Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines

One of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed profile that requires the minimum energy consumption without degrading commercial running times or passenger comfort. When the trains are eq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering Applications of Artificial Intelligence Ročník 29; s. 43 - 53
Hlavní autori: Domínguez, María, Fernández-Cardador, Antonio, Cucala, Asunción P., Gonsalves, Tad, Fernández, Adrián
Médium: Journal Article
Jazyk:English
Japanese
Vydavateľské údaje: Elsevier Ltd 01.03.2014
Elsevier BV
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed profile that requires the minimum energy consumption without degrading commercial running times or passenger comfort. When the trains are equipped with Automatic Train Operation systems (ATO) additional difficulties are involved. Their particular features make it necessary to develop accurate models that optimize the combination of the ATO commands of each speed profile to be used by the traffic regulation system. These commands are transmitted to the train via encoded balises on the track with little channel capacity (bandwidth). Thus, only a few and discrete values of the commands can be sent and the solution space of every interstation is made up of a relatively small set of speed profiles. However, the new state-of-the-art of signalling technologies permit a better bandwidth resulting in an exponential solution space. This calls for new methods for the optimal design of the ATO speed profiles without an exhaustive simulation of all the combinations. A MOPSO algorithm (Multi Objective Particle Swarm Optimization) to obtain the consumption/time Pareto front based on the simulation of a train with a real ATO system is proposed. The algorithm is able even to take into account only the comfortable speed profiles of the solution space. The fitness of the Pareto front is verified by comparing it with a NSGA-II algorithm (non-dominated sorting genetic algorithm II) and with the real Pareto front. Further, it has been used to obtain the optimal speed profiles in a real line of the Madrid Underground.
AbstractList One of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed profile that requires the minimum energy consumption without degrading commercial running times or passenger comfort. When the trains are equipped with Automatic Train Operation systems (ATO) additional difficulties are involved. Their particular features make it necessary to develop accurate models that optimize the combination of the ATO commands of each speed profile to be used by the traffic regulation system. These commands are transmitted to the train via encoded balises on the track with little channel capacity (bandwidth). Thus, only a few and discrete values of the commands can be sent and the solution space of every interstation is made up of a relatively small set of speed profiles. However, the new state-of-the-art of signalling technologies permit a better bandwidth resulting in an exponential solution space. This calls for new methods for the optimal design of the ATO speed profiles without an exhaustive simulation of all the combinations. A MOPSO algorithm (Multi Objective Particle Swarm Optimization) to obtain the consumption/time Pareto front based on the simulation of a train with a real ATO system is proposed. The algorithm is able even to take into account only the comfortable speed profiles of the solution space. The fitness of the Pareto front is verified by comparing it with a NSGA-II algorithm (non-dominated sorting genetic algorithm II) and with the real Pareto front. Further, it has been used to obtain the optimal speed profiles in a real line of the Madrid Underground.
Author Cucala, Asunción P.
Fernández, Adrián
Domínguez, María
Fernández-Cardador, Antonio
Gonsalves, Tad
Author_xml – sequence: 1
  givenname: María
  surname: Domínguez
  fullname: Domínguez, María
  organization: Institute for Research in Technology, ICAI - School of Engineering, Comillas Pontifical University, 23 Alberto Aguilera Street, Madrid 28015, Spain
– sequence: 2
  givenname: Antonio
  surname: Fernández-Cardador
  fullname: Fernández-Cardador, Antonio
  email: antonio.fernandez@iit.upcomillas.es
  organization: Institute for Research in Technology, ICAI - School of Engineering, Comillas Pontifical University, 23 Alberto Aguilera Street, Madrid 28015, Spain
– sequence: 3
  givenname: Asunción P.
  surname: Cucala
  fullname: Cucala, Asunción P.
  organization: Institute for Research in Technology, ICAI - School of Engineering, Comillas Pontifical University, 23 Alberto Aguilera Street, Madrid 28015, Spain
– sequence: 4
  givenname: Tad
  surname: Gonsalves
  fullname: Gonsalves, Tad
  organization: Department of Information & Communication Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
– sequence: 5
  givenname: Adrián
  surname: Fernández
  fullname: Fernández, Adrián
  organization: Institute for Research in Technology, ICAI - School of Engineering, Comillas Pontifical University, 23 Alberto Aguilera Street, Madrid 28015, Spain
BackLink https://cir.nii.ac.jp/crid/1874242817712390784$$DView record in CiNii
BookMark eNqFkUFv1DAQhSNUJLaFv4B84MBlg8dOHEfiQFUBRSrqZe-W44y3s0rsYHuL6K8ny8KFSy8zl_fmzXxzWV2EGLCq3gKvgYP6cKgx7O2yWKoFB1mDqDm0L6oN6E5uVaf6i2rD-1Zsoe_Uq-oy5wPnXOpGbar8_TgVYnE4oCv0iGyxqZCbkOWfNs0sLoVmerKFYmB22sdE5WFmPiZWHpCNmGkfWPQMvSdHGAq73t2zvCCObEnR04SZUWAzlhTZRAHz6-qlt1PGN3_7VbX78nl3c7u9u__67eb6buuahpetG2U3CmfVKKWXA9dOD_3Ae3AtqhbA963WWnLggwMcFQiFg-g9qJZL7-RV9f48dl3jxxFzMTNlh9NkA8ZjNtBK3msFClbpx7PUpZhzQm8clT83l2RpMsDNCbU5mH-ozQm1AWFW1Ktd_WdfEs02_Xre-O5sDERr5KmuT2tEIzR0HQjZ8043q-zTWYYrrUfCZPIJtcOR0vo2M0Z6Luk38O2rEg
CitedBy_id crossref_primary_10_1016_j_trc_2018_08_008
crossref_primary_10_1155_2017_6173795
crossref_primary_10_1016_j_ijepes_2018_12_038
crossref_primary_10_1016_j_trc_2018_08_009
crossref_primary_10_1049_iet_rpg_2015_0041
crossref_primary_10_1177_03611981231205876
crossref_primary_10_1177_0361198119838513
crossref_primary_10_1016_j_egyr_2025_03_061
crossref_primary_10_3390_en7117305
crossref_primary_10_1016_j_eswa_2023_119554
crossref_primary_10_1049_itr2_12456
crossref_primary_10_1016_j_engappai_2022_105756
crossref_primary_10_1016_j_ijepes_2018_04_030
crossref_primary_10_1007_s12544_017_0253_9
crossref_primary_10_1080_23248378_2016_1179599
crossref_primary_10_1109_TITS_2020_2980556
crossref_primary_10_1109_ACCESS_2020_3017193
crossref_primary_10_1109_TTE_2022_3194698
crossref_primary_10_1016_j_ins_2021_04_088
crossref_primary_10_3390_en9100762
crossref_primary_10_1109_MITS_2021_3066067
crossref_primary_10_1016_j_energy_2022_124848
crossref_primary_10_1016_j_jrtpm_2022_100321
crossref_primary_10_1080_21680566_2022_2083033
crossref_primary_10_1109_TITS_2015_2447507
crossref_primary_10_1155_2024_5964428
crossref_primary_10_1007_s00500_019_04518_x
crossref_primary_10_1016_j_ejcon_2019_04_005
crossref_primary_10_1016_j_ifacol_2016_07_824
crossref_primary_10_1016_j_engappai_2016_06_006
crossref_primary_10_1155_2018_7905820
crossref_primary_10_1016_j_jclepro_2019_03_037
crossref_primary_10_1016_j_trd_2021_102995
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1109_TVT_2023_3262345
crossref_primary_10_1016_j_conengprac_2023_105605
crossref_primary_10_1002_oca_2797
crossref_primary_10_1016_j_engappai_2023_107393
crossref_primary_10_1049_itr2_12292
crossref_primary_10_1016_j_jrtpm_2018_03_003
crossref_primary_10_1016_j_trc_2016_12_004
crossref_primary_10_3390_en11102660
crossref_primary_10_1016_j_engappai_2016_03_011
crossref_primary_10_1080_0305215X_2020_1746782
crossref_primary_10_3390_su12166380
crossref_primary_10_1007_s13177_018_0158_6
crossref_primary_10_1016_j_undsp_2021_12_005
crossref_primary_10_1109_ACCESS_2023_3292790
crossref_primary_10_1177_09544097251343749
crossref_primary_10_1016_j_engappai_2014_07_019
crossref_primary_10_1177_09544097221103351
crossref_primary_10_3390_en13051115
crossref_primary_10_1049_itr2_12399
crossref_primary_10_3390_su13084173
crossref_primary_10_1016_j_ijepes_2017_06_022
crossref_primary_10_1016_j_engappai_2019_02_003
crossref_primary_10_3390_app15084361
crossref_primary_10_1049_itr2_12482
crossref_primary_10_1016_j_energy_2022_123098
crossref_primary_10_3390_electronics14081588
crossref_primary_10_1016_j_swevo_2025_102027
crossref_primary_10_3390_su15129238
crossref_primary_10_1016_j_esd_2018_08_001
crossref_primary_10_1109_TITS_2022_3200588
crossref_primary_10_1007_s12469_016_0147_6
crossref_primary_10_1016_j_simpat_2018_01_006
crossref_primary_10_1109_TITS_2018_2805917
crossref_primary_10_3390_en9080626
crossref_primary_10_1109_TITS_2015_2391831
crossref_primary_10_3390_app10217705
crossref_primary_10_3141_2546_13
crossref_primary_10_3390_pr7020077
crossref_primary_10_1080_0305215X_2024_2385583
crossref_primary_10_1016_j_trc_2016_08_011
crossref_primary_10_1109_TVT_2019_2914936
crossref_primary_10_1177_0954409719861595
crossref_primary_10_3390_en13071836
crossref_primary_10_3390_en9030208
crossref_primary_10_3390_su14148645
crossref_primary_10_1049_iet_its_2016_0256
crossref_primary_10_1016_j_engappai_2020_103986
crossref_primary_10_1109_TITS_2018_2873145
crossref_primary_10_1016_j_dsp_2022_103643
crossref_primary_10_1016_j_trd_2019_10_016
crossref_primary_10_1016_j_trc_2023_104113
crossref_primary_10_1016_j_cor_2015_12_011
crossref_primary_10_1016_j_simpat_2016_12_008
crossref_primary_10_3390_app13137403
Cites_doi 10.1109/TITS.2012.2234118
10.1016/S0952-1976(00)00027-0
10.1016/j.engappai.2012.01.020
10.1049/iet-epa:20070005
10.1109/DRPT.2008.4523892
10.1109/4235.996017
10.1016/j.engappai.2012.11.006
10.1109/CEC.2007.4424687
10.1049/ip-epa:20040346
10.1049/ip-epa:20000329
10.1109/ICSMC.1997.637339
10.1049/ic.2010.0038
10.1049/ip-b.1992.0031
10.1049/iet-epa:20070381
10.1243/09544097F00505
10.1109/TITS.2011.2142306
10.2495/CR120501
10.1109/TEVC.2004.826067
10.1162/106365600568167
10.1109/TASE.2012.2201148
10.1080/00207720412331203633
10.1145/1068009.1068047
10.1109/TIA.2009.2031898
10.1016/j.epsr.2011.08.004
10.1109/CDC.2000.914108
10.1109/ICNN.1995.488968
10.1016/0165-0114(94)90109-0
10.1109/TITS.2009.2018324
10.1109/CEC.2003.1299816
10.1016/j.ins.2010.11.036
10.1016/j.omega.2011.12.001
10.1002/tee.21782
10.1109/ITSC.2011.6082964
10.1002/tee.20528
10.1016/j.engappai.2012.02.006
10.4028/www.scientific.net/AMR.267.211
10.1109/TITS.2013.2244885
10.1109/ACC.2011.5991057
10.3233/IFS-130651
10.1016/j.engappai.2008.03.008
10.1109/9.867018
10.1145/508895.508907
10.1177/09544097JRRT420
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID RYH
AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.engappai.2013.12.015
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 53
ExternalDocumentID 10_1016_j_engappai_2013_12_015
S0952197613002492
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
EFKBS
RYH
~HD
9DU
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
AIGII
APXCP
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c440t-cd37d2ca6d33f3b08c8b9b091c5e6511f958883010bc1ed6126eb29f16503fc3
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332811300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Thu Oct 02 09:42:33 EDT 2025
Sat Nov 29 07:59:46 EST 2025
Tue Nov 18 22:11:26 EST 2025
Mon Nov 10 09:07:39 EST 2025
Fri Feb 23 02:28:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Eco-driving
Energy efficiency
Train simulation
ATO
Metro
MOPSO algorithm
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-cd37d2ca6d33f3b08c8b9b091c5e6511f958883010bc1ed6126eb29f16503fc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1530986161
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1530986161
crossref_citationtrail_10_1016_j_engappai_2013_12_015
crossref_primary_10_1016_j_engappai_2013_12_015
nii_cinii_1874242817712390784
elsevier_sciencedirect_doi_10_1016_j_engappai_2013_12_015
PublicationCentury 2000
PublicationDate March 2014
2014-03-01
2014-03-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationTitle Engineering Applications of Artificial Intelligence
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chuang, Chen, Lin, Hsieh, Ho (bib10) 2009; 45
Coello, Pulido, Lechuga (bib11) 2004; 8
Su, Li, Tang, Gao (bib47) 2013; 14
Kennedy, J., Eberhart, R.C., 1997. A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation. Presented at the, 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108.
Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM Symposium on Applied Computing, SAC '02. ACM, New York, NY, USA, pp. 603–607.
Franke, R., Terwiesch, P., Meyer, M., 2000. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, 2000. Presented at the Proceedings of the 39th IEEE Conference on Decision and Control, 2000, vol. 3, pp. 2123–2128.
Kennedy, Eberhart (bib34) 2001
Feng, Liu, Zhang, Wang, Sun (bib21) 2013
Domínguez, Fernández, Cucala, Lukaszewicz (bib17) 2011; 225
Chakraborty, Das, Roy, Abraham (bib7) 2011; 181
Knowles, Corne (bib36) 2000; 8
Fernandez, Cucala, Vitoriano, Cuadra (bib23) 2006; 220
Feng, Zhang, Ding, Liu, Peng, Xu (bib22) 2013
Cucala, Fernández, Sicre, Domínguez (bib14) 2012; 25
Jiménez, Sánchez, Vasant (bib30) 2013; 25
Alvarez-Benitez, Everson, Fieldsend (bib4) 2005
Samal, N.R., Konar, A., Das, S., Abraham, A., 2007. A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2007. CEC 2007. Presented at the IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 1769–1776.
Zou, Wang, Hei, Chen, Wang (bib54) 2013; 26
Falvo, Lamedica, Bartoni, Maranzano (bib19) 2011; 81
Raquel, C.R., Naval,Jr., P.C.., 2005. An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO '05. ACM, New York, NY, USA, pp. 257–264.
Wong, Ho (bib49) 2004; 151
Yang, Li, Gao, Li (bib51) 2012; 40
Domínguez, Fernández-Cardador, Cucala, Pecharromán (bib18) 2012; 9
IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, 1999. IEEE Std. 14741-1999 i–.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 1995. Presented at the, IEEE International Conference on Neural Networks, vol. 4, 1995. pp. 1942–1948.
Coello, C.A.C., Lechuga, M.S., 2002. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02. Presented at the Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02, pp. 1051–1056.
Sicre, Cucala, Fernández, Lukaszewicz (bib46) 2012; 7
Bocharnikov, Tobias, Roberts, Hillmansen, Goodman (bib6) 2007; 1
Chuang, H.-J., Chen, C.-S., Lin, C.-H., Hsieh, C.-H., Ho, C.-Y., 2008. Design of optimal coasting speed for saving social cost in Mass Rapid Transit systems. In: Proceedings of the third international conference on electric utility deregulation and restructuring and power technologies, 2008. DRPT 2008. Presented at the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008, pp. 2833–2839.
Deb, Pratap, Agarwal, Meyarivan (bib16) 2002; 6
Wong, Ho (bib50) 2004; 35
Chang, Xu (bib8) 2000; 147
Miyatake, Ko (bib42) 2010; 5
Acikbas, Soylemez (bib2) 2008; 2
Li (bib38) 2003
Zitzler, Laumanns, Thiele (bib53) 2002
De Cuadra, Fernandez, de Juan, Herrero, Allan, Brebbia, Hill, Sciutto, Sone (bib15) 1996
Ko, Koseki, Miyatake (bib37) 2004
Abril, Salido, Barber (bib1) 2008; 21
Gill, Goodman (bib25) 1992; 139
Gu, Q., Lu, X.-Y., Tang, T., 2011. Energy saving for automatic train control in moving block signaling system. In: Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Presented at the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1305–1310.
Albrecht, A., Howlett, P., Pudney, P., Vu, X., 2011. Optimal train control: analysis of a new local optimization principle. In: Proceedings of the American Control Conference (ACC), 2011. Presented at the American Control Conference (ACC) 2011, pp. 1928–1933.
Ke, Chen, Lin (bib31) 2009; 10
Khmelnitsky (bib35) 2000; 45
Fay (bib20) 2000; 13
Bocharnikov, Y.V., Tobias, A.M., Roberts, C., 2010. Reduction of train and net energy consumption using genetic algorithms for Trajectory Optimisation. In: Proceedings of the IET Conference on Railway Traction Systems (RTS 2010). Presented at the IET Conference on Railway Traction Systems (RTS 2010), pp. 1–5.
Cucala, A.P., Fernández, A., Domínguez, M., Ortega, J.M., Ramos, L., Galarraga, A., 2012a. ATO ecodriving design to minimise energy consumption in Metro de Bilbao. pp. 593–601.
Mitchell (bib41) 1996
Jamili, Shafia, Sadjadi, Tavakkoli-Moghaddam (bib28) 2012; 25
Jia, Zhang (bib29) 1994; 62
Lin, Sheu (bib39) 2011; 12
Lu, Hillmansen, Ho, Roberts (bib40) 2013; 14
Zhou, Xu, Zhang (bib52) 2011; 267
Wong, K.K., Ho, T.K., 2003. Coast control of train movement with genetic algorithm. In: Proceedings of the 2003 Congress on Evolutionary Computation, 2003. CEC '03. Presented at the 2003 Congress on Evolutionary Computation, 2003. CEC '03, vol. 2, pp. 1280–1287.
De Cuadra (10.1016/j.engappai.2013.12.015_bib15) 1996
Cucala (10.1016/j.engappai.2013.12.015_bib14) 2012; 25
10.1016/j.engappai.2013.12.015_bib48
Gill (10.1016/j.engappai.2013.12.015_bib25) 1992; 139
Knowles (10.1016/j.engappai.2013.12.015_bib36) 2000; 8
Sicre (10.1016/j.engappai.2013.12.015_bib46) 2012; 7
Domínguez (10.1016/j.engappai.2013.12.015_bib17) 2011; 225
10.1016/j.engappai.2013.12.015_bib43
Chang (10.1016/j.engappai.2013.12.015_bib8) 2000; 147
10.1016/j.engappai.2013.12.015_bib45
Kennedy (10.1016/j.engappai.2013.12.015_bib34) 2001
10.1016/j.engappai.2013.12.015_bib44
Falvo (10.1016/j.engappai.2013.12.015_bib19) 2011; 81
Zou (10.1016/j.engappai.2013.12.015_bib54) 2013; 26
Su (10.1016/j.engappai.2013.12.015_bib47) 2013; 14
Jia (10.1016/j.engappai.2013.12.015_bib29) 1994; 62
Chakraborty (10.1016/j.engappai.2013.12.015_bib7) 2011; 181
Coello (10.1016/j.engappai.2013.12.015_bib11) 2004; 8
Abril (10.1016/j.engappai.2013.12.015_bib1) 2008; 21
Lu (10.1016/j.engappai.2013.12.015_bib40) 2013; 14
Fernandez (10.1016/j.engappai.2013.12.015_bib23) 2006; 220
10.1016/j.engappai.2013.12.015_bib32
Domínguez (10.1016/j.engappai.2013.12.015_bib18) 2012; 9
10.1016/j.engappai.2013.12.015_bib33
Alvarez-Benitez (10.1016/j.engappai.2013.12.015_bib4) 2005
Miyatake (10.1016/j.engappai.2013.12.015_bib42) 2010; 5
Deb (10.1016/j.engappai.2013.12.015_bib16) 2002; 6
Mitchell (10.1016/j.engappai.2013.12.015_bib41) 1996
Bocharnikov (10.1016/j.engappai.2013.12.015_bib6) 2007; 1
Khmelnitsky (10.1016/j.engappai.2013.12.015_bib35) 2000; 45
10.1016/j.engappai.2013.12.015_bib24
Zitzler (10.1016/j.engappai.2013.12.015_bib53) 2002
10.1016/j.engappai.2013.12.015_bib27
10.1016/j.engappai.2013.12.015_bib26
Feng (10.1016/j.engappai.2013.12.015_bib21) 2013
Yang (10.1016/j.engappai.2013.12.015_bib51) 2012; 40
Wong (10.1016/j.engappai.2013.12.015_bib50) 2004; 35
Ko (10.1016/j.engappai.2013.12.015_bib37) 2004
Acikbas (10.1016/j.engappai.2013.12.015_bib2) 2008; 2
Fay (10.1016/j.engappai.2013.12.015_bib20) 2000; 13
Chuang (10.1016/j.engappai.2013.12.015_bib10) 2009; 45
10.1016/j.engappai.2013.12.015_bib5
Zhou (10.1016/j.engappai.2013.12.015_bib52) 2011; 267
10.1016/j.engappai.2013.12.015_bib3
10.1016/j.engappai.2013.12.015_bib9
10.1016/j.engappai.2013.12.015_bib13
Jiménez (10.1016/j.engappai.2013.12.015_bib30) 2013; 25
Wong (10.1016/j.engappai.2013.12.015_bib49) 2004; 151
Li (10.1016/j.engappai.2013.12.015_bib38) 2003
Jamili (10.1016/j.engappai.2013.12.015_bib28) 2012; 25
Feng (10.1016/j.engappai.2013.12.015_bib22) 2013
10.1016/j.engappai.2013.12.015_bib12
Ke (10.1016/j.engappai.2013.12.015_bib31) 2009; 10
Lin (10.1016/j.engappai.2013.12.015_bib39) 2011; 12
References_xml – year: 2001
  ident: bib34
  article-title: Swarm Intelligence
– reference: Cucala, A.P., Fernández, A., Domínguez, M., Ortega, J.M., Ramos, L., Galarraga, A., 2012a. ATO ecodriving design to minimise energy consumption in Metro de Bilbao. pp. 593–601.
– volume: 25
  start-page: 1548
  year: 2012
  end-page: 1557
  ident: bib14
  article-title: Fuzzy optimal schedule of high speed train operation to minimize energy consumption with uncertain delays and driver's behavioral response
  publication-title: Eng. Appl. Artif. Intell.
– reference: Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM Symposium on Applied Computing, SAC '02. ACM, New York, NY, USA, pp. 603–607.
– reference: Raquel, C.R., Naval,Jr., P.C.., 2005. An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO '05. ACM, New York, NY, USA, pp. 257–264.
– reference: Chuang, H.-J., Chen, C.-S., Lin, C.-H., Hsieh, C.-H., Ho, C.-Y., 2008. Design of optimal coasting speed for saving social cost in Mass Rapid Transit systems. In: Proceedings of the third international conference on electric utility deregulation and restructuring and power technologies, 2008. DRPT 2008. Presented at the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008, pp. 2833–2839.
– volume: 9
  start-page: 496
  year: 2012
  end-page: 504
  ident: bib18
  article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 1
  start-page: 675
  year: 2007
  end-page: 682
  ident: bib6
  article-title: Optimal driving strategy for traction energy saving on DC suburban railways
  publication-title: IET Electron. Power Appl.
– volume: 14
  start-page: 743
  year: 2013
  end-page: 750
  ident: bib40
  article-title: Single-train trajectory optimization
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 10
  start-page: 226
  year: 2009
  end-page: 235
  ident: bib31
  article-title: Block-layout design using MAX #x2013; MIN ant system for saving energy on mass rapid transit systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Albrecht, A., Howlett, P., Pudney, P., Vu, X., 2011. Optimal train control: analysis of a new local optimization principle. In: Proceedings of the American Control Conference (ACC), 2011. Presented at the American Control Conference (ACC) 2011, pp. 1928–1933.
– volume: 45
  start-page: 2090
  year: 2009
  end-page: 2097
  ident: bib10
  article-title: Design of Optimal Coasting Speed for MRT Systems Using ANN Models
  publication-title: IEEE Trans. Ind. Appl.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 1995. Presented at the, IEEE International Conference on Neural Networks, vol. 4, 1995. pp. 1942–1948.
– volume: 40
  start-page: 619
  year: 2012
  end-page: 633
  ident: bib51
  article-title: Optimizing trains movement on a railway network
  publication-title: Omega
– volume: 220
  start-page: 79
  year: 2006
  end-page: 89
  ident: bib23
  article-title: Predictive Traffic Regulation for Metro Loop Lines Based on Quadratic Programming
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
– volume: 13
  start-page: 719
  year: 2000
  end-page: 729
  ident: bib20
  article-title: A fuzzy knowledge-based system for railway traffic control
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 37
  year: 2003
  end-page: 48
  ident: bib38
  article-title: A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization
  publication-title: Genetic and Evolutionary Computation – GECCO 2003, Lecture Notes in Computer Science
– volume: 7
  start-page: 633
  year: 2012
  end-page: 640
  ident: bib46
  article-title: Modeling and optimizing energy-efficient manual driving on high-speed lines
  publication-title: IEE J. Trans. Electron. Electron. Eng.
– volume: 81
  start-page: 2127
  year: 2011
  end-page: 2138
  ident: bib19
  article-title: Energy management in metro-transit systems: An innovative proposal toward an integrated and sustainable urban mobility system including plug-in electric vehicles
  publication-title: Electron. Power Syst. Res.
– volume: 35
  start-page: 835
  year: 2004
  end-page: 846
  ident: bib50
  article-title: Dynamic coast control of train movement with genetic algorithm
  publication-title: Int. J. Syst. Sci.
– volume: 26
  start-page: 1291
  year: 2013
  end-page: 1300
  ident: bib54
  article-title: Multi-objective optimization using teaching-learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– reference: Gu, Q., Lu, X.-Y., Tang, T., 2011. Energy saving for automatic train control in moving block signaling system. In: Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Presented at the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1305–1310.
– volume: 25
  start-page: 793
  year: 2012
  end-page: 800
  ident: bib28
  article-title: Solving a periodic single-track train timetabling problem by an efficient hybrid algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 12
  start-page: 1064
  year: 2011
  end-page: 1073
  ident: bib39
  article-title: Metro traffic regulation by adaptive optimal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 62
  start-page: 255
  year: 1994
  end-page: 265
  ident: bib29
  article-title: Distributed intelligent railway traffic control based on fuzzy decisionmaking
  publication-title: Fuzzy Sets Syst.
– reference: Wong, K.K., Ho, T.K., 2003. Coast control of train movement with genetic algorithm. In: Proceedings of the 2003 Congress on Evolutionary Computation, 2003. CEC '03. Presented at the 2003 Congress on Evolutionary Computation, 2003. CEC '03, vol. 2, pp. 1280–1287.
– volume: 181
  start-page: 1411
  year: 2011
  end-page: 1425
  ident: bib7
  article-title: On convergence of the multi-objective particle swarm optimizers
  publication-title: Inf. Sci.
– year: 1996
  ident: bib15
  article-title: Energy-saving automatic optimisation of train speed commands using direct search techniques
  publication-title: Presented at the Computers in Railways V – Vol. 1 Railway Systems and Management
– volume: 147
  start-page: 206
  year: 2000
  end-page: 212
  ident: bib8
  article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system
  publication-title: IEE Proc. Electron. Power Appl.
– year: 1996
  ident: bib41
  article-title: An introduction to genetic algorithms, Complex adaptive systems
– volume: 21
  start-page: 744
  year: 2008
  end-page: 755
  ident: bib1
  article-title: Distributed search in railway scheduling problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 225
  start-page: 463
  year: 2011
  end-page: 474
  ident: bib17
  article-title: Optimal design of metro automatic train operation speed profiles for reducing energy consumption
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
– volume: 151
  start-page: 365
  year: 2004
  ident: bib49
  article-title: Coast control for mass rapid transit railways with searching methods
  publication-title: IEE Proc. Electron. Power Appl.
– start-page: 459
  year: 2005
  end-page: 473
  ident: bib4
  article-title: A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts
  publication-title: Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science
– year: 2004
  ident: bib37
  article-title: Application Of Dynamic Programming To The Optimization Of The Running Profile Of A TRAIN
– volume: 14
  start-page: 883
  year: 2013
  end-page: 893
  ident: bib47
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Franke, R., Terwiesch, P., Meyer, M., 2000. An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE Conference on Decision and Control, 2000. Presented at the Proceedings of the 39th IEEE Conference on Decision and Control, 2000, vol. 3, pp. 2123–2128.
– volume: 267
  start-page: 211
  year: 2011
  end-page: 216
  ident: bib52
  article-title: Train optimal control strategy on continuous change gradient steep downgrades
  publication-title: Adv. Mater. Res.
– start-page: 2013
  year: 2013
  ident: bib21
  article-title: Rational formations of a metro train improve its efficiencies of both traction energy utilization and passenger transport
  publication-title: Math. Probl. Eng.
– reference: IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, 1999. IEEE Std. 14741-1999 i–.
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266
  ident: bib35
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Trans. Autom. Control
– reference: Samal, N.R., Konar, A., Das, S., Abraham, A., 2007. A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2007. CEC 2007. Presented at the IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 1769–1776.
– volume: 25
  start-page: 441
  year: 2013
  end-page: 455
  ident: bib30
  article-title: A multi-objective evolutionary approach for fuzzy optimization in production planning
  publication-title: J. Intell. Fuzzy Syst.
– volume: 2
  start-page: 172
  year: 2008
  end-page: 182
  ident: bib2
  article-title: Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms
  publication-title: IET Electron. Power Appl.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib11
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Kennedy, J., Eberhart, R.C., 1997. A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation. Presented at the, 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 5
  start-page: 263
  year: 2010
  end-page: 269
  ident: bib42
  article-title: Optimization of train speed profile for minimum energy consumption
  publication-title: IEE J. Trans. Electron. Electron. Eng.
– start-page: 95
  year: 2002
  end-page: 100
  ident: bib53
  article-title: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization, in: Evolutionary Methods for Design, Optimisation, and Control
– reference: Bocharnikov, Y.V., Tobias, A.M., Roberts, C., 2010. Reduction of train and net energy consumption using genetic algorithms for Trajectory Optimisation. In: Proceedings of the IET Conference on Railway Traction Systems (RTS 2010). Presented at the IET Conference on Railway Traction Systems (RTS 2010), pp. 1–5.
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: bib36
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evol. Comput.
– start-page: 2013
  year: 2013
  ident: bib22
  article-title: A review study on traction energy saving of rail transport
  publication-title: Discrete Dyn. Nat. Soc.
– reference: Coello, C.A.C., Lechuga, M.S., 2002. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02. Presented at the Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC '02, pp. 1051–1056.
– volume: 139
  start-page: 261
  year: 1992
  ident: bib25
  article-title: Computer-based optimisation techniques for mass transit railway signaling design
  publication-title: IEE Proc. B Electron. Power Appl.
– start-page: 2013
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib22
  article-title: A review study on traction energy saving of rail transport
  publication-title: Discrete Dyn. Nat. Soc.
– year: 2001
  ident: 10.1016/j.engappai.2013.12.015_bib34
– volume: 14
  start-page: 743
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib40
  article-title: Single-train trajectory optimization
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2234118
– volume: 13
  start-page: 719
  year: 2000
  ident: 10.1016/j.engappai.2013.12.015_bib20
  article-title: A fuzzy knowledge-based system for railway traffic control
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(00)00027-0
– start-page: 37
  year: 2003
  ident: 10.1016/j.engappai.2013.12.015_bib38
  article-title: A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization
– year: 1996
  ident: 10.1016/j.engappai.2013.12.015_bib41
– volume: 25
  start-page: 793
  year: 2012
  ident: 10.1016/j.engappai.2013.12.015_bib28
  article-title: Solving a periodic single-track train timetabling problem by an efficient hybrid algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.01.020
– start-page: 95
  year: 2002
  ident: 10.1016/j.engappai.2013.12.015_bib53
– volume: 1
  start-page: 675
  year: 2007
  ident: 10.1016/j.engappai.2013.12.015_bib6
  article-title: Optimal driving strategy for traction energy saving on DC suburban railways
  publication-title: IET Electron. Power Appl.
  doi: 10.1049/iet-epa:20070005
– ident: 10.1016/j.engappai.2013.12.015_bib9
  doi: 10.1109/DRPT.2008.4523892
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.engappai.2013.12.015_bib16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 26
  start-page: 1291
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib54
  article-title: Multi-objective optimization using teaching-learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.11.006
– ident: 10.1016/j.engappai.2013.12.015_bib45
  doi: 10.1109/CEC.2007.4424687
– volume: 151
  start-page: 365
  year: 2004
  ident: 10.1016/j.engappai.2013.12.015_bib49
  article-title: Coast control for mass rapid transit railways with searching methods
  publication-title: IEE Proc. Electron. Power Appl.
  doi: 10.1049/ip-epa:20040346
– volume: 147
  start-page: 206
  year: 2000
  ident: 10.1016/j.engappai.2013.12.015_bib8
  article-title: Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system
  publication-title: IEE Proc. Electron. Power Appl.
  doi: 10.1049/ip-epa:20000329
– ident: 10.1016/j.engappai.2013.12.015_bib33
  doi: 10.1109/ICSMC.1997.637339
– ident: 10.1016/j.engappai.2013.12.015_bib5
  doi: 10.1049/ic.2010.0038
– volume: 139
  start-page: 261
  year: 1992
  ident: 10.1016/j.engappai.2013.12.015_bib25
  article-title: Computer-based optimisation techniques for mass transit railway signaling design
  publication-title: IEE Proc. B Electron. Power Appl.
  doi: 10.1049/ip-b.1992.0031
– start-page: 2013
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib21
  article-title: Rational formations of a metro train improve its efficiencies of both traction energy utilization and passenger transport
  publication-title: Math. Probl. Eng.
– volume: 2
  start-page: 172
  year: 2008
  ident: 10.1016/j.engappai.2013.12.015_bib2
  article-title: Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms
  publication-title: IET Electron. Power Appl.
  doi: 10.1049/iet-epa:20070381
– year: 1996
  ident: 10.1016/j.engappai.2013.12.015_bib15
  article-title: Energy-saving automatic optimisation of train speed commands using direct search techniques
– volume: 220
  start-page: 79
  year: 2006
  ident: 10.1016/j.engappai.2013.12.015_bib23
  article-title: Predictive Traffic Regulation for Metro Loop Lines Based on Quadratic Programming
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
  doi: 10.1243/09544097F00505
– volume: 12
  start-page: 1064
  year: 2011
  ident: 10.1016/j.engappai.2013.12.015_bib39
  article-title: Metro traffic regulation by adaptive optimal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2142306
– start-page: 459
  year: 2005
  ident: 10.1016/j.engappai.2013.12.015_bib4
  article-title: A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts
– ident: 10.1016/j.engappai.2013.12.015_bib13
  doi: 10.2495/CR120501
– volume: 8
  start-page: 256
  year: 2004
  ident: 10.1016/j.engappai.2013.12.015_bib11
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– ident: 10.1016/j.engappai.2013.12.015_bib27
– volume: 8
  start-page: 149
  year: 2000
  ident: 10.1016/j.engappai.2013.12.015_bib36
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568167
– volume: 9
  start-page: 496
  year: 2012
  ident: 10.1016/j.engappai.2013.12.015_bib18
  article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2201148
– year: 2004
  ident: 10.1016/j.engappai.2013.12.015_bib37
– volume: 35
  start-page: 835
  year: 2004
  ident: 10.1016/j.engappai.2013.12.015_bib50
  article-title: Dynamic coast control of train movement with genetic algorithm
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720412331203633
– ident: 10.1016/j.engappai.2013.12.015_bib44
  doi: 10.1145/1068009.1068047
– volume: 45
  start-page: 2090
  year: 2009
  ident: 10.1016/j.engappai.2013.12.015_bib10
  article-title: Design of Optimal Coasting Speed for MRT Systems Using ANN Models
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2009.2031898
– volume: 81
  start-page: 2127
  year: 2011
  ident: 10.1016/j.engappai.2013.12.015_bib19
  article-title: Energy management in metro-transit systems: An innovative proposal toward an integrated and sustainable urban mobility system including plug-in electric vehicles
  publication-title: Electron. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.08.004
– ident: 10.1016/j.engappai.2013.12.015_bib24
  doi: 10.1109/CDC.2000.914108
– ident: 10.1016/j.engappai.2013.12.015_bib32
  doi: 10.1109/ICNN.1995.488968
– volume: 62
  start-page: 255
  year: 1994
  ident: 10.1016/j.engappai.2013.12.015_bib29
  article-title: Distributed intelligent railway traffic control based on fuzzy decisionmaking
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90109-0
– volume: 10
  start-page: 226
  year: 2009
  ident: 10.1016/j.engappai.2013.12.015_bib31
  article-title: Block-layout design using MAX #x2013; MIN ant system for saving energy on mass rapid transit systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2009.2018324
– ident: 10.1016/j.engappai.2013.12.015_bib48
  doi: 10.1109/CEC.2003.1299816
– volume: 181
  start-page: 1411
  year: 2011
  ident: 10.1016/j.engappai.2013.12.015_bib7
  article-title: On convergence of the multi-objective particle swarm optimizers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.036
– volume: 40
  start-page: 619
  year: 2012
  ident: 10.1016/j.engappai.2013.12.015_bib51
  article-title: Optimizing trains movement on a railway network
  publication-title: Omega
  doi: 10.1016/j.omega.2011.12.001
– volume: 7
  start-page: 633
  year: 2012
  ident: 10.1016/j.engappai.2013.12.015_bib46
  article-title: Modeling and optimizing energy-efficient manual driving on high-speed lines
  publication-title: IEE J. Trans. Electron. Electron. Eng.
  doi: 10.1002/tee.21782
– ident: 10.1016/j.engappai.2013.12.015_bib26
  doi: 10.1109/ITSC.2011.6082964
– volume: 5
  start-page: 263
  year: 2010
  ident: 10.1016/j.engappai.2013.12.015_bib42
  article-title: Optimization of train speed profile for minimum energy consumption
  publication-title: IEE J. Trans. Electron. Electron. Eng.
  doi: 10.1002/tee.20528
– volume: 25
  start-page: 1548
  year: 2012
  ident: 10.1016/j.engappai.2013.12.015_bib14
  article-title: Fuzzy optimal schedule of high speed train operation to minimize energy consumption with uncertain delays and driver's behavioral response
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.02.006
– volume: 267
  start-page: 211
  year: 2011
  ident: 10.1016/j.engappai.2013.12.015_bib52
  article-title: Train optimal control strategy on continuous change gradient steep downgrades
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.267.211
– volume: 14
  start-page: 883
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib47
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2244885
– ident: 10.1016/j.engappai.2013.12.015_bib3
  doi: 10.1109/ACC.2011.5991057
– volume: 25
  start-page: 441
  year: 2013
  ident: 10.1016/j.engappai.2013.12.015_bib30
  article-title: A multi-objective evolutionary approach for fuzzy optimization in production planning
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-130651
– ident: 10.1016/j.engappai.2013.12.015_bib12
– volume: 21
  start-page: 744
  year: 2008
  ident: 10.1016/j.engappai.2013.12.015_bib1
  article-title: Distributed search in railway scheduling problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.03.008
– volume: 45
  start-page: 1257
  year: 2000
  ident: 10.1016/j.engappai.2013.12.015_bib35
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.867018
– ident: 10.1016/j.engappai.2013.12.015_bib43
  doi: 10.1145/508895.508907
– volume: 225
  start-page: 463
  year: 2011
  ident: 10.1016/j.engappai.2013.12.015_bib17
  article-title: Optimal design of metro automatic train operation speed profiles for reducing energy consumption
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
  doi: 10.1177/09544097JRRT420
SSID ssj0003846
ssib006546354
ssib006546355
ssib006546356
Score 2.403628
Snippet One of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Algorithms
ATO
Commands
Computer simulation
Eco-driving
Energy consumption
Energy efficiency
Metro
MOPSO algorithm
Pareto optimality
Solution space
Swarm intelligence
Train simulation
Trains
Title Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines
URI https://dx.doi.org/10.1016/j.engappai.2013.12.015
https://cir.nii.ac.jp/crid/1874242817712390784
https://www.proquest.com/docview/1530986161
Volume 29
WOSCitedRecordID wos000332811300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34gCQ0biFmUkcdI4x7INAYLBoUK7RY7jdKnapErasr-Yv4Pnz3YMGDtwcSsrtty8X9_7-fn5PYReB7QgKQftl5SR8OMUGlrFkV-B8SEqBZhy6H_7lJ6e0rOz7Otg8MPehdnM06ahFxfZ8r-KGvpA2PLq7A3E7SaFDvgOQocWxA7tPwleXan12mKmVZm3NM94_XfWLbwWdMTCXL702HzadvXqfOGiDUsV0SEppFDJJWSowHjyxeuXYOY8U-FbxdAuxKprPclS-0vu_W2CQ2_3dFwFHHQqMknVCdlJBerIdLtQ5_bHzXStHdufmT7JP3bGQ_q9VVcond_-EQCcldrlMJblkHVYmQ76Bvhpr3EPxruWo94SUPmHLuYIlsXmG60oJ6zc9YCE8TYEzLkyIz_MdB0Zq9WNH0WrZZ0Jyhh4nZz4iunQXozZoWim8HZYLcP-iHIV6_uml3N1_2JDXWSjDZqb5XaeXM6Th1EeyFwI-1GaZKB998cfTs4-Os5AqL5SZn_Jzl3236_oTzTqVlPXV2iF4kqT--iu2eTgsQbeAzQQzUN0z2x4sDEnPXTZmiK27xHqFXyxgy-28MUKvngXvtjBFwN8McAXa_jitsIOvhjgixV8sYUvrhus4IsVfB-jybuTydF73xQG8XkcByuflyQtI85GJSEVKQLKaZEVwHx5Ikawg6iyhFIKpisoeChKIPEjUURZFcJ2hFScPEF7TduIpwgHIk5ZMhIJAZpaVQGLWQaPklCE8MHFECX2NefcJM2XtVvm-d8FPURv3LilThtz7YjMSjE35FeT2hwAeu3YAxA7LFC2ssgm8G4apimw0gy2APEQvbKAyMF6yCNB1oh23efAd4KMjmDb9-zGK36O7mz_jS_Q3qpbiwN0m29Wdd-9NAj_CQhO7Aw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi+objective+particle+swarm+optimization+algorithm+for+the+design+of+efficient+ATO+speed+profiles+in+metro+lines&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Dom%C3%ADnguez%2C+Mar%C3%ADa&rft.au=Fern%C3%A1ndez-Cardador%2C+Antonio&rft.au=Cucala%2C+Asunci%C3%B3n+P.&rft.au=Gonsalves%2C+Tad&rft.date=2014-03-01&rft.issn=0952-1976&rft.volume=29&rft.spage=43&rft.epage=53&rft_id=info:doi/10.1016%2Fj.engappai.2013.12.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2013_12_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon