Computational methods, databases and tools for synthetic lethality prediction
Abstract Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP in...
Saved in:
| Published in: | Briefings in bioinformatics Vol. 23; no. 3 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
13.05.2022
Oxford Publishing Limited (England) |
| Subjects: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed. |
|---|---|
| AbstractList | Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed.Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed. Abstract Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed. Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed. |
| Author | Wen, Yuqi Zhao, Caiyun Leng, Dongjin Zhang, Qinglong Bo, Xiaochen Wu, Lianlian Wang, Jing Yan, Bowei He, Song Han, Junshan Zhao, Yanpeng Wang, Zhongming Yang, Xiaoxi Dai, Chong Zhang, Yixin |
| AuthorAffiliation | Department of Bioinformatics, Institute of Health Service and Transfusion Medicine , Beijing 100850, China |
| AuthorAffiliation_xml | – name: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine , Beijing 100850, China |
| Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing email: 1925390300@qq.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 2 givenname: Qinglong surname: Zhang fullname: Zhang, Qinglong email: 875896947@qq.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 3 givenname: Junshan surname: Han fullname: Han, Junshan email: hanjunshan01@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 4 givenname: Yanpeng surname: Zhao fullname: Zhao, Yanpeng email: zyp182531903@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 5 givenname: Caiyun surname: Zhao fullname: Zhao, Caiyun email: 1810108309@pku.edu.cn organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 6 givenname: Bowei surname: Yan fullname: Yan, Bowei email: boweiyan2020@gmail.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 7 givenname: Chong surname: Dai fullname: Dai, Chong email: daichong98@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 8 givenname: Lianlian orcidid: 0000-0002-9611-4488 surname: Wu fullname: Wu, Lianlian email: wulianlian07@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 9 givenname: Yuqi surname: Wen fullname: Wen, Yuqi email: wenyuqi7@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 10 givenname: Yixin surname: Zhang fullname: Zhang, Yixin email: 573120024@qq.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 11 givenname: Dongjin surname: Leng fullname: Leng, Dongjin email: dongjinleng@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 12 givenname: Zhongming surname: Wang fullname: Wang, Zhongming email: zhongming@tju.edu.cn organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 13 givenname: Xiaoxi surname: Yang fullname: Yang, Xiaoxi email: 782923029@qq.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 14 givenname: Song orcidid: 0000-0002-4136-6151 surname: He fullname: He, Song email: hes1224@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China – sequence: 15 givenname: Xiaochen orcidid: 0000-0003-1911-7922 surname: Bo fullname: Bo, Xiaochen email: boxiaoc@163.com organization: Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35352098$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1rFDEUhoNU7IdeeS8Dggh2bL6zuSnIUluh4o1eh5NMxk3JTMZJprD_3iy7Fi3UqxM4z3k4Oe8pOhrT6BF6TfBHgjW7sMFeWAuOYPkMnRCuVMux4Ee7t1St4JIdo9Oc7zCmWK3IC3TMBBMU69UJ-rpOw7QUKCGNEJvBl03q8nnTQQEL2ecGxq4pKcXc9Glu8nYsG1-Ca2JFIYaybabZd8HtDC_R8x5i9q8O9Qz9-Hz1fX3T3n67_rL-dNs6znFpvQblsaWkJ8Ad1UJQAoQxTnkHrgPZYyqtWPVcc82cFCA1xa7rnSWSe8bO0OXeOy128J3zY5khmmkOA8xbkyCYfztj2Jif6d5oQiRTugreHwRz-rX4XMwQsvMxwujTkg2VXHBFhOQVffsIvUvLXI-1o5TgXImVqtSbvzd6WOXPpSvwYQ-4OeU8-_4BIdjscjQ1R3PIsdLkEe3CPqT6nRCfmHm3n0nL9F_5b0nWr-g |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108066 crossref_primary_10_1093_bib_bbaf255 crossref_primary_10_1200_PO_25_00035 crossref_primary_10_1016_j_medj_2023_12_009 crossref_primary_10_1109_TVCG_2024_3456325 crossref_primary_10_3389_fonc_2023_1168143 crossref_primary_10_1080_17501911_2025_2548756 crossref_primary_10_1007_s11427_023_2618_y crossref_primary_10_1007_s13193_024_02088_5 crossref_primary_10_1016_j_csbj_2023_10_011 crossref_primary_10_1093_bib_bbaf142 crossref_primary_10_1109_JBHI_2024_3354776 crossref_primary_10_1038_s41467_024_52900_7 crossref_primary_10_1038_s41598_025_16353_2 crossref_primary_10_1093_bib_bbac501 crossref_primary_10_1016_j_canlet_2024_217010 crossref_primary_10_3389_fgene_2022_961611 crossref_primary_10_1002_1873_3468_14950 crossref_primary_10_1038_s41588_023_01557_x crossref_primary_10_1038_s41417_023_00706_y |
| Cites_doi | 10.1158/2159-8290.CD-20-1503 10.1093/nar/gkv452 10.1038/s41467-017-00555-y 10.1093/nar/gki107 10.1186/1752-0509-5-73 10.1073/pnas.1900654116 10.1093/nar/26.1.73 10.1128/AAC.01319-19 10.1016/j.omtn.2019.07.003 10.1016/j.cell.2017.06.010 10.1186/s13148-019-0734-x 10.1371/journal.pcbi.1006888 10.1016/j.cell.2017.10.049 10.1093/nar/gkaa1074 10.1038/nature08460 10.1093/bioinformatics/bty673 10.1093/nar/gkj123 10.1093/nar/gky1079 10.1038/s41586-019-1102-x 10.1186/jbiol36 10.1073/pnas.1706139114 10.1038/srep16025 10.1126/sciadv.abc2100 10.1371/journal.pcbi.1003637 10.3390/cancers11111682 10.1038/nature11003 10.1038/nature03443 10.1093/bioinformatics/btq053 10.1093/nar/gkw985 10.1038/nbt1096 10.18632/oncotarget.12046 10.1126/science.1091317 10.1038/nmeth.4627 10.3389/fphar.2020.00112 10.1038/msb.2013.54 10.1016/j.cell.2021.03.030 10.1039/c3mb25589a 10.1126/science.aam7344 10.1083/jcb.202006159 10.1371/journal.pcbi.1004506 10.1016/j.chembiol.2021.01.026 10.1186/1477-5956-10-S1-S4 10.1093/bib/bbab036 10.1016/j.cels.2016.02.003 10.1038/nmeth.4225 10.1109/TCBB.2019.2909908 10.1073/pnas.1508573112 10.1371/journal.pcbi.1000928 10.1038/s41571-018-0055-6 10.1093/nar/gkaa1023 10.1126/science.aao1729 10.1002/pro.3978 10.1016/j.ccell.2019.01.009 10.1038/sj.bjc.6601894 10.1002/jcb.27395 10.1186/s13059-019-1745-9 10.1038/s41467-020-16078-y 10.1093/nar/gks1170 10.1038/nmeth.2436 10.1016/j.ccell.2020.09.014 10.1186/s12920-019-0554-z 10.1093/nar/gkn892 10.1038/nbt.4048 10.1038/s41586-019-1103-9 10.1016/j.cell.2009.05.006 10.1016/j.cell.2018.06.010 10.1038/nrg.2017.47 10.1186/s13062-015-0086-1 10.1098/rsif.2017.0387 10.1093/bib/bbab128 10.1016/j.cels.2021.08.006 10.1016/j.trecan.2018.08.003 10.7150/thno.63416 10.1186/s12859-019-3197-3 10.1186/1752-0509-3-116 10.1093/nar/gky973 10.1093/bioinformatics/btv352 10.1016/j.csbj.2020.04.012 10.1038/nchembio.1967 10.1158/1940-6207.CAPR-10-0235 10.1126/science.1180823 10.1186/s12943-021-01405-8 10.1007/978-1-4419-7046-6_19 10.1093/nar/gkab338 10.1613/jair.953 10.1038/s41467-021-21544-2 10.1016/j.cell.2014.07.027 10.1007/s11390-021-0866-2 10.1016/j.ijpddr.2013.06.001 10.1128/AAC.01533-17 10.1038/s42256-019-0138-9 10.1038/s41392-020-00358-6 10.1016/j.cels.2015.12.004 10.1093/nar/gkv1108 10.1038/ncomms15580 10.18632/oncotarget.10536 10.1109/JBHI.2021.3079302 10.1016/j.molcel.2018.01.017 10.1186/1471-2105-9-426 10.1093/nar/gky868 10.1038/s41598-018-26783-w 10.1093/nar/gkaa1100 10.1093/bioinformatics/btab271 10.1038/s41467-018-04647-1 10.1093/nar/gkw1092 10.1126/science.aaf1420 10.1016/j.trecan.2018.11.001 10.1038/s41573-019-0046-z 10.1093/bioinformatics/btz893 10.1158/0008-5472.CAN-12-3956 10.1093/nar/gkj109 10.1038/nature03445 10.1080/00031305.1992.10475879 10.1186/1755-8794-6-30 10.1093/bioinformatics/btab110 10.1016/j.celrep.2019.06.067 10.1186/s13045-020-00956-5 10.1142/S0219720015410024 10.1093/bioinformatics/btaa211 10.1093/nar/gky1055 10.1016/j.molcel.2004.09.035 10.1016/j.molcel.2016.06.022 10.1093/bib/bbx172 10.1038/s41598-020-60574-6 10.1109/TPAMI.2005.159 10.1126/sciadv.abg2106 10.1053/j.seminoncol.2015.09.015 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1093/bib/bbac106 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | PMC9116379 35352098 10_1093_bib_bbac106 10.1093/bib/bbac106 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62103436 – fundername: ; grantid: 62103436 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c440t-e9a7e0b21f1a4c295521a133424dacda6f026b58f49493c65a6920cdfcb164e33 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784523200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 16:52:16 EDT 2025 Thu Oct 02 12:07:09 EDT 2025 Fri Oct 03 04:10:39 EDT 2025 Tue Sep 30 00:37:15 EDT 2025 Tue Nov 18 21:21:01 EST 2025 Sat Nov 29 05:43:30 EST 2025 Wed Apr 02 07:05:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | computational methods deep learning machine learning synthetic lethality |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c440t-e9a7e0b21f1a4c295521a133424dacda6f026b58f49493c65a6920cdfcb164e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Jing Wang and Qinglong Zhang authors contributed equally to this work. |
| ORCID | 0000-0002-9611-4488 0000-0003-1911-7922 0000-0002-4136-6151 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbac106 |
| PMID | 35352098 |
| PQID | 2675447587 |
| PQPubID | 26846 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116379 proquest_miscellaneous_2645471564 proquest_journals_2675447587 pubmed_primary_35352098 crossref_primary_10_1093_bib_bbac106 crossref_citationtrail_10_1093_bib_bbac106 oup_primary_10_1093_bib_bbac106 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-13 |
| PublicationDateYYYYMMDD | 2022-05-13 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2022 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Zhang (2022051813464665800_ref19) 2015; 13 The Gene Ontology C (2022051813464665800_ref114) 2019; 47 Li (2022051813464665800_ref9) 2020; 5 Giurgiu (2022051813464665800_ref120) 2019; 47 Sayers (2022051813464665800_ref112) 2021; 49 Bryant (2022051813464665800_ref5) 2005; 434 Jerby-Arnon (2022051813464665800_ref13) 2014; 158 Srivastava (2022051813464665800_ref77) 2014; 15 Cheng (2022051813464665800_ref102) 2021; 7 Hao (2022051813464665800_ref33) 2021; 25 Li (2022051813464665800_ref38) 2014; 2014 Wu (2022051813464665800_ref73) 2014; 13 Yang (2022051813464665800_ref93) 2019; 11 Hu (2022051813464665800_ref50) 2021; 22 Grigoroiu (2022051813464665800_ref66) 2020; 10 Feng (2022051813464665800_ref63) 2019; 35 Akimov (2022051813464665800_ref89) 2021; 28 Luo (2022051813464665800_ref133) 2009; 137 Yu (2022051813464665800_ref111) 2016; 2 Horlbeck (2022051813464665800_ref12) 2018; 174 Lundberg (2022051813464665800_ref76) 2020; 2 Wu (2022051813464665800_ref71) 2021; 36 Ho (2022051813464665800_ref74) 1995 Keshava Prasad (2022051813464665800_ref122) 2009; 37 Stark (2022051813464665800_ref37) 2006; 34 Pasquina (2022051813464665800_ref96) 2016; 12 Ma (2022051813464665800_ref110) 2018; 15 Guell (2022051813464665800_ref101) 2014; 10 Oughtred (2022051813464665800_ref36) 2019; 47 Conde-Pueyo (2022051813464665800_ref53) 2009; 3 Farmer (2022051813464665800_ref6) 2005; 434 Barretina (2022051813464665800_ref125) 2012; 483 Xiao (2022051813464665800_ref97) 2019; 63 Altman (2022051813464665800_ref70) 1992; 46 Yin (2022051813464665800_ref69) 2019 Liu (2022051813464665800_ref18) 2018; 8 Srihari (2022051813464665800_ref58) 2015; 10 Murdoch (2022051813464665800_ref109) 2019; 116 Uniprot (2022051813464665800_ref113) 2021; 49 Laufer (2022051813464665800_ref42) 2013; 10 Kuenzi (2022051813464665800_ref108) 2020; 38 Yu (2022051813464665800_ref92) 2021; 7 Kuzmin (2022051813464665800_ref86) 2018; 360 Kirzinger (2022051813464665800_ref16) 2019; 12 Setton (2022051813464665800_ref4) 2021; 11 Kanehisa (2022051813464665800_ref115) 2017; 45 Schmidt (2022051813464665800_ref39) 2013; 41 Costanzo (2022051813464665800_ref56) 2010; 327 Wang (2022051813464665800_ref80) 2021; 37 Deshpande (2022051813464665800_ref55) 2013; 73 Gu (2022051813464665800_ref88) 2018; 19 Costanzo (2022051813464665800_ref40) 2016; 353 Zamanighomi (2022051813464665800_ref47) 2019; 20 Vizeacoumar (2022051813464665800_ref43) 2013; 9 Chan (2022051813464665800_ref91) 2019; 568 Apaolaza (2022051813464665800_ref20) 2017; 8 Barbie (2022051813464665800_ref132) 2009; 462 De Kegel (2022051813464665800_ref26) 2021; 12 Zhang (2022051813464665800_ref2) 2021; 12 Megchelenbrink (2022051813464665800_ref21) 2015; 112 Paladugu (2022051813464665800_ref67) 2008; 9 Ryan (2022051813464665800_ref87) 2018; 4 O'neil (2022051813464665800_ref10) 2017; 18 Velikovi (2022051813464665800_ref78) Lord (2022051813464665800_ref7) 2017; 355 Liu (2022051813464665800_ref29) 2020; 17 Srivas (2022051813464665800_ref49) 2016; 63 Pan (2022051813464665800_ref135) 2004; 16 Subramanian (2022051813464665800_ref118) 2017; 171 Alanis-Lobato (2022051813464665800_ref123) 2017; 45 Mast (2022051813464665800_ref99) 2020; 219 Walcott (2022051813464665800_ref104) 2016; 43 Sinha (2022051813464665800_ref65) 2017; 8 Tsherniak (2022051813464665800_ref124) 2017; 170 Chen (2022051813464665800_ref128) 2006; 34 Shen (2022051813464665800_ref44) 2017; 14 Kelley (2022051813464665800_ref57) 2005; 23 Oughtred (2022051813464665800_ref35) 2021; 30 Wappett (2022051813464665800_ref85) 2021; 49 Behan (2022051813464665800_ref90) 2019; 568 Cai (2022051813464665800_ref31) 2020; 36 Wan (2022051813464665800_ref41) 2020; 11 Li (2022051813464665800_ref51) 2011; 5 Chawla (2022051813464665800_ref107) 2002; 16 Peng (2022051813464665800_ref75) 2005; 27 Ching (2022051813464665800_ref81) 2018; 15 Das (2022051813464665800_ref23) 2019; 35 Che (2022051813464665800_ref68) 2011; 696 Magen (2022051813464665800_ref84) 2019; 28 Kalia (2022051813464665800_ref95) 2017; 114 Subramaniam (2022051813464665800_ref98) 2018; 62 Long (2022051813464665800_ref32) 2021; 37 Zhang (2022051813464665800_ref52) 2012; 10 Lippert (2022051813464665800_ref100) 2010; 26 Aziz (2022051813464665800_ref94) 2015; 5 Ku (2022051813464665800_ref17) 2020; 11 Jacunski (2022051813464665800_ref14) 2015; 11 Benfatto (2022051813464665800_ref27) 2021; 20 Huang (2022051813464665800_ref28) 2019; 20 Wang (2022051813464665800_ref61) 2013; 6 Chang (2022051813464665800_ref62) 2016; 7 Almozlino (2022051813464665800_ref82) 2020; 18 Bamford (2022051813464665800_ref126) 2004; 91 Topatana (2022051813464665800_ref8) 2020; 13 Deng (2022051813464665800_ref83) 2019; 11 Guo (2022051813464665800_ref34) 2016; 44 Szklarczyk (2022051813464665800_ref121) 2021; 49 Lee (2022051813464665800_ref105) 2021; 184 Huang (2022051813464665800_ref1) 2020; 19 Aromolaran (2022051813464665800_ref106) 2021; 22 Sadreyev (2022051813464665800_ref119) 2015; 43 Kranthi (2022051813464665800_ref15) 2013; 9 Liberzon (2022051813464665800_ref116) 2015; 1 Lee (2022051813464665800_ref54) 2013; 3 Reguly (2022051813464665800_ref134) 2006; 5 Yang (2022051813464665800_ref64) 2021; 11 Cherry (2022051813464665800_ref130) 1998; 26 Tong (2022051813464665800_ref136) 2004; 303 Liany (2022051813464665800_ref30) 2020; 36 Nováček (2022051813464665800_ref79) 2020; 2020 Pandey (2022051813464665800_ref72) 2010; 6 Pratapa (2022051813464665800_ref22) 2015; 31 Ye (2022051813464665800_ref131) 2016; 7 Lee (2022051813464665800_ref60) 2018; 9 Wang (2022051813464665800_ref59) 2019; 20 O'brien (2022051813464665800_ref127) 2005; 33 Han (2022051813464665800_ref48) 2019; 17 Davis (2022051813464665800_ref117) 2019; 47 Parameswaran (2022051813464665800_ref11) 2019; 5 Benstead-Hume (2022051813464665800_ref25) 2019; 15 Najm (2022051813464665800_ref45) 2018; 36 Ashworth (2022051813464665800_ref3) 2018; 15 Fischer (2022051813464665800_ref129) 2011; Chapter 6 Li (2022051813464665800_ref24) 2019; 120 Huang (2022051813464665800_ref103) 2011; 4 Zhao (2022051813464665800_ref46) 2018; 69 |
| References_xml | – volume: 11 start-page: 1626 issue: 7 year: 2021 ident: 2022051813464665800_ref4 article-title: Synthetic lethality in cancer therapeutics: the next generation publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-1503 – volume: 43 start-page: W154 issue: W1 year: 2015 ident: 2022051813464665800_ref119 article-title: PhyloGene server for identification and visualization of co-evolving proteins using normalized phylogenetic profiles publication-title: Nucleic Acid Res doi: 10.1093/nar/gkv452 – volume: 8 start-page: 459 issue: 1 year: 2017 ident: 2022051813464665800_ref20 article-title: An in-silico approach to predict and exploit synthetic lethality in cancer metabolism publication-title: Nat Commun doi: 10.1038/s41467-017-00555-y – volume: 33 start-page: D476 issue: Database issue year: 2005 ident: 2022051813464665800_ref127 article-title: Inparanoid: a comprehensive database of eukaryotic orthologs publication-title: Nucleic Acid Res doi: 10.1093/nar/gki107 – volume: 5 start-page: 73 year: 2011 ident: 2022051813464665800_ref51 article-title: Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions publication-title: BMC Syst Biol doi: 10.1186/1752-0509-5-73 – volume: 116 start-page: 22071 issue: 44 year: 2019 ident: 2022051813464665800_ref109 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1900654116 – volume: 26 start-page: 73 issue: 1 year: 1998 ident: 2022051813464665800_ref130 article-title: SGD: saccharomyces genome database publication-title: Nucleic Acid Res doi: 10.1093/nar/26.1.73 – volume: 63 start-page: e01319 issue: 11 year: 2019 ident: 2022051813464665800_ref97 article-title: Revisiting the beta-lactams for tuberculosis therapy with a compound-compound synthetic lethality approach publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01319-19 – volume: 17 start-page: 688 year: 2019 ident: 2022051813464665800_ref48 article-title: Genetic interaction-based biomarkers identification for drug resistance and sensitivity in cancer cells publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.07.003 – volume: 170 start-page: 564 issue: 3 year: 2017 ident: 2022051813464665800_ref124 article-title: Defining a cancer dependency map publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 11 start-page: 136 issue: 1 year: 2019 ident: 2022051813464665800_ref93 article-title: Epigenetic synthetic lethality approaches in cancer therapy publication-title: Clin Epigenetics doi: 10.1186/s13148-019-0734-x – volume: 15 start-page: e1006888 issue: 4 year: 2019 ident: 2022051813464665800_ref25 article-title: Predicting synthetic lethal interactions using conserved patterns in protein interaction networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006888 – volume: 171 start-page: 1437 issue: 6 year: 2017 ident: 2022051813464665800_ref118 article-title: A next generation connectivity map: L1000 platform and the first 1 000 000 profiles publication-title: Cell doi: 10.1016/j.cell.2017.10.049 – volume: 49 start-page: D605 issue: D1 year: 2021 ident: 2022051813464665800_ref121 article-title: The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets publication-title: Nucleic Acid Res doi: 10.1093/nar/gkaa1074 – volume: 462 start-page: 108 issue: 7269 year: 2009 ident: 2022051813464665800_ref132 article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 publication-title: Nature doi: 10.1038/nature08460 – volume: 35 start-page: 701 issue: 4 year: 2019 ident: 2022051813464665800_ref23 article-title: DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty673 – volume: 34 start-page: D363 issue: Database issue year: 2006 ident: 2022051813464665800_ref128 article-title: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups publication-title: Nucleic Acid Res doi: 10.1093/nar/gkj123 – volume: 47 start-page: D529 issue: D1 year: 2019 ident: 2022051813464665800_ref36 article-title: The BioGRID interaction database: 2019 update publication-title: Nucleic Acid Res doi: 10.1093/nar/gky1079 – volume: 568 start-page: 551 issue: 7753 year: 2019 ident: 2022051813464665800_ref91 article-title: WRN helicase is a synthetic lethal target in microsatellite unstable cancers publication-title: Nature doi: 10.1038/s41586-019-1102-x – volume: 5 start-page: 11 issue: 4 year: 2006 ident: 2022051813464665800_ref134 article-title: Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae publication-title: J Biol doi: 10.1186/jbiol36 – volume: 114 start-page: 7426 issue: 28 year: 2017 ident: 2022051813464665800_ref95 article-title: Exploiting the synthetic lethality between terminal respiratory oxidases to kill mycobacterium tuberculosis and clear host infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1706139114 – volume: 5 start-page: 16025 year: 2015 ident: 2022051813464665800_ref94 article-title: Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations publication-title: Sci Rep doi: 10.1038/srep16025 – volume: 7 start-page: e1003637 issue: 1 year: 2021 ident: 2022051813464665800_ref102 article-title: Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity publication-title: Sci Adv doi: 10.1126/sciadv.abc2100 – volume: 10 start-page: e1003637 issue: 5 year: 2014 ident: 2022051813464665800_ref101 article-title: Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003637 – volume: 11 start-page: 1682 issue: 11 year: 2019 ident: 2022051813464665800_ref83 article-title: SL-BioDP: multi-cancer interactive tool for prediction of synthetic lethality and response to cancer treatment publication-title: Cancers (Basel) doi: 10.3390/cancers11111682 – volume: 483 start-page: 603 issue: 7391 year: 2012 ident: 2022051813464665800_ref125 article-title: The cancer cell line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 434 start-page: 913 issue: 7035 year: 2005 ident: 2022051813464665800_ref5 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature doi: 10.1038/nature03443 – volume: 26 start-page: 912 issue: 7 year: 2010 ident: 2022051813464665800_ref100 article-title: Gene function prediction from synthetic lethality networks via ranking on demand publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq053 – volume: 13 start-page: 71 issue: Suppl 3 year: 2014 ident: 2022051813464665800_ref73 article-title: In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer publication-title: Cancer Inform – volume: 45 start-page: D408 issue: D1 year: 2017 ident: 2022051813464665800_ref123 article-title: HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks publication-title: Nucleic Acid Res doi: 10.1093/nar/gkw985 – volume: 2014 start-page: 196034 year: 2014 ident: 2022051813464665800_ref38 article-title: Syn-lethality: an integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies publication-title: Biomed Res Int – volume: 23 start-page: 561 issue: 5 year: 2005 ident: 2022051813464665800_ref57 article-title: Systematic interpretation of genetic interactions using protein networks publication-title: Nat Biotechnol doi: 10.1038/nbt1096 – volume: 7 start-page: 73664 issue: 45 year: 2016 ident: 2022051813464665800_ref62 article-title: Uncovering synthetic lethal interactions for therapeutic targets and predictive markers in lung adenocarcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.12046 – volume: 303 start-page: 808 issue: 5659 year: 2004 ident: 2022051813464665800_ref136 article-title: Global mapping of the yeast genetic interaction network publication-title: Science doi: 10.1126/science.1091317 – volume: 15 start-page: 290 issue: 4 year: 2018 ident: 2022051813464665800_ref110 article-title: Using deep learning to model the hierarchical structure and function of a cell publication-title: Nat Methods doi: 10.1038/nmeth.4627 – volume: 11 start-page: 112 year: 2020 ident: 2022051813464665800_ref41 article-title: EXP2SL: a machine learning framework for cell-line-specific synthetic lethality prediction publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00112 – volume: 9 start-page: 696 year: 2013 ident: 2022051813464665800_ref43 article-title: A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities publication-title: Mol Syst Biol doi: 10.1038/msb.2013.54 – volume: 184 start-page: 2487 issue: 9 year: 2021 ident: 2022051813464665800_ref105 article-title: Synthetic lethality-mediated precision oncology via the tumor transcriptome publication-title: Cell doi: 10.1016/j.cell.2021.03.030 – volume: 9 start-page: 2163 issue: 8 year: 2013 ident: 2022051813464665800_ref15 article-title: Identification of synthetic lethal pairs in biological systems through network information centrality publication-title: Mol Biosyst doi: 10.1039/c3mb25589a – volume: 355 start-page: 1152 issue: 6330 year: 2017 ident: 2022051813464665800_ref7 article-title: PARP inhibitors: synthetic lethality in the clinic publication-title: Science doi: 10.1126/science.aam7344 – volume: 219 start-page: e202006159 issue: 10 year: 2020 ident: 2022051813464665800_ref99 article-title: Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality publication-title: J Cell Biol doi: 10.1083/jcb.202006159 – volume: 11 start-page: e1004506 issue: 10 year: 2015 ident: 2022051813464665800_ref14 article-title: Connectivity homology enables inter-species network models of synthetic lethality publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004506 – volume: 28 start-page: 246 issue: 3 year: 2021 ident: 2022051813464665800_ref89 article-title: Re-defining synthetic lethality by phenotypic profiling for precision oncology publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2021.01.026 – volume: 10 start-page: S4 issue: Suppl 1 year: 2012 ident: 2022051813464665800_ref52 article-title: Predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using short polypeptide clusters publication-title: Proteome Sci doi: 10.1186/1477-5956-10-S1-S4 – volume: 22 start-page: bbab036 issue: 5 year: 2021 ident: 2022051813464665800_ref50 article-title: A survey on computational models for predicting protein-protein interactions publication-title: Brief Bioinform doi: 10.1093/bib/bbab036 – volume: 2 start-page: 77 issue: 2 year: 2016 ident: 2022051813464665800_ref111 article-title: Translation of genotype to phenotype by a hierarchy of cell subsystems publication-title: Cell Syst doi: 10.1016/j.cels.2016.02.003 – volume: 14 start-page: 573 issue: 6 year: 2017 ident: 2022051813464665800_ref44 article-title: Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions publication-title: Nat Method doi: 10.1038/nmeth.4225 – volume: 17 start-page: 748 issue: 3 year: 2020 ident: 2022051813464665800_ref29 article-title: SL(2)MF: predicting synthetic lethality in human cancers via logistic matrix factorization publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2019.2909908 – volume: 112 start-page: 12217 issue: 39 year: 2015 ident: 2022051813464665800_ref21 article-title: Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1508573112 – volume: 6 start-page: e1000928 issue: 9 year: 2010 ident: 2022051813464665800_ref72 article-title: An integrative multi-network and multi-classifier approach to predict genetic interactions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000928 – volume: 15 start-page: 564 issue: 9 year: 2018 ident: 2022051813464665800_ref3 article-title: Synthetic lethal therapies for cancer: what's next after PARP inhibitors? publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0055-6 – volume: 2020 start-page: 449 year: 2020 ident: 2022051813464665800_ref79 article-title: Predicting polypharmacy side-effects using knowledge graph embeddings publication-title: AMIA Jt Summits Transl Sci Proc – volume: 49 start-page: D92 issue: D1 year: 2021 ident: 2022051813464665800_ref112 article-title: GenBank publication-title: Nucleic Acid Res doi: 10.1093/nar/gkaa1023 – volume: 360 start-page: eaao1729 issue: 6386 year: 2018 ident: 2022051813464665800_ref86 article-title: Systematic analysis of complex genetic interactions publication-title: Science doi: 10.1126/science.aao1729 – volume: 30 start-page: 187 issue: 1 year: 2021 ident: 2022051813464665800_ref35 article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions publication-title: Protein Sci doi: 10.1002/pro.3978 – volume: 35 start-page: 457 issue: 3 year: 2019 ident: 2022051813464665800_ref63 article-title: A platform of synthetic lethal gene interaction Networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.009 – volume: 91 start-page: 355 issue: 2 year: 2004 ident: 2022051813464665800_ref126 article-title: The COSMIC (catalogue of somatic mutations in cancer) database and website publication-title: Br J Cancer doi: 10.1038/sj.bjc.6601894 – volume: 120 start-page: 405 issue: 1 year: 2019 ident: 2022051813464665800_ref24 article-title: Identification of synthetic lethality based on a functional network by using machine learning algorithms publication-title: J Cell Biochem doi: 10.1002/jcb.27395 – volume: 20 start-page: 137 issue: 1 year: 2019 ident: 2022051813464665800_ref47 article-title: GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens publication-title: Genome Biol doi: 10.1186/s13059-019-1745-9 – volume: 11 start-page: 2375 issue: 1 year: 2020 ident: 2022051813464665800_ref17 article-title: Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility publication-title: Nat Commun doi: 10.1038/s41467-020-16078-y – volume: 41 start-page: D1021 issue: Database issue year: 2013 ident: 2022051813464665800_ref39 article-title: GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update publication-title: Nucleic Acid Res doi: 10.1093/nar/gks1170 – volume: 10 start-page: 427 issue: 5 year: 2013 ident: 2022051813464665800_ref42 article-title: Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping publication-title: Nat Methods doi: 10.1038/nmeth.2436 – volume: 38 start-page: 672 issue: 5 year: 2020 ident: 2022051813464665800_ref108 article-title: Predicting drug response and Synergy using a deep learning model of human cancer cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.09.014 – volume: 12 start-page: 112 issue: 1 year: 2019 ident: 2022051813464665800_ref16 article-title: Humanized yeast genetic interaction mapping predicts synthetic lethal interactions of FBXW7 in breast cancer publication-title: BMC Med Genom doi: 10.1186/s12920-019-0554-z – volume: 37 start-page: D767 issue: Database issue year: 2009 ident: 2022051813464665800_ref122 article-title: Human protein reference database--2009 update publication-title: Nucleic Acid Res doi: 10.1093/nar/gkn892 – start-page: 1 volume-title: Icbbe 2019: 2019 6th International Conference on Biomedical and Bioinformatics Engineering year: 2019 ident: 2022051813464665800_ref69 – volume: 36 start-page: 179 issue: 2 year: 2018 ident: 2022051813464665800_ref45 article-title: Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens publication-title: Nat Biotechnol doi: 10.1038/nbt.4048 – volume: 568 start-page: 511 issue: 7753 year: 2019 ident: 2022051813464665800_ref90 article-title: Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens publication-title: Nature doi: 10.1038/s41586-019-1103-9 – volume: 137 start-page: 835 issue: 5 year: 2009 ident: 2022051813464665800_ref133 article-title: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene publication-title: Cell doi: 10.1016/j.cell.2009.05.006 – volume: 174 start-page: 953 issue: 4 year: 2018 ident: 2022051813464665800_ref12 article-title: Mapping the genetic landscape of human cells publication-title: Cell doi: 10.1016/j.cell.2018.06.010 – volume: 18 start-page: 613 issue: 10 year: 2017 ident: 2022051813464665800_ref10 article-title: Synthetic lethality and cancer publication-title: Nat Rev Genet doi: 10.1038/nrg.2017.47 – volume: 10 start-page: 57 year: 2015 ident: 2022051813464665800_ref58 article-title: Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer publication-title: Biol Direct doi: 10.1186/s13062-015-0086-1 – volume-title: Proceedings of the Third International Conference on, Document Analysis and Recognition year: 1995 ident: 2022051813464665800_ref74 – volume: 15 start-page: 20170387 issue: 141 year: 2018 ident: 2022051813464665800_ref81 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – volume: 22 start-page: bbab128 issue: 5 year: 2021 ident: 2022051813464665800_ref106 article-title: Machine learning approach to gene essentiality prediction: a review publication-title: Brief Bioinform doi: 10.1093/bib/bbab128 – volume: Chapter 6 start-page: Unit 6.12.1 year: 2011 ident: 2022051813464665800_ref129 article-title: Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups publication-title: Curr Protoc Bioinformatics – volume: 12 start-page: 1144 issue: 12 year: 2021 ident: 2022051813464665800_ref26 article-title: Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines publication-title: Cell Syst doi: 10.1016/j.cels.2021.08.006 – volume: 4 start-page: 671 issue: 10 year: 2018 ident: 2022051813464665800_ref87 article-title: Synthetic lethality and cancer - penetrance as the major barrier publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.08.003 – volume: 11 start-page: 9038 issue: 18 year: 2021 ident: 2022051813464665800_ref64 article-title: Mapping the landscape of synthetic lethal interactions in liver cancer publication-title: Theranostics doi: 10.7150/thno.63416 – volume: 20 start-page: 657 issue: Suppl 19 year: 2019 ident: 2022051813464665800_ref28 article-title: Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization publication-title: BMC Bioinform doi: 10.1186/s12859-019-3197-3 – volume: 3 start-page: 116 year: 2009 ident: 2022051813464665800_ref53 article-title: Human synthetic lethal inference as potential anti-cancer target gene detection publication-title: BMC Syst Biol doi: 10.1186/1752-0509-3-116 – volume: 47 start-page: D559 issue: D1 year: 2019 ident: 2022051813464665800_ref120 article-title: CORUM: the comprehensive resource of mammalian protein complexes-2019 publication-title: Nucleic Acid Res doi: 10.1093/nar/gky973 – volume: 31 start-page: 3299 issue: 20 year: 2015 ident: 2022051813464665800_ref22 article-title: Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv352 – volume: 18 start-page: 1028 year: 2020 ident: 2022051813464665800_ref82 article-title: G2G: a web-server for the prediction of human synthetic lethal interactions publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.04.012 – volume: 12 start-page: 40 issue: 1 year: 2016 ident: 2022051813464665800_ref96 article-title: A synthetic lethal approach for compound and target identification in Staphylococcus aureus publication-title: Nat Chem Biol doi: 10.1038/nchembio.1967 – volume: 4 start-page: 666 issue: 5 year: 2011 ident: 2022051813464665800_ref103 article-title: Lung-cancer chemoprevention by induction of synthetic lethality in mutant KRAS premalignant cells in vitro and in vivo publication-title: Cancer Prev Res (Phila) doi: 10.1158/1940-6207.CAPR-10-0235 – volume: 327 start-page: 425 issue: 5964 year: 2010 ident: 2022051813464665800_ref56 article-title: The genetic landscape of a cell publication-title: Science doi: 10.1126/science.1180823 – volume: 20 start-page: 111 issue: 1 year: 2021 ident: 2022051813464665800_ref27 article-title: Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality publication-title: Mol Cancer doi: 10.1186/s12943-021-01405-8 – volume: 696 start-page: 191 year: 2011 ident: 2022051813464665800_ref68 article-title: Decision tree and ensemble learning algorithms with their applications in bioinformatics publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4419-7046-6_19 – volume: 49 start-page: W613 issue: W1 year: 2021 ident: 2022051813464665800_ref85 article-title: SynLeGG: analysis and visualization of multiomics data for discovery of cancer 'Achilles Heels' and gene function relationships publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab338 – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 2022051813464665800_ref107 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intel Res doi: 10.1613/jair.953 – volume: 12 start-page: 1275 issue: 1 year: 2021 ident: 2022051813464665800_ref2 article-title: The tumor therapy landscape of synthetic lethality publication-title: Nat Commun doi: 10.1038/s41467-021-21544-2 – volume: 158 start-page: 1199 issue: 5 year: 2014 ident: 2022051813464665800_ref13 article-title: Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality publication-title: Cell doi: 10.1016/j.cell.2014.07.027 – volume: 36 start-page: 261 issue: 2 year: 2021 ident: 2022051813464665800_ref71 article-title: Synthetic lethal interactions prediction based on multiple similarity measures fusion publication-title: J Comput Sci Tech-Ch doi: 10.1007/s11390-021-0866-2 – volume: 3 start-page: 119 year: 2013 ident: 2022051813464665800_ref54 article-title: Proposal for a new therapy for drug-resistant malaria using plasmodium synthetic lethality inference publication-title: Int J Parasitol Drugs Drug Resist doi: 10.1016/j.ijpddr.2013.06.001 – volume: 19 start-page: 644 issue: 4 year: 2018 ident: 2022051813464665800_ref88 article-title: A landscape of synthetic viable interactions in cancer publication-title: Brief Bioinform – volume: 62 start-page: e01533 issue: 4 year: 2018 ident: 2022051813464665800_ref98 article-title: Using yeast synthetic lethality to inform drug combination for malaria publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01533-17 – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 2022051813464665800_ref76 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0138-9 – volume: 5 start-page: 241 issue: 1 year: 2020 ident: 2022051813464665800_ref9 article-title: Development of synthetic lethality in cancer: molecular and cellular classification publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00358-6 – volume: 1 start-page: 417 issue: 6 year: 2015 ident: 2022051813464665800_ref116 article-title: The molecular signatures database (MSigDB) hallmark gene set collection publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 44 start-page: D1011 issue: D1 year: 2016 ident: 2022051813464665800_ref34 article-title: SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets publication-title: Nucleic Acid Res doi: 10.1093/nar/gkv1108 – volume-title: International Conference on Learning Representations ident: 2022051813464665800_ref78 – volume: 8 start-page: 15580 year: 2017 ident: 2022051813464665800_ref65 article-title: Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data publication-title: Nat Commun doi: 10.1038/ncomms15580 – volume: 7 start-page: 55352 issue: 34 year: 2016 ident: 2022051813464665800_ref131 article-title: Ranking novel cancer driving synthetic lethal gene pairs using TCGA data publication-title: Oncotarget doi: 10.18632/oncotarget.10536 – volume: 25 start-page: 4041 issue: 10 year: 2021 ident: 2022051813464665800_ref33 article-title: Prediction of synthetic lethal interactions in human cancers using multi-view graph auto-encoder publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3079302 – volume: 69 start-page: 699 issue: 4 year: 2018 ident: 2022051813464665800_ref46 article-title: Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory Axis publication-title: Mol Cell doi: 10.1016/j.molcel.2018.01.017 – volume: 9 start-page: 426 year: 2008 ident: 2022051813464665800_ref67 article-title: Mining protein networks for synthetic genetic interactions publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-426 – volume: 47 start-page: D948 issue: D1 year: 2019 ident: 2022051813464665800_ref117 article-title: The comparative Toxicogenomics database: update 2019 publication-title: Nucleic Acid Res doi: 10.1093/nar/gky868 – volume: 8 start-page: 8440 issue: 1 year: 2018 ident: 2022051813464665800_ref18 article-title: Synthetic lethality-based identification of targets for anticancer drugs in the human Signaling network publication-title: Sci Rep doi: 10.1038/s41598-018-26783-w – volume: 49 start-page: D480 issue: D1 year: 2021 ident: 2022051813464665800_ref113 article-title: UniProt: the universal protein knowledgebase in 2021 publication-title: Nucleic Acid Res doi: 10.1093/nar/gkaa1100 – volume: 37 start-page: i418 issue: Suppl_1 year: 2021 ident: 2022051813464665800_ref80 article-title: KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab271 – volume: 9 start-page: 2546 issue: 1 year: 2018 ident: 2022051813464665800_ref60 article-title: Harnessing synthetic lethality to predict the response to cancer treatment publication-title: Nat Commun doi: 10.1038/s41467-018-04647-1 – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 2022051813464665800_ref115 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acid Res doi: 10.1093/nar/gkw1092 – volume: 353 start-page: aaf1420 issue: 6306 year: 2016 ident: 2022051813464665800_ref40 article-title: A global genetic interaction network maps a wiring diagram of cellular function publication-title: Science doi: 10.1126/science.aaf1420 – volume: 5 start-page: 11 issue: 1 year: 2019 ident: 2022051813464665800_ref11 article-title: A road map to personalizing targeted cancer therapies using synthetic lethality publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.11.001 – volume: 19 start-page: 23 issue: 1 year: 2020 ident: 2022051813464665800_ref1 article-title: Synthetic lethality as an engine for cancer drug target discovery publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0046-z – volume: 36 start-page: 2209 issue: 7 year: 2020 ident: 2022051813464665800_ref30 article-title: Predicting synthetic lethal interactions using heterogeneous data sources publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz893 – volume: 73 start-page: 6128 issue: 20 year: 2013 ident: 2022051813464665800_ref55 article-title: A comparative genomic approach for identifying synthetic lethal interactions in human cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3956 – volume: 34 start-page: D535 issue: Database issue year: 2006 ident: 2022051813464665800_ref37 article-title: BioGRID: a general repository for interaction datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj109 – volume: 434 start-page: 917 issue: 7035 year: 2005 ident: 2022051813464665800_ref6 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature doi: 10.1038/nature03445 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 2022051813464665800_ref70 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am Stat doi: 10.1080/00031305.1992.10475879 – volume: 6 start-page: 30 year: 2013 ident: 2022051813464665800_ref61 article-title: Identification of potential synthetic lethal genes to p53 using a computational biology approach publication-title: BMC Med Genom doi: 10.1186/1755-8794-6-30 – volume: 37 year: 2021 ident: 2022051813464665800_ref32 article-title: Graph contextualized attention network for predicting synthetic lethality in human cancers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab110 – volume: 28 start-page: 938 issue: 4 year: 2019 ident: 2022051813464665800_ref84 article-title: Beyond synthetic lethality: charting the landscape of pairwise gene expression states associated with survival in cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2019.06.067 – volume: 13 start-page: 118 issue: 1 year: 2020 ident: 2022051813464665800_ref8 article-title: Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation publication-title: J Hematol Oncol doi: 10.1186/s13045-020-00956-5 – volume: 13 start-page: 1541002 issue: 3 year: 2015 ident: 2022051813464665800_ref19 article-title: Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720015410024 – volume: 36 start-page: 4458 issue: 16 year: 2020 ident: 2022051813464665800_ref31 article-title: Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa211 – volume: 47 start-page: D330 issue: D1 year: 2019 ident: 2022051813464665800_ref114 article-title: The gene ontology resource: 20 years and still GOing strong publication-title: Nucleic Acid Res doi: 10.1093/nar/gky1055 – volume: 16 start-page: 487 issue: 3 year: 2004 ident: 2022051813464665800_ref135 article-title: A robust toolkit for functional profiling of the yeast genome publication-title: Mol Cell doi: 10.1016/j.molcel.2004.09.035 – volume: 63 start-page: 514 issue: 3 year: 2016 ident: 2022051813464665800_ref49 article-title: A network of conserved synthetic lethal interactions for exploration of precision cancer therapy publication-title: Mol Cell doi: 10.1016/j.molcel.2016.06.022 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 2022051813464665800_ref77 article-title: Dropout: a simple way to prevent neural Networks from overfitting publication-title: J Mach Learn Res – volume: 20 start-page: 1295 issue: 4 year: 2019 ident: 2022051813464665800_ref59 article-title: Link synthetic lethality to drug sensitivity of cancer cells publication-title: Brief Bioinform doi: 10.1093/bib/bbx172 – volume: 10 start-page: 3947 issue: 1 year: 2020 ident: 2022051813464665800_ref66 article-title: Deep learning applied to hyperspectral endoscopy for online spectral classification publication-title: Sci Rep doi: 10.1038/s41598-020-60574-6 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 2022051813464665800_ref75 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 7 start-page: eabg2106 issue: 31 year: 2021 ident: 2022051813464665800_ref92 article-title: Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration publication-title: Sci Adv doi: 10.1126/sciadv.abg2106 – volume: 43 start-page: 134 issue: 1 year: 2016 ident: 2022051813464665800_ref104 article-title: Hereditary cancer syndromes as model systems for chemopreventive agent development publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2015.09.015 |
| SSID | ssj0020781 |
| Score | 2.5028355 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of... Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Cancer Cell death Cell survival Computer applications Computer networks Deactivation Deep learning Genes Inactivation Lethality Machine learning Poly(ADP-ribose) polymerase Predictions Review Sampling methods Software Statistical methods |
| Title | Computational methods, databases and tools for synthetic lethality prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35352098 https://www.proquest.com/docview/2675447587 https://www.proquest.com/docview/2645471564 https://pubmed.ncbi.nlm.nih.gov/PMC9116379 |
| Volume | 23 |
| WOSCitedRecordID | wos000784523200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8QwEIAHXRS8-H7UZwRPYnGbR9McRRQvPg4Keyt5FRekK9tV8N-baWvZFVHPnaYhkzAzncw3ACdMGOmSlMaF4CxG5HlsqMviNDVcZY4qzm3dbELe3WWDgXpoL8hWP6TwFTs3Q3NujLZJTdZORIaNCh7vB11chbyapohIxkh3b8vwvr07Y3hmitmmfMrvVyOnbM31yn9nuQrLrTdJLhr1r8GcL9dhsekv-bEBt03PhvZ_H2m6RVdnBK-FovmqiC4dmYxGLxUJziupPsrgD4axSNDmc-2hk9cxpnJwhE14ur56vLyJ2_4JseW8P4m90tL3DU2KRHNLlQimWoeYlFPutHU6LUIAZkRWIKGG2VToVNG-dYU1IYjyjG1BrxyVfgeIw-wkF1px67mXWmXCWcl1iEeEC05lBKdfi5vbFi6OPS5e8ibJzfKwPnm7PhGcdMKvDVPjZ7GjoKXfJfa_NJi3R6_KaYpMvxAGyQiOu8fh0GAmRJd-9IYyyDFDTk4E243Cu-8wBN70VRaBnNkKnQACuWeflMPnGswdDEfKpNr9c-J7sESxjAIpsGwfepPxmz-ABfs-GVbjQ5iXg-yw3uOfKPL4wg |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods%2C+databases+and+tools+for+synthetic+lethality+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Jing&rft.au=Zhang%2C+Qinglong&rft.au=Han%2C+Junshan&rft.au=Zhao%2C+Yanpeng&rft.date=2022-05-13&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbac106&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |