SLR-derived systems, which use semantics in an essential way. |
|---|---|
| ISSN: | 0890-5401 1090-2651 |
| DOI: | 10.1016/j.ic.2014.10.009 |