Absolute work function measurement by using photoelectron spectroscopy
Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces...
Uložené v:
| Vydané v: | Current applied physics Ročník 31; s. 52 - 59 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2021
한국물리학회 |
| Predmet: | |
| ISSN: | 1567-1739, 1878-1675 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement.
[Display omitted]
•Definition of work function and applications in materials and devices.•Principles of absolute work function measurement by photoelectron spectroscopy.•Many factors to consider in measuring work function by PES.•Future expansion of the WF measurement technology. |
|---|---|
| AbstractList | Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement.
[Display omitted]
•Definition of work function and applications in materials and devices.•Principles of absolute work function measurement by photoelectron spectroscopy.•Many factors to consider in measuring work function by PES.•Future expansion of the WF measurement technology. Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of great concern in many electronic and optical devices as the WF governs charge transfer and charge injection/collection efficiency at interfaces and emission characteristics of conventional charged particle emitters. Photoelectron spectroscopy (PES) has been mainly used to determine surface electronic structure and chemical composition. Despite the common use of this technique to measure WF, there has been a lack of discussion on how to use the PES and what to be considered to determine the absolute WF. The main contribution of this review lies in the discussion of the causes of errors when measuring WF, and provides a guide for reliable WF measurement. Along with the limitations of current measurement technology, we propose future directions for absolute WF measurement. KCI Citation Count: 0 |
| Author | Kim, Ansoon Kim, Jeong Won |
| Author_xml | – sequence: 1 givenname: Jeong Won orcidid: 0000-0002-5881-9911 surname: Kim fullname: Kim, Jeong Won email: jeongwonk@kriss.re.kr organization: Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon, 34113, South Korea – sequence: 2 givenname: Ansoon surname: Kim fullname: Kim, Ansoon email: askim@kriss.re.kr organization: Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon, 34113, South Korea |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002777603$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kLFOwzAQhi1UJNrCA7BlZUiwUye2xVRVFJAqIaEyW87FKW7TOLIdUN8et2Vi6HT_8H-nu2-CRp3tNEL3BGcEk_Jxm4HqsxznJMMsw4RfoTHhjKekZMUo5qJkKWEzcYMm3m9xZCimY7ScV962Q9DJj3W7pBk6CMZ2yV4rPzi9111IqkMyeNNtkv7LBqtbDcHFiu9PwYPtD7foulGt13d_c4o-l8_rxWu6en95W8xXKVCKQwqNUAC6qhSnoFQpqKhphQtactwoXqim0ETUrFIFEAEcclLxPN4udC5KWs-m6OG8t3ON3IGRVpnT3Fi5c3L-sX6TgnNO8zx2ybkL8UjvdCN7Z_bKHSTB8ihNbmWUJo_SJGYySosM-8eACepoJDhl2ovk05nU8f1vo530YHQHujYuepK1NRfoXwUZio0 |
| CitedBy_id | crossref_primary_10_3390_magnetochemistry8120178 crossref_primary_10_1021_acsenergylett_5c01690 crossref_primary_10_1002_aenm_202402433 crossref_primary_10_1016_j_carbon_2022_11_047 crossref_primary_10_1016_j_solmat_2024_112924 crossref_primary_10_1088_1361_6463_ac9b69 crossref_primary_10_3390_ijms24043088 crossref_primary_10_1016_j_flatc_2024_100659 crossref_primary_10_1116_6_0002852 crossref_primary_10_3740_MRSK_2025_35_2_90 crossref_primary_10_3390_mi15010103 crossref_primary_10_1007_s12274_022_5193_6 crossref_primary_10_1002_batt_202400693 crossref_primary_10_1039_D2NR06440E crossref_primary_10_1007_s10854_023_10370_5 crossref_primary_10_1002_cphc_202300838 crossref_primary_10_1016_j_vacuum_2023_112169 crossref_primary_10_1016_j_surfcoat_2022_128870 crossref_primary_10_1021_acsaem_5c01292 crossref_primary_10_1039_D4SC04611K crossref_primary_10_1016_j_mtcomm_2022_105270 crossref_primary_10_1016_j_apsusc_2022_155005 crossref_primary_10_1016_j_ijhydene_2025_150232 crossref_primary_10_1039_D3NR03172A crossref_primary_10_1016_j_physleta_2022_128241 crossref_primary_10_1016_j_apsusc_2024_159605 crossref_primary_10_1016_j_progsolidstchem_2024_100478 crossref_primary_10_1016_j_cej_2023_146413 crossref_primary_10_3390_chemosensors10040132 crossref_primary_10_1039_D2CP02736D crossref_primary_10_1088_1742_6596_2411_1_012017 crossref_primary_10_1039_D2CY01774A crossref_primary_10_1016_j_mssp_2024_109229 crossref_primary_10_1016_j_apsusc_2024_161960 crossref_primary_10_1103_PhysRevApplied_19_037001 crossref_primary_10_1021_acs_energyfuels_5c03073 crossref_primary_10_1016_j_jallcom_2025_182292 crossref_primary_10_1021_acs_jpclett_4c03404 crossref_primary_10_1016_j_physb_2024_416369 crossref_primary_10_1002_adma_202401568 crossref_primary_10_1016_j_jallcom_2024_173429 crossref_primary_10_1021_acs_jpcc_5c02684 crossref_primary_10_1002_smll_202505782 crossref_primary_10_1007_s00894_024_06133_6 crossref_primary_10_1063_5_0071522 crossref_primary_10_1016_j_ceramint_2024_11_066 crossref_primary_10_1007_s11468_024_02484_1 crossref_primary_10_1088_2051_672X_ac84f4 crossref_primary_10_1002_smll_202311362 crossref_primary_10_1007_s10854_023_10438_2 crossref_primary_10_1016_j_surfin_2024_104766 crossref_primary_10_1039_D5LF00206K crossref_primary_10_1063_5_0165802 crossref_primary_10_1016_j_apsusc_2024_159796 crossref_primary_10_1016_j_jallcom_2025_180646 crossref_primary_10_1021_acsaelm_5c00594 crossref_primary_10_1063_5_0228521 crossref_primary_10_1016_j_apsusc_2025_164629 crossref_primary_10_1007_s10854_023_10072_y crossref_primary_10_1088_1361_648X_adb408 crossref_primary_10_1002_lpor_202301069 crossref_primary_10_1039_D3EY00222E crossref_primary_10_1016_j_snb_2024_136183 crossref_primary_10_1021_acsaem_4c03060 crossref_primary_10_1103_PhysRevApplied_22_034028 |
| Cites_doi | 10.1016/j.apsusc.2009.11.002 10.1039/D0CP05977C 10.1103/PhysRevLett.110.156804 10.1016/j.apsusc.2018.04.226 10.1063/1.2888957 10.1103/PhysRevB.46.4816 10.1103/PhysRevB.42.8864 10.1021/acs.jpclett.5b01197 10.1109/55.974809 10.1080/00268970412331333609 10.1116/1.569792 10.1063/1.323539 10.1016/0022-0728(86)87026-7 10.1039/C5MH00160A 10.1021/acs.jpcc.7b10696 10.1063/1.2717165 10.1016/S0039-6028(01)01036-6 10.1016/j.apsusc.2009.05.116 10.1088/0034-4885/69/1/R04 10.1021/acs.jpcc.9b09461 10.1016/0039-6028(73)90117-9 10.1098/rspa.1928.0091 10.1016/0009-2614(73)89582-X 10.1016/0039-6028(77)90257-6 10.1002/aenm.202000520 10.1016/S0169-4332(96)00692-7 10.1063/1.1849135 10.3762/bjnano.10.155 10.1016/S0379-6779(99)00354-9 10.1016/0039-6028(85)90791-5 10.1002/pssc.201400086 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q 10.1016/j.susc.2015.10.062 10.1002/adma.200802893 10.1116/1.2209651 10.1103/PhysRevB.81.224201 10.1016/j.nimb.2013.04.041 10.1021/nl403524a 10.1016/j.apsusc.2018.06.242 10.1016/j.mser.2010.01.001 10.1007/BF02903611 10.1016/j.progsurf.2007.11.001 10.1116/6.0000057 10.1002/adma.201401775 10.1002/polb.10642 10.1002/adma.200390065 10.1016/j.susc.2016.04.007 10.1021/acs.jpcc.7b03595 10.1116/1.4736865 10.1103/PhysRevB.80.235407 10.1002/ange.201310635 10.1021/jp806657k 10.1016/j.pmatsci.2019.100591 10.1103/PhysRevB.46.7157 10.1016/0039-6028(81)90432-5 10.1016/S0368-2048(01)00310-3 10.1116/1.591258 10.1016/0009-2614(84)87025-6 10.1016/S0022-0728(83)80445-8 10.1002/pssb.201800299 10.1063/1.2998599 10.1063/1.116313 10.1016/j.nanoen.2018.08.040 10.1063/1.105227 10.1016/0039-6028(95)01344-X 10.1103/PhysRevB.1.4555 10.1103/RevModPhys.21.185 10.1021/acs.jpclett.8b01242 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ACYCR |
| DOI | 10.1016/j.cap.2021.07.018 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1878-1675 |
| EndPage | 59 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9888422 10_1016_j_cap_2021_07_018 S1567173921001796 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ABPIF ABPTK ABYKQ ACYCR AJBFU |
| ID | FETCH-LOGICAL-c440t-cf9accebba84caa6949d4b054680fa85af5e19d7ba5c19c8c21b821569e2964d3 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724663900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1567-1739 |
| IngestDate | Fri Nov 17 19:18:06 EST 2023 Sat Nov 29 07:04:18 EST 2025 Tue Nov 18 21:33:56 EST 2025 Tue Jul 16 04:30:57 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Photoelectron spectroscopy Work function Surface electric dipole |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c440t-cf9accebba84caa6949d4b054680fa85af5e19d7ba5c19c8c21b821569e2964d3 |
| Notes | https://www.sciencedirect.com/science/article/pii/S1567173921001796?via%3Dihub |
| ORCID | 0000-0002-5881-9911 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cap.2021.07.018 |
| PageCount | 8 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9888422 crossref_primary_10_1016_j_cap_2021_07_018 crossref_citationtrail_10_1016_j_cap_2021_07_018 elsevier_sciencedirect_doi_10_1016_j_cap_2021_07_018 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 2021-11 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Current applied physics |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V 한국물리학회 |
| Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
| References | Kahn (bib62) 2016; 3 Benneckendorf, Hillebrandt, Ullrich, Rohnacher, Hietzschold, Jänsch, Freudenberg, Beck, Mankel, Jaegermann, Pucci, Bunz, Müllen (bib79) 2018; 9 Baikie, Grain, Sutherland, Law (bib41) 2015; 12 Rath, Kolb (bib27) 1981; 109 Krahl-Urban, Niekisch, Wagner (bib65) 1977; 64 Lin, Qiang, Ranade, Tsu-Jae, Chenming (bib22) 2002; 23 Mönch (bib14) 1984 Singh, Kant (bib80) 2013; 469 Kaur, Kant (bib82) 2018; 122 Wandelt (bib66) 1997; 111 Klyushnikov (bib34) 1998; 39 Rothschild, Eizenberg (bib10) 2010; 81 Fowler, Nordheim (bib39) 1928; 119 Kirchhoff (bib56) 2012; 30 Singh-Miller, Marzari (bib8) 2009; 80 Erben, Hempel, Triyoso (bib21) 2018 Kant, Kaur, Mishra (bib26) 2020; 124 Braun, Salaneck, Fahlman (bib54) 2009; 21 Ishii, Sugiyama, Ito, Seki (bib2) 1999; 11 Greczynski, Hultman (bib72) 2018; 451 Liscio, Palermo, Müllen, Samorì (bib43) 2008; 112 Nagatomi, Kuwayama, Takai, Yoshino, Morita, Kitagawa, Nishitani (bib47) 2008; 92 Rabalais (bib52) 1977 Bocquet, Rappe, Dai (bib11) 2005; 103 Park, Choong, Gao, Hsieh, Tang (bib19) 1996; 68 Ji, Zhu, Wang (bib9) 2016; 651 Kötz, Neff, Müller, Ups (bib28) 1986; 215 Skriver, Rosengaard (bib6) 1992; 46 Etxebarria, Koch, Bondarchuk, Passerini, Teobaldi, Muñoz‐Márquez (bib31) 2020; 10 Lim, Kim, Jeong, Kim, Kim, Lee (bib83) 2014; 26 Lide (bib49) 2005 Methfessel, Hennig, Scheffler (bib7) 1992; 46 Hansen, Hansen (bib76) 2001; 481 Neff, Kötz (bib29) 1983; 151 Li, Li (bib63) 2005; 122 Kim, Lägel, Moons, Johansson, Baikie, Salaneck, Friend, Cacialli (bib35) 2000; 111 Kaur, Kant (bib13) 2017; 121 Gellman, Baker, Holsclaw (bib67) 2016; 646 Nosaka, Norimatsu, Miyama (bib25) 1984; 106 Wight, Powell (bib57) 2006; 24 Richardson (bib37) 1921 Kaur, Kant (bib81) 2015; 6 Nonnenmacher, O'Boyle, Wickramasinghe (bib42) 1991; 58 Nakanishi, Nagatomi, Takai (bib46) 2009; 256 Yang, Kim, Park, Kwon, Lanh, Hong, Kim, Kim (bib44) 2018; 457 Wu, Zhang, Wang, Yi, Deng, Xu, Chen (bib71) 2013; 304 Sharma, Kippelen, Hotchkiss, Marder (bib78) 2008; 93 Michaelson (bib48) 1977; 48 Hüfner (bib50) 2003 Surface chemical analysis — X-ray photoelectron spectroscopy — Reporting of methods used for charge control and charge correction, ISO 19318:2004. Cahen, Kahn (bib3) 2003; 15 Yamamoto (bib33) 2005; 69 Garrillo, Grévin, Chevalier, Borowik (bib77) 2018; 89 Lang, Kohn (bib5) 1970; 1 Strayer, Mackie, Swanson (bib36) 1973; 34 Helander, Greiner, Wang, Lu (bib53) 2010; 256 Herring, Nichols (bib38) 1949; 21 Evans (bib70) 1973; 23 Schultz, Amsalem, Kotadiya, Lenz, Blom, Koch (bib64) 2018; 256 Hölzl, Schulte (bib4) 1979 Kawano (bib16) 2008; 83 Greczynski, Hultman (bib73) 2020; 107 Yoshitake (bib1) 2021 White, Liu, Hinsch, Wang (bib12) 2021; 23 Kim, Seo, Kim (bib59) 1996; 351 Yamamoto (bib15) 2006; 69 Wrana, Cieślik, Belza, Rodenbücher, Szot, Krok (bib75) 2019; 10 Peng, Wei, Li, Liu, Cao, Wang, Yu, Peng, Zhang, Zhang (bib23) 2018; 53 Axnanda, Scheele, Crumlin, Mao, Chang, Rani, Faiz, Wang, Alivisatos, Liu (bib74) 2013; 13 Park, Kim, Yi, Oh, Kim (bib45) 2010; 97 Patthey, Imer, Schneider, Beck, Baer (bib51) 1990; 42 Schlaf, Murata, Kafafi (bib20) 2001; 120 Kahn, Koch, Gao (bib58) 2003; 41 Roman, Groß (bib60) 2013; 110 Baer, Artyushkova, Cohen, Easton, Engelhard, Gengenbach, Greczynski, Mack, Morgan, Roberts (bib69) 2020; 38 Vázquez, Dappe, Ortega, Flores (bib61) 2007; 126 Kötz, Neff (bib30) 1985; 160 Gao (bib55) 2010; 68 Cardona, Ley (bib32) 1978 Brillson (bib17) 1978; 15 Gröning, Küttel, Emmenegger, Gröning, Schlapbach (bib40) 2000; 18 Wang, Ge, Wang, Deng, Wang, Bai, Li, Jiang, Zhang, Luo (bib24) 2014; 126 Lüth (bib18) 2015 Gellman (10.1016/j.cap.2021.07.018_bib67) 2016; 646 Singh-Miller (10.1016/j.cap.2021.07.018_bib8) 2009; 80 Kim (10.1016/j.cap.2021.07.018_bib59) 1996; 351 Evans (10.1016/j.cap.2021.07.018_bib70) 1973; 23 Erben (10.1016/j.cap.2021.07.018_bib21) 2018 Skriver (10.1016/j.cap.2021.07.018_bib6) 1992; 46 Rothschild (10.1016/j.cap.2021.07.018_bib10) 2010; 81 Nakanishi (10.1016/j.cap.2021.07.018_bib46) 2009; 256 Rabalais (10.1016/j.cap.2021.07.018_bib52) 1977 Kirchhoff (10.1016/j.cap.2021.07.018_bib56) 2012; 30 Li (10.1016/j.cap.2021.07.018_bib63) 2005; 122 Wang (10.1016/j.cap.2021.07.018_bib24) 2014; 126 Axnanda (10.1016/j.cap.2021.07.018_bib74) 2013; 13 Cardona (10.1016/j.cap.2021.07.018_bib32) 1978 Garrillo (10.1016/j.cap.2021.07.018_bib77) 2018; 89 Kim (10.1016/j.cap.2021.07.018_bib35) 2000; 111 Kaur (10.1016/j.cap.2021.07.018_bib81) 2015; 6 Yoshitake (10.1016/j.cap.2021.07.018_bib1) 2021 Hansen (10.1016/j.cap.2021.07.018_bib76) 2001; 481 Schultz (10.1016/j.cap.2021.07.018_bib64) 2018; 256 Greczynski (10.1016/j.cap.2021.07.018_bib72) 2018; 451 Lüth (10.1016/j.cap.2021.07.018_bib18) 2015 Fowler (10.1016/j.cap.2021.07.018_bib39) 1928; 119 Yamamoto (10.1016/j.cap.2021.07.018_bib15) 2006; 69 Brillson (10.1016/j.cap.2021.07.018_bib17) 1978; 15 Gao (10.1016/j.cap.2021.07.018_bib55) 2010; 68 Peng (10.1016/j.cap.2021.07.018_bib23) 2018; 53 Gröning (10.1016/j.cap.2021.07.018_bib40) 2000; 18 Herring (10.1016/j.cap.2021.07.018_bib38) 1949; 21 Wight (10.1016/j.cap.2021.07.018_bib57) 2006; 24 Nonnenmacher (10.1016/j.cap.2021.07.018_bib42) 1991; 58 Lin (10.1016/j.cap.2021.07.018_bib22) 2002; 23 Rath (10.1016/j.cap.2021.07.018_bib27) 1981; 109 Kaur (10.1016/j.cap.2021.07.018_bib82) 2018; 122 White (10.1016/j.cap.2021.07.018_bib12) 2021; 23 Mönch (10.1016/j.cap.2021.07.018_bib14) 1984 Wrana (10.1016/j.cap.2021.07.018_bib75) 2019; 10 Lang (10.1016/j.cap.2021.07.018_bib5) 1970; 1 Kahn (10.1016/j.cap.2021.07.018_bib62) 2016; 3 Braun (10.1016/j.cap.2021.07.018_bib54) 2009; 21 Kaur (10.1016/j.cap.2021.07.018_bib13) 2017; 121 Lide (10.1016/j.cap.2021.07.018_bib49) 2005 Bocquet (10.1016/j.cap.2021.07.018_bib11) 2005; 103 Liscio (10.1016/j.cap.2021.07.018_bib43) 2008; 112 Patthey (10.1016/j.cap.2021.07.018_bib51) 1990; 42 Ishii (10.1016/j.cap.2021.07.018_bib2) 1999; 11 Sharma (10.1016/j.cap.2021.07.018_bib78) 2008; 93 Hölzl (10.1016/j.cap.2021.07.018_bib4) 1979 Vázquez (10.1016/j.cap.2021.07.018_bib61) 2007; 126 Cahen (10.1016/j.cap.2021.07.018_bib3) 2003; 15 Baikie (10.1016/j.cap.2021.07.018_bib41) 2015; 12 Park (10.1016/j.cap.2021.07.018_bib19) 1996; 68 Kahn (10.1016/j.cap.2021.07.018_bib58) 2003; 41 Ji (10.1016/j.cap.2021.07.018_bib9) 2016; 651 Neff (10.1016/j.cap.2021.07.018_bib29) 1983; 151 Wandelt (10.1016/j.cap.2021.07.018_bib66) 1997; 111 Krahl-Urban (10.1016/j.cap.2021.07.018_bib65) 1977; 64 Wu (10.1016/j.cap.2021.07.018_bib71) 2013; 304 Etxebarria (10.1016/j.cap.2021.07.018_bib31) 2020; 10 Greczynski (10.1016/j.cap.2021.07.018_bib73) 2020; 107 Hüfner (10.1016/j.cap.2021.07.018_bib50) 2003 10.1016/j.cap.2021.07.018_bib68 Yang (10.1016/j.cap.2021.07.018_bib44) 2018; 457 Richardson (10.1016/j.cap.2021.07.018_bib37) 1921 Methfessel (10.1016/j.cap.2021.07.018_bib7) 1992; 46 Strayer (10.1016/j.cap.2021.07.018_bib36) 1973; 34 Benneckendorf (10.1016/j.cap.2021.07.018_bib79) 2018; 9 Kant (10.1016/j.cap.2021.07.018_bib26) 2020; 124 Michaelson (10.1016/j.cap.2021.07.018_bib48) 1977; 48 Baer (10.1016/j.cap.2021.07.018_bib69) 2020; 38 Schlaf (10.1016/j.cap.2021.07.018_bib20) 2001; 120 Helander (10.1016/j.cap.2021.07.018_bib53) 2010; 256 Yamamoto (10.1016/j.cap.2021.07.018_bib33) 2005; 69 Kötz (10.1016/j.cap.2021.07.018_bib30) 1985; 160 Lim (10.1016/j.cap.2021.07.018_bib83) 2014; 26 Nosaka (10.1016/j.cap.2021.07.018_bib25) 1984; 106 Kötz (10.1016/j.cap.2021.07.018_bib28) 1986; 215 Kawano (10.1016/j.cap.2021.07.018_bib16) 2008; 83 Singh (10.1016/j.cap.2021.07.018_bib80) 2013; 469 Klyushnikov (10.1016/j.cap.2021.07.018_bib34) 1998; 39 Nagatomi (10.1016/j.cap.2021.07.018_bib47) 2008; 92 Park (10.1016/j.cap.2021.07.018_bib45) 2010; 97 Roman (10.1016/j.cap.2021.07.018_bib60) 2013; 110 |
| References_xml | – volume: 107 start-page: 100591 year: 2020 ident: bib73 article-title: X-ray photoelectron spectroscopy: towards reliable binding energy referencing publication-title: Prog. Mater. Sci. – volume: 13 start-page: 6176 year: 2013 end-page: 6182 ident: bib74 article-title: Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles publication-title: Nano Lett. – volume: 126 start-page: 144703 year: 2007 ident: bib61 article-title: Energy level alignment at metal/organic semiconductor interfaces: “Pillow” effect, induced density of interface states, and charge neutrality level publication-title: J. Chem. Phys. – volume: 256 start-page: 1082 year: 2009 end-page: 1087 ident: bib46 article-title: Change in work function during phase transition of Sc–O/W(100) system at high temperatures publication-title: Appl. Surf. Sci. – volume: 256 start-page: 2602 year: 2010 end-page: 2605 ident: bib53 article-title: Pitfalls in measuring work function using photoelectron spectroscopy publication-title: Appl. Surf. Sci. – year: 1977 ident: bib52 article-title: Principles of Ultraviolet Photoelectron Spectroscopy – volume: 256 start-page: 1800299 year: 2018 ident: bib64 article-title: Importance of substrate work function homogeneity for reliable ionization energy determination by photoelectron spectroscopy publication-title: Phys. Status Solidi B – volume: 160 start-page: 517 year: 1985 end-page: 530 ident: bib30 article-title: Anodic iridium oxide films: an UPS study of emersed electrodes publication-title: Surf. Sci. – volume: 83 start-page: 1 year: 2008 end-page: 165 ident: bib16 article-title: Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces publication-title: Prog. Surf. Sci. – volume: 109 start-page: 641 year: 1981 end-page: 647 ident: bib27 article-title: Continuous work function monitoring for electrode emersion publication-title: Surf. Sci. – volume: 481 start-page: 172 year: 2001 end-page: 184 ident: bib76 article-title: Standard reference surfaces for work function measurements in air publication-title: Surf. Sci. – volume: 58 start-page: 2921 year: 1991 end-page: 2923 ident: bib42 article-title: Kelvin probe force microscopy publication-title: Appl. Phys. Lett. – year: 1984 ident: bib14 article-title: Work Function and Band Bending at Semiconductor Surfaces – volume: 111 start-page: 311 year: 2000 end-page: 314 ident: bib35 article-title: Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison publication-title: Synth. Met. – volume: 122 start-page: 911 year: 2018 end-page: 918 ident: bib82 article-title: Model of local work function and PZC for molecular self assembly over nanostructured metal electrode publication-title: J. Phys. Chem. C – volume: 110 start-page: 156804 year: 2013 ident: bib60 article-title: Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111) publication-title: Phys. Rev. Lett. – volume: 92 year: 2008 ident: bib47 article-title: Application of ion scattering spectroscopy to measurement of surface potential of MgO thin film under ion irradiation publication-title: Appl. Phys. Lett. – volume: 106 start-page: 128 year: 1984 end-page: 131 ident: bib25 article-title: The function of metals in metal-compounded semiconductor photocatalysts publication-title: Chem. Phys. Lett. – volume: 126 start-page: 5207 year: 2014 end-page: 5211 ident: bib24 article-title: Designing p‐type semiconductor–metal hybrid structures for improved photocatalysis publication-title: Angew. Chem. – volume: 351 start-page: L239 year: 1996 end-page: L244 ident: bib59 article-title: Surface electronic properties of Na/Ge(111)-3x1 publication-title: Surf. Sci. – volume: 11 start-page: 605 year: 1999 end-page: 625 ident: bib2 article-title: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces publication-title: Adv. Mater. – volume: 46 start-page: 4816 year: 1992 end-page: 4829 ident: bib7 article-title: Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals publication-title: Phys. Rev. B – volume: 18 start-page: 665 year: 2000 end-page: 678 ident: bib40 article-title: Field emission properties of carbon nanotubes publication-title: J. Vac. Sci. Technol., B – volume: 69 start-page: 181 year: 2006 end-page: 232 ident: bib15 article-title: Fundamental physics of vacuum electron sources publication-title: Rep. Prog. Phys. – volume: 15 start-page: 271 year: 2003 end-page: 277 ident: bib3 article-title: Electron energetics at surfaces and interfaces: concepts and experiments publication-title: Adv. Mater. – volume: 46 start-page: 7157 year: 1992 end-page: 7168 ident: bib6 article-title: Surface energy and work function of elemental metals publication-title: Phys. Rev. B – volume: 124 start-page: 2273 year: 2020 end-page: 2288 ident: bib26 article-title: Theory for influence of the metal electrolyte interface on heterogeneous electron transfer rate constant: fractional electron transferred transition state approach publication-title: J. Phys. Chem. C – volume: 89 year: 2018 ident: bib77 article-title: Calibrated work function mapping by Kelvin probe force microscopy publication-title: Rev. Sci. Instrum. – volume: 120 start-page: 149 year: 2001 end-page: 154 ident: bib20 article-title: Work function measurements on indium tin oxide films publication-title: J. Electron. Spectrosc. Relat. Phenom. – year: 2021 ident: bib1 article-title: Work Function and Band Alignment of Electrode Materials – volume: 69 start-page: 181 year: 2005 ident: bib33 article-title: Fundamental physics of vacuum electron sources publication-title: Rep. Prog. Phys. – volume: 48 start-page: 4729 year: 1977 end-page: 4733 ident: bib48 article-title: The work function of the elements and its periodicity publication-title: J. Appl. Phys. – volume: 39 start-page: 944 year: 1998 end-page: 947 ident: bib34 article-title: Method to determine the work function using X-ray photoelectron spectroscopy publication-title: J. Struct. Chem. – volume: 469 start-page: 20130163 year: 2013 ident: bib80 article-title: Shape-and size-dependent electronic capacitance in nanostructured materials publication-title: Proc. Math. Phys. Eng. Sci. – year: 1921 ident: bib37 article-title: The Emission of Electricity from Hot Bodies – volume: 651 start-page: 137 year: 2016 end-page: 146 ident: bib9 article-title: Detailed first-principles studies on surface energy and work function of hexagonal metals publication-title: Surf. Sci. – volume: 24 start-page: 1024 year: 2006 end-page: 1030 ident: bib57 article-title: Evaluation of the shapes of Auger-and secondary-electron line scans across interfaces with the logistic function publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films – volume: 451 start-page: 99 year: 2018 end-page: 103 ident: bib72 article-title: Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak publication-title: Appl. Surf. Sci. – volume: 23 start-page: 2649 year: 2021 end-page: 2657 ident: bib12 article-title: Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections publication-title: Phys. Chem. Chem. Phys. – volume: 23 start-page: 49 year: 2002 end-page: 51 ident: bib22 article-title: An adjustable work function technology using Mo gate for CMOS devices publication-title: IEEE Electron. Device Lett. – volume: 646 start-page: 83 year: 2016 end-page: 89 ident: bib67 article-title: Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531) publication-title: Surf. Sci. – volume: 10 start-page: 2000520 year: 2020 ident: bib31 article-title: Work function evolution in Li anode processing publication-title: Adv. Energy Mater. – volume: 68 start-page: 2699 year: 1996 end-page: 2701 ident: bib19 article-title: Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy publication-title: Appl. Phys. Lett. – volume: 23 start-page: 134 year: 1973 end-page: 138 ident: bib70 article-title: Work function measurements by X-Pe spectroscopy, and their relevance to the calibration of X-Pe spectra publication-title: Chem. Phys. Lett. – volume: 112 start-page: 17368 year: 2008 end-page: 17377 ident: bib43 article-title: Tip−Sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential publication-title: J. Phys. Chem. C – year: 2005 ident: bib49 publication-title: CRC-Handbook of Chemistry and Physics – volume: 38 year: 2020 ident: bib69 article-title: XPS guide: charge neutralization and binding energy referencing for insulating samples publication-title: J. Vac. Sci. Technol. – volume: 151 start-page: 305 year: 1983 end-page: 310 ident: bib29 article-title: Photoelectron spectroscopic study of emersed gold electrodes publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 119 start-page: 173 year: 1928 end-page: 181 ident: bib39 article-title: Electron emission in intense electric fields publication-title: Proc. R. Soc. London, Ser. A – volume: 42 start-page: 8864 year: 1990 end-page: 8881 ident: bib51 article-title: High-resolution photoemission study of the low-energy excitations in 4f-electron systems publication-title: Phys. Rev. B – volume: 1 start-page: 4555 year: 1970 end-page: 4568 ident: bib5 article-title: Theory of metal surfaces: charge density and surface energy publication-title: Phys. Rev. B – volume: 21 start-page: 185 year: 1949 end-page: 270 ident: bib38 publication-title: Thermionic Emission, Rev. Mod. Phys. – volume: 103 start-page: 883 year: 2005 end-page: 890 ident: bib11 article-title: A density functional theory study of adsorbate-induced work function change and binding energy: olefins on Ag(111) publication-title: Mol. Phys. – volume: 10 start-page: 1596 year: 2019 end-page: 1607 ident: bib75 article-title: Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation publication-title: Beilstein J. Nanotechnol. – volume: 12 start-page: 259 year: 2015 end-page: 262 ident: bib41 article-title: Near ambient pressure photoemission spectroscopy of metal and semiconductor surfaces publication-title: Phys. Status Solidi C – volume: 26 start-page: 6461 year: 2014 end-page: 6466 ident: bib83 article-title: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function publication-title: Adv. Mater. – volume: 64 start-page: 52 year: 1977 end-page: 68 ident: bib65 article-title: Work function of stepped tungsten single crystal surfaces publication-title: Surf. Sci. – volume: 15 start-page: 1378 year: 1978 end-page: 1383 ident: bib17 article-title: Chemical reaction and charge redistribution at metal–semiconductor interfaces publication-title: J. Vac. Sci. Technol. – volume: 53 start-page: 97 year: 2018 end-page: 107 ident: bib23 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@ Ti3C2Tx enabled by low-work-function 2D titanium carbide publication-title: Nanomater. Energy – volume: 121 start-page: 13059 year: 2017 end-page: 13069 ident: bib13 article-title: Theory of work function and potential of zero charge for metal nanostructured and rough electrodes publication-title: J. Phys. Chem. C – volume: 30 year: 2012 ident: bib56 article-title: Logistic function profile fit: a least-squares program for fitting interface profiles to an extended logistic function publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films – volume: 41 start-page: 2529 year: 2003 end-page: 2548 ident: bib58 article-title: Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 111 start-page: 1 year: 1997 end-page: 10 ident: bib66 article-title: The local work function: concept and implications publication-title: Appl. Surf. Sci. – volume: 304 start-page: 49 year: 2013 end-page: 56 ident: bib71 article-title: Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 3 start-page: 7 year: 2016 end-page: 10 ident: bib62 article-title: Fermi level, work function and vacuum level publication-title: Mater. Horiz. – volume: 9 start-page: 3731 year: 2018 end-page: 3737 ident: bib79 article-title: Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide publication-title: J. Phys. Chem. Lett. – start-page: 1 year: 1979 end-page: 150 ident: bib4 publication-title: In Solid Surface Physics – reference: Surface chemical analysis — X-ray photoelectron spectroscopy — Reporting of methods used for charge control and charge correction, ISO 19318:2004. – year: 2018 ident: bib21 publication-title: In Complementary-Metal-Oxide-Semiconductor – year: 1978 ident: bib32 article-title: Photoemission in Solids I – year: 2003 ident: bib50 article-title: Photoelectron Spectroscopy – volume: 80 start-page: 235407 year: 2009 ident: bib8 article-title: Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles publication-title: Phys. Rev. B – volume: 68 start-page: 39 year: 2010 end-page: 87 ident: bib55 article-title: Surface analytical studies of interfaces in organic semiconductor devices publication-title: Mater. Sci. Eng. R Rep. – volume: 6 start-page: 2870 year: 2015 end-page: 2874 ident: bib81 article-title: Curvature-induced anomalous enhancement in the work function of nanostructures publication-title: J. Phys. Chem. Lett. – volume: 215 start-page: 331 year: 1986 end-page: 344 ident: bib28 article-title: XPS and work function study of emersed silver, platinum and gold electrodes publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 34 start-page: 225 year: 1973 end-page: 248 ident: bib36 article-title: Work function measurements by the field emission retarding potential method publication-title: Surf. Sci. – volume: 21 start-page: 1450 year: 2009 end-page: 1472 ident: bib54 article-title: Energy-level alignment at organic/metal and organic/organic interfaces publication-title: Adv. Mater. – year: 2015 ident: bib18 article-title: Solid Surfaces, Interfaces and Thin Films – volume: 122 year: 2005 ident: bib63 article-title: On the correlation between surface roughness and work function in copper publication-title: J. Chem. Phys. – volume: 93 start-page: 163308 year: 2008 ident: bib78 article-title: Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes publication-title: Appl. Phys. Lett. – volume: 81 start-page: 224201 year: 2010 ident: bib10 article-title: Work function calculation of solid solution alloys using the image force model publication-title: Phys. Rev. B – volume: 97 year: 2010 ident: bib45 article-title: Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices publication-title: Appl. Phys. Lett. – volume: 457 start-page: 773 year: 2018 end-page: 779 ident: bib44 article-title: Thermal annealing of black phosphorus for etching and protection publication-title: Appl. Surf. Sci. – year: 1977 ident: 10.1016/j.cap.2021.07.018_bib52 – volume: 256 start-page: 2602 year: 2010 ident: 10.1016/j.cap.2021.07.018_bib53 article-title: Pitfalls in measuring work function using photoelectron spectroscopy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.11.002 – volume: 23 start-page: 2649 year: 2021 ident: 10.1016/j.cap.2021.07.018_bib12 article-title: Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05977C – volume: 110 start-page: 156804 year: 2013 ident: 10.1016/j.cap.2021.07.018_bib60 article-title: Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.156804 – year: 1984 ident: 10.1016/j.cap.2021.07.018_bib14 – volume: 451 start-page: 99 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib72 article-title: Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.226 – volume: 92 year: 2008 ident: 10.1016/j.cap.2021.07.018_bib47 article-title: Application of ion scattering spectroscopy to measurement of surface potential of MgO thin film under ion irradiation publication-title: Appl. Phys. Lett. doi: 10.1063/1.2888957 – volume: 46 start-page: 4816 year: 1992 ident: 10.1016/j.cap.2021.07.018_bib7 article-title: Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.4816 – volume: 42 start-page: 8864 year: 1990 ident: 10.1016/j.cap.2021.07.018_bib51 article-title: High-resolution photoemission study of the low-energy excitations in 4f-electron systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.8864 – volume: 6 start-page: 2870 year: 2015 ident: 10.1016/j.cap.2021.07.018_bib81 article-title: Curvature-induced anomalous enhancement in the work function of nanostructures publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01197 – volume: 23 start-page: 49 year: 2002 ident: 10.1016/j.cap.2021.07.018_bib22 article-title: An adjustable work function technology using Mo gate for CMOS devices publication-title: IEEE Electron. Device Lett. doi: 10.1109/55.974809 – volume: 103 start-page: 883 year: 2005 ident: 10.1016/j.cap.2021.07.018_bib11 article-title: A density functional theory study of adsorbate-induced work function change and binding energy: olefins on Ag(111) publication-title: Mol. Phys. doi: 10.1080/00268970412331333609 – volume: 15 start-page: 1378 year: 1978 ident: 10.1016/j.cap.2021.07.018_bib17 article-title: Chemical reaction and charge redistribution at metal–semiconductor interfaces publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.569792 – volume: 48 start-page: 4729 year: 1977 ident: 10.1016/j.cap.2021.07.018_bib48 article-title: The work function of the elements and its periodicity publication-title: J. Appl. Phys. doi: 10.1063/1.323539 – volume: 215 start-page: 331 year: 1986 ident: 10.1016/j.cap.2021.07.018_bib28 article-title: XPS and work function study of emersed silver, platinum and gold electrodes publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(86)87026-7 – volume: 3 start-page: 7 year: 2016 ident: 10.1016/j.cap.2021.07.018_bib62 article-title: Fermi level, work function and vacuum level publication-title: Mater. Horiz. doi: 10.1039/C5MH00160A – volume: 122 start-page: 911 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib82 article-title: Model of local work function and PZC for molecular self assembly over nanostructured metal electrode publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10696 – volume: 126 start-page: 144703 year: 2007 ident: 10.1016/j.cap.2021.07.018_bib61 article-title: Energy level alignment at metal/organic semiconductor interfaces: “Pillow” effect, induced density of interface states, and charge neutrality level publication-title: J. Chem. Phys. doi: 10.1063/1.2717165 – volume: 481 start-page: 172 year: 2001 ident: 10.1016/j.cap.2021.07.018_bib76 article-title: Standard reference surfaces for work function measurements in air publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01036-6 – volume: 97 year: 2010 ident: 10.1016/j.cap.2021.07.018_bib45 article-title: Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices publication-title: Appl. Phys. Lett. – volume: 256 start-page: 1082 year: 2009 ident: 10.1016/j.cap.2021.07.018_bib46 article-title: Change in work function during phase transition of Sc–O/W(100) system at high temperatures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.05.116 – volume: 69 start-page: 181 year: 2005 ident: 10.1016/j.cap.2021.07.018_bib33 article-title: Fundamental physics of vacuum electron sources publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/69/1/R04 – volume: 124 start-page: 2273 year: 2020 ident: 10.1016/j.cap.2021.07.018_bib26 article-title: Theory for influence of the metal electrolyte interface on heterogeneous electron transfer rate constant: fractional electron transferred transition state approach publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09461 – volume: 34 start-page: 225 year: 1973 ident: 10.1016/j.cap.2021.07.018_bib36 article-title: Work function measurements by the field emission retarding potential method publication-title: Surf. Sci. doi: 10.1016/0039-6028(73)90117-9 – volume: 119 start-page: 173 year: 1928 ident: 10.1016/j.cap.2021.07.018_bib39 article-title: Electron emission in intense electric fields publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1928.0091 – volume: 23 start-page: 134 year: 1973 ident: 10.1016/j.cap.2021.07.018_bib70 article-title: Work function measurements by X-Pe spectroscopy, and their relevance to the calibration of X-Pe spectra publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(73)89582-X – volume: 64 start-page: 52 year: 1977 ident: 10.1016/j.cap.2021.07.018_bib65 article-title: Work function of stepped tungsten single crystal surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90257-6 – volume: 10 start-page: 2000520 year: 2020 ident: 10.1016/j.cap.2021.07.018_bib31 article-title: Work function evolution in Li anode processing publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000520 – year: 2021 ident: 10.1016/j.cap.2021.07.018_bib1 – volume: 111 start-page: 1 year: 1997 ident: 10.1016/j.cap.2021.07.018_bib66 article-title: The local work function: concept and implications publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(96)00692-7 – volume: 122 year: 2005 ident: 10.1016/j.cap.2021.07.018_bib63 article-title: On the correlation between surface roughness and work function in copper publication-title: J. Chem. Phys. doi: 10.1063/1.1849135 – volume: 10 start-page: 1596 year: 2019 ident: 10.1016/j.cap.2021.07.018_bib75 article-title: Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.10.155 – volume: 111 start-page: 311 year: 2000 ident: 10.1016/j.cap.2021.07.018_bib35 article-title: Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison publication-title: Synth. Met. doi: 10.1016/S0379-6779(99)00354-9 – volume: 160 start-page: 517 year: 1985 ident: 10.1016/j.cap.2021.07.018_bib30 article-title: Anodic iridium oxide films: an UPS study of emersed electrodes publication-title: Surf. Sci. doi: 10.1016/0039-6028(85)90791-5 – volume: 12 start-page: 259 year: 2015 ident: 10.1016/j.cap.2021.07.018_bib41 article-title: Near ambient pressure photoemission spectroscopy of metal and semiconductor surfaces publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201400086 – volume: 11 start-page: 605 year: 1999 ident: 10.1016/j.cap.2021.07.018_bib2 article-title: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q – ident: 10.1016/j.cap.2021.07.018_bib68 – year: 2005 ident: 10.1016/j.cap.2021.07.018_bib49 – volume: 646 start-page: 83 year: 2016 ident: 10.1016/j.cap.2021.07.018_bib67 article-title: Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531) publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.10.062 – volume: 21 start-page: 1450 year: 2009 ident: 10.1016/j.cap.2021.07.018_bib54 article-title: Energy-level alignment at organic/metal and organic/organic interfaces publication-title: Adv. Mater. doi: 10.1002/adma.200802893 – volume: 24 start-page: 1024 year: 2006 ident: 10.1016/j.cap.2021.07.018_bib57 article-title: Evaluation of the shapes of Auger-and secondary-electron line scans across interfaces with the logistic function publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films doi: 10.1116/1.2209651 – volume: 81 start-page: 224201 year: 2010 ident: 10.1016/j.cap.2021.07.018_bib10 article-title: Work function calculation of solid solution alloys using the image force model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.224201 – volume: 304 start-page: 49 year: 2013 ident: 10.1016/j.cap.2021.07.018_bib71 article-title: Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/j.nimb.2013.04.041 – volume: 13 start-page: 6176 year: 2013 ident: 10.1016/j.cap.2021.07.018_bib74 article-title: Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles publication-title: Nano Lett. doi: 10.1021/nl403524a – volume: 457 start-page: 773 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib44 article-title: Thermal annealing of black phosphorus for etching and protection publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.242 – volume: 68 start-page: 39 year: 2010 ident: 10.1016/j.cap.2021.07.018_bib55 article-title: Surface analytical studies of interfaces in organic semiconductor devices publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2010.01.001 – volume: 39 start-page: 944 year: 1998 ident: 10.1016/j.cap.2021.07.018_bib34 article-title: Method to determine the work function using X-ray photoelectron spectroscopy publication-title: J. Struct. Chem. doi: 10.1007/BF02903611 – volume: 83 start-page: 1 year: 2008 ident: 10.1016/j.cap.2021.07.018_bib16 article-title: Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2007.11.001 – volume: 38 year: 2020 ident: 10.1016/j.cap.2021.07.018_bib69 article-title: XPS guide: charge neutralization and binding energy referencing for insulating samples publication-title: J. Vac. Sci. Technol. doi: 10.1116/6.0000057 – volume: 26 start-page: 6461 year: 2014 ident: 10.1016/j.cap.2021.07.018_bib83 article-title: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function publication-title: Adv. Mater. doi: 10.1002/adma.201401775 – volume: 41 start-page: 2529 year: 2003 ident: 10.1016/j.cap.2021.07.018_bib58 article-title: Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.10642 – year: 2003 ident: 10.1016/j.cap.2021.07.018_bib50 – start-page: 1 year: 1979 ident: 10.1016/j.cap.2021.07.018_bib4 – volume: 15 start-page: 271 year: 2003 ident: 10.1016/j.cap.2021.07.018_bib3 article-title: Electron energetics at surfaces and interfaces: concepts and experiments publication-title: Adv. Mater. doi: 10.1002/adma.200390065 – volume: 651 start-page: 137 year: 2016 ident: 10.1016/j.cap.2021.07.018_bib9 article-title: Detailed first-principles studies on surface energy and work function of hexagonal metals publication-title: Surf. Sci. doi: 10.1016/j.susc.2016.04.007 – volume: 121 start-page: 13059 year: 2017 ident: 10.1016/j.cap.2021.07.018_bib13 article-title: Theory of work function and potential of zero charge for metal nanostructured and rough electrodes publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03595 – volume: 69 start-page: 181 year: 2006 ident: 10.1016/j.cap.2021.07.018_bib15 article-title: Fundamental physics of vacuum electron sources publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/69/1/R04 – volume: 30 year: 2012 ident: 10.1016/j.cap.2021.07.018_bib56 article-title: Logistic function profile fit: a least-squares program for fitting interface profiles to an extended logistic function publication-title: J. Vac. Sci. Technol.: Vacuum, Surfaces, and Films doi: 10.1116/1.4736865 – volume: 80 start-page: 235407 year: 2009 ident: 10.1016/j.cap.2021.07.018_bib8 article-title: Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235407 – volume: 126 start-page: 5207 year: 2014 ident: 10.1016/j.cap.2021.07.018_bib24 article-title: Designing p‐type semiconductor–metal hybrid structures for improved photocatalysis publication-title: Angew. Chem. doi: 10.1002/ange.201310635 – volume: 112 start-page: 17368 year: 2008 ident: 10.1016/j.cap.2021.07.018_bib43 article-title: Tip−Sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential publication-title: J. Phys. Chem. C doi: 10.1021/jp806657k – year: 1978 ident: 10.1016/j.cap.2021.07.018_bib32 – volume: 89 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib77 article-title: Calibrated work function mapping by Kelvin probe force microscopy publication-title: Rev. Sci. Instrum. – year: 1921 ident: 10.1016/j.cap.2021.07.018_bib37 – volume: 107 start-page: 100591 year: 2020 ident: 10.1016/j.cap.2021.07.018_bib73 article-title: X-ray photoelectron spectroscopy: towards reliable binding energy referencing publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100591 – volume: 46 start-page: 7157 year: 1992 ident: 10.1016/j.cap.2021.07.018_bib6 article-title: Surface energy and work function of elemental metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.7157 – volume: 109 start-page: 641 year: 1981 ident: 10.1016/j.cap.2021.07.018_bib27 article-title: Continuous work function monitoring for electrode emersion publication-title: Surf. Sci. doi: 10.1016/0039-6028(81)90432-5 – volume: 120 start-page: 149 year: 2001 ident: 10.1016/j.cap.2021.07.018_bib20 article-title: Work function measurements on indium tin oxide films publication-title: J. Electron. Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(01)00310-3 – volume: 18 start-page: 665 year: 2000 ident: 10.1016/j.cap.2021.07.018_bib40 article-title: Field emission properties of carbon nanotubes publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.591258 – volume: 106 start-page: 128 year: 1984 ident: 10.1016/j.cap.2021.07.018_bib25 article-title: The function of metals in metal-compounded semiconductor photocatalysts publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(84)87025-6 – volume: 151 start-page: 305 year: 1983 ident: 10.1016/j.cap.2021.07.018_bib29 article-title: Photoelectron spectroscopic study of emersed gold electrodes publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(83)80445-8 – year: 2015 ident: 10.1016/j.cap.2021.07.018_bib18 – volume: 256 start-page: 1800299 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib64 article-title: Importance of substrate work function homogeneity for reliable ionization energy determination by photoelectron spectroscopy publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201800299 – volume: 93 start-page: 163308 year: 2008 ident: 10.1016/j.cap.2021.07.018_bib78 article-title: Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2998599 – volume: 68 start-page: 2699 year: 1996 ident: 10.1016/j.cap.2021.07.018_bib19 article-title: Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.116313 – volume: 53 start-page: 97 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib23 article-title: High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@ Ti3C2Tx enabled by low-work-function 2D titanium carbide publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.08.040 – volume: 58 start-page: 2921 year: 1991 ident: 10.1016/j.cap.2021.07.018_bib42 article-title: Kelvin probe force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.105227 – year: 2018 ident: 10.1016/j.cap.2021.07.018_bib21 – volume: 351 start-page: L239 year: 1996 ident: 10.1016/j.cap.2021.07.018_bib59 article-title: Surface electronic properties of Na/Ge(111)-3x1 publication-title: Surf. Sci. doi: 10.1016/0039-6028(95)01344-X – volume: 1 start-page: 4555 year: 1970 ident: 10.1016/j.cap.2021.07.018_bib5 article-title: Theory of metal surfaces: charge density and surface energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.1.4555 – volume: 469 start-page: 20130163 year: 2013 ident: 10.1016/j.cap.2021.07.018_bib80 article-title: Shape-and size-dependent electronic capacitance in nanostructured materials publication-title: Proc. Math. Phys. Eng. Sci. – volume: 21 start-page: 185 year: 1949 ident: 10.1016/j.cap.2021.07.018_bib38 publication-title: Thermionic Emission, Rev. Mod. Phys. doi: 10.1103/RevModPhys.21.185 – volume: 9 start-page: 3731 year: 2018 ident: 10.1016/j.cap.2021.07.018_bib79 article-title: Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01242 |
| SSID | ssj0016404 |
| Score | 2.5654538 |
| SecondaryResourceType | review_article |
| Snippet | Work function (WF) of a material is not only an intrinsic characteristic of bulk but also a surface property. The measurement and control of WF have been of... |
| SourceID | nrf crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 52 |
| SubjectTerms | Photoelectron spectroscopy Surface electric dipole Work function 물리학 |
| Title | Absolute work function measurement by using photoelectron spectroscopy |
| URI | https://dx.doi.org/10.1016/j.cap.2021.07.018 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002777603 |
| Volume | 31 |
| WOSCitedRecordID | wos000724663900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Current Applied Physics, 2021, 31(0), , pp.52-59 |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZrusFeRndj3aWIsacVF9uRZekxjJa2jFJYt-VNSLK8XlY7JOno_v3OkWQnaVnZBntxjIhlcT77-Ogc6fsIeachxqhlgds-8jphnPFEDysI5Fyt01SbQvtkzpeP5dGRGI_lcZS4n3k5gbJpxPW1nPxXqKENwMats38Bd98pNMA5gA5HgB2OfwT8yPj-nVeB2cbvlof4cpEMxJDzyucIJqftvO2UcLb9rktkt2wnK8XejsNJx4g1ZEMWVaAgyHzoULbo63JZ_zIsmZy1sTFmF_IsbrPrU163tr0EL8mRWTKwEO240CZwOsqDDErnWqODD74xMNXGr2ygAb_lv0Mq4RwXf-3gcDyxanTQq7TYn3AQOIYcWaRKydfIel4WUgzI-uhgd3zY15I48yKS_aC72rZf5XfjRr-LTtaaab0Ud5xskEdxwkBHAejH5J5rnpAHxwGCp2Svg5si3LSDmy7BTc1P6uGmK3DTZbifkc97uycf9pOojZFYxtJ5YmuprXXGaMGs1lwyWTED8TcXaa1FoevCZbIqjS5sJq2weWYEhHdcOiy0V8PnZNC0jXtBaMWN9boJYlgzbQ3EJwyMKrCIbyuTbZK0s4mykTge9Uu-q26F4LkCMyo0o0pLBWbcJO_7SyaBNeWuP7PO0CqGfSGcU_BU3HXZWwBFXdgzhRTp-PutVRdTBRPBAyWFECzPX_5b36_Iw8XL8JoM5tMr94bctz_mZ7PpVnzAfgFvNIgw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absolute+work+function+measurement+by+using+photoelectron+spectroscopy&rft.jtitle=Current+applied+physics&rft.au=Kim%2C+Jeong+Won&rft.au=Kim%2C+Ansoon&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=31&rft.spage=52&rft.epage=59&rft_id=info:doi/10.1016%2Fj.cap.2021.07.018&rft.externalDocID=S1567173921001796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |