Modified crayfish optimization algorithm for solving multiple engineering application problems
Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm, and the algorithm is easy to fall into local optimum. To solve these problems, this paper proposes an modified crayfish optimization algorithm...
Saved in:
| Published in: | The Artificial intelligence review Vol. 57; no. 5; p. 127 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.05.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7462, 0269-2821, 1573-7462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm, and the algorithm is easy to fall into local optimum. To solve these problems, this paper proposes an modified crayfish optimization algorithm (MCOA). Based on the survival habits of crayfish, MCOA proposes an environmental renewal mechanism that uses water quality factors to guide crayfish to seek a better environment. In addition, integrating a learning strategy based on ghost antagonism into MCOA enhances its ability to evade local optimality. To evaluate the performance of MCOA, tests were performed using the IEEE CEC2020 benchmark function and experiments were conducted using four constraint engineering problems and feature selection problems. For constrained engineering problems, MCOA is improved by 11.16%, 1.46%, 0.08% and 0.24%, respectively, compared with COA. For feature selection problems, the average fitness value and accuracy are improved by 55.23% and 10.85%, respectively. MCOA shows better optimization performance in solving complex spatial and practical application problems. The combination of the environment updating mechanism and the learning strategy based on ghost antagonism significantly improves the performance of MCOA. This discovery has important implications for the development of the field of optimization.
Graphical Abstract |
|---|---|
| AbstractList | Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm, and the algorithm is easy to fall into local optimum. To solve these problems, this paper proposes an modified crayfish optimization algorithm (MCOA). Based on the survival habits of crayfish, MCOA proposes an environmental renewal mechanism that uses water quality factors to guide crayfish to seek a better environment. In addition, integrating a learning strategy based on ghost antagonism into MCOA enhances its ability to evade local optimality. To evaluate the performance of MCOA, tests were performed using the IEEE CEC2020 benchmark function and experiments were conducted using four constraint engineering problems and feature selection problems. For constrained engineering problems, MCOA is improved by 11.16%, 1.46%, 0.08% and 0.24%, respectively, compared with COA. For feature selection problems, the average fitness value and accuracy are improved by 55.23% and 10.85%, respectively. MCOA shows better optimization performance in solving complex spatial and practical application problems. The combination of the environment updating mechanism and the learning strategy based on ghost antagonism significantly improves the performance of MCOA. This discovery has important implications for the development of the field of optimization.
Graphical Abstract Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm, and the algorithm is easy to fall into local optimum. To solve these problems, this paper proposes an modified crayfish optimization algorithm (MCOA). Based on the survival habits of crayfish, MCOA proposes an environmental renewal mechanism that uses water quality factors to guide crayfish to seek a better environment. In addition, integrating a learning strategy based on ghost antagonism into MCOA enhances its ability to evade local optimality. To evaluate the performance of MCOA, tests were performed using the IEEE CEC2020 benchmark function and experiments were conducted using four constraint engineering problems and feature selection problems. For constrained engineering problems, MCOA is improved by 11.16%, 1.46%, 0.08% and 0.24%, respectively, compared with COA. For feature selection problems, the average fitness value and accuracy are improved by 55.23% and 10.85%, respectively. MCOA shows better optimization performance in solving complex spatial and practical application problems. The combination of the environment updating mechanism and the learning strategy based on ghost antagonism significantly improves the performance of MCOA. This discovery has important implications for the development of the field of optimization. Graphical Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm, and the algorithm is easy to fall into local optimum. To solve these problems, this paper proposes an modified crayfish optimization algorithm (MCOA). Based on the survival habits of crayfish, MCOA proposes an environmental renewal mechanism that uses water quality factors to guide crayfish to seek a better environment. In addition, integrating a learning strategy based on ghost antagonism into MCOA enhances its ability to evade local optimality. To evaluate the performance of MCOA, tests were performed using the IEEE CEC2020 benchmark function and experiments were conducted using four constraint engineering problems and feature selection problems. For constrained engineering problems, MCOA is improved by 11.16%, 1.46%, 0.08% and 0.24%, respectively, compared with COA. For feature selection problems, the average fitness value and accuracy are improved by 55.23% and 10.85%, respectively. MCOA shows better optimization performance in solving complex spatial and practical application problems. The combination of the environment updating mechanism and the learning strategy based on ghost antagonism significantly improves the performance of MCOA. This discovery has important implications for the development of the field of optimization. |
| ArticleNumber | 127 |
| Audience | Academic |
| Author | Zhang, Jinrui Hussien, Abdelazim G. Abualigah, Laith Zhou, Xuelian Yildiz, Ali Riza Jia, Heming |
| Author_xml | – sequence: 1 givenname: Heming surname: Jia fullname: Jia, Heming email: jiaheming@fjsmu.edu.cn organization: School of Information Engineering, Sanming University – sequence: 2 givenname: Xuelian surname: Zhou fullname: Zhou, Xuelian organization: School of Information Engineering, Sanming University – sequence: 3 givenname: Jinrui surname: Zhang fullname: Zhang, Jinrui organization: School of Information Engineering, Sanming University – sequence: 4 givenname: Laith surname: Abualigah fullname: Abualigah, Laith organization: Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, MEU Research Unit, Middle East University – sequence: 5 givenname: Ali Riza surname: Yildiz fullname: Yildiz, Ali Riza organization: Department of Mechanical Engineering, Bursa Uludağ University – sequence: 6 givenname: Abdelazim G. surname: Hussien fullname: Hussien, Abdelazim G. organization: Department of Computer and Information Science, Linköping University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-203444$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kctO3jAQhaOKSgXKC3QVqevQcWznsvxFb0igbtousRx7EgY5cWonBfr0-CeoVF0gL2wdnTMXf0fZweQnzLJ3DE4ZQP0hMhBVWUApCgY1b4q7V9khkzUv6qQf_PN-kx3FeAMAshT8MLu69JZ6QpuboO97ite5nxca6Y9eyE-5doMPtFyPee9DHr37TdOQj6tbaHaY4zTQhBj2op5nR2aLzcF3Dsf4Nnvdaxfx5Ok-zn58_vT97Gtx8e3L-dnuojBCwFJoFNChEFXHTWsBu67Rla3qRrRgS2Y7WZfc9lLIEiqLTJqGoZW8ZY0xtW74cVZsdeMtzmun5kCjDvfKa1If6edO-TAoR6sqgQshkv_95k-D_loxLurGr2FKIyoOQvIKWsGS63RzDdqhoqn3S9AmHYsjmUSgp6Tv6pbJCiTbly23gAk-xoD930EYqD0otYFSCZR6BKXuUqj5L2RoefzG1I3cy1H-tPa8R4DheY0XUg_A2Kx3 |
| CitedBy_id | crossref_primary_10_3390_biomimetics10030127 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_3390_sym17030356 crossref_primary_10_3390_biomimetics10060380 crossref_primary_10_3390_math12172641 crossref_primary_10_1371_journal_pone_0318203 crossref_primary_10_1007_s10586_025_05241_z crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_1016_j_optlaseng_2025_109088 crossref_primary_10_1038_s41598_025_00896_5 crossref_primary_10_3390_sym16070927 crossref_primary_10_1515_mt_2024_0099 crossref_primary_10_1016_j_cosrev_2025_100805 crossref_primary_10_1515_mt_2024_0098 crossref_primary_10_1108_EC_05_2024_0472 crossref_primary_10_3390_electronics14153124 crossref_primary_10_3390_sym17091396 crossref_primary_10_3390_biomimetics10060411 crossref_primary_10_1515_mt_2024_0217 crossref_primary_10_1515_mt_2024_0216 crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_1002_oca_3230 crossref_primary_10_1080_00051144_2024_2420296 crossref_primary_10_1007_s10462_024_11069_7 crossref_primary_10_1007_s10462_025_11235_5 crossref_primary_10_1515_mt_2024_0187 crossref_primary_10_3390_pr12091788 crossref_primary_10_1515_mt_2024_0186 crossref_primary_10_3390_math13172799 crossref_primary_10_1515_mt_2024_0100 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_1007_s10586_024_04867_9 crossref_primary_10_1177_20427530241300940 crossref_primary_10_1093_jcde_qwaf073 crossref_primary_10_1038_s41598_025_11129_0 crossref_primary_10_3390_biomimetics10050282 crossref_primary_10_1515_mt_2024_0519 crossref_primary_10_1038_s41598_025_02937_5 crossref_primary_10_3390_aerospace11110908 crossref_primary_10_3390_electronics14163172 crossref_primary_10_1002_nag_70083 crossref_primary_10_1007_s10462_024_11035_3 crossref_primary_10_1016_j_ijthermalsci_2024_109349 crossref_primary_10_1515_mt_2024_0075 crossref_primary_10_1515_mt_2024_0151 crossref_primary_10_1038_s41598_025_02218_1 crossref_primary_10_1515_mt_2024_0233 crossref_primary_10_1016_j_engappai_2025_110016 crossref_primary_10_1016_j_cma_2024_117429 |
| Cites_doi | 10.1016/j.eswa.2020.113246 10.3390/math10101696 10.1016/j.asoc.2012.11.026 10.1371/journal.pone.0263387 10.3934/mbe.2022264 10.1016/j.future.2019.02.028 10.1007/s13762-021-03323-0 10.1016/j.compstruc.2012.09.003 10.1007/978-3-319-48012-1 10.1016/j.advengsoft.2017.07.002 10.1109/ACCESS.2022.3144431 10.1016/j.ins.2009.03.004 10.1007/s10489-022-03994-3 10.2528/PIER07082403 10.1007/s00366-018-0662-y 10.1016/j.neucom.2023.02.010 10.1016/j.jocs.2017.06.003 10.1109/MCI.2006.329691 10.1023/A:1008202821328 10.1155/2020/4854895 10.1016/j.knosys.2015.12.022 10.3390/math10203765 10.2514/1.62110 10.1016/j.eswa.2023.120069 10.1016/j.patcog.2016.05.012 10.1023/A:1015059928466 10.1007/s00521-015-1870-7 10.1007/s00521-022-07530-9 10.1016/j.engappai.2022.105069 10.1016/j.advengsoft.2022.103323 10.1016/S1665-6423(13)71558-X 10.1016/j.aej.2022.06.017 10.1615/HeatTransRes.2021037293 10.1007/s00521-021-06224-y 10.1016/j.knosys.2023.110554 10.1016/j.eswa.2021.115665 10.1007/s00521-013-1367-1 10.1016/j.amc.2006.11.033 10.1109/TEVC.2008.919004 10.1155/2018/9167414 10.1016/j.compeleceng.2013.11.024 10.1016/j.eswa.2020.113377 10.1016/j.eswa.2015.04.055 10.1016/j.engappai.2006.03.003 10.1016/j.asoc.2017.11.043 10.1093/jcde/qwad089 10.1016/j.knosys.2015.07.006 10.1093/jcde/qwad048 10.3390/math10224350 10.3390/pr9050859 10.3390/mca10010045 10.24012/dumf.585790 10.1016/j.advengsoft.2017.01.004 10.1023/B:ANOR.0000039520.24932.4b 10.1007/s12351-018-0427-9 10.1007/s42235-023-00359-5 10.1016/j.engappai.2019.03.021 10.1109/TPAMI.2005.165 10.3934/mbe.2022263 10.1016/j.swevo.2017.09.010 10.1016/j.asoc.2015.06.056 10.1016/j.compstruc.2012.07.010 10.1007/s00500-016-2474-6 10.1016/j.compstruc.2014.04.005 10.1016/j.asoc.2015.10.048 10.1016/j.engappai.2019.01.001 10.36548/jaicn.2021.1.006 10.1007/s10462-023-10567-4 10.1016/j.apenergy.2021.117446 10.1016/j.ins.2018.08.030 10.1016/j.cma.2020.113609 10.1007/s00521-021-06747-4 10.3390/electronics11081208 10.1016/j.jsv.2018.08.009 10.1080/0952813X.2018.1430858 10.1109/MIPRO.2015.7160458 10.1007/978-3-030-56689-0 10.5555/1867135.1867155 10.1007/978-3-642-20662-7_2 10.1109/ICCISci.2019.8716478 10.1007/978-3-319-93025-1_4 10.1109/TSMCC.2009.2033566 10.1016/j.cad.2010.12.015 10.1007/978-3-642-32894-7_27 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer Copyright Springer Nature B.V. May 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. May 2024 |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1007/s10462-024-10738-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 1573-7462 |
| ExternalDocumentID | oai_DiVA_org_liu_203444 A791560514 10_1007_s10462_024_10738_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BENPR BGNMA C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LLZTM M1O M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I 8AO 8FE 8FG AAFWJ AASML AAYXX ABDBE ABFSG ABUWG ACSTC AEZWR AFFHD AFHIU AFKRA AHPBZ AHWEU AIXLP AYFIA AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CNYFK DWQXO FRNLG GNUQQ ICD K6V K7- M0C MK~ P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ Q2X 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AARHV AAYTO ABJNI ABQSL ABXSW ACBXY ADHKG ADTPV AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AGJBK AGQPQ AJBLW AOWAS BBWZM BDATZ CAG COF D8T DG8 EJD FINBP FSGXE H13 HF~ IHE KOW LAK N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW ZZAVC |
| ID | FETCH-LOGICAL-c440t-ae40be446b3c9d0ebb8a6d678490d21db5723df545206de15c81ed53918cc7a83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207745900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7462 0269-2821 |
| IngestDate | Tue Nov 04 16:59:53 EST 2025 Sun Nov 16 12:10:56 EST 2025 Sat Nov 29 10:30:47 EST 2025 Sat Nov 29 02:43:28 EST 2025 Tue Nov 18 22:36:42 EST 2025 Fri Feb 21 02:40:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | High dimensional feature selection Environmental updating mechanism Constrained engineering design problems Crayfish Optimization Algorithm Ghost opposition-based learning strategy Global optimization problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c440t-ae40be446b3c9d0ebb8a6d678490d21db5723df545206de15c81ed53918cc7a83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-024-10738-x |
| PQID | 3045360941 |
| PQPubID | 36790 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_203444 proquest_journals_3045360941 gale_infotracacademiconefile_A791560514 crossref_primary_10_1007_s10462_024_10738_x crossref_citationtrail_10_1007_s10462_024_10738_x springer_journals_10_1007_s10462_024_10738_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Belge, Altan, Hacıoğlu (CR6) 2022; 11 Kiran (CR35) 2015; 42 Eskandar, Sadollah, Bahreininejad, Hamdi (CR14) 2012; 110 Jia, Rao, Wen, Mirjalili (CR26) 2023 Yeniay (CR78) 2005; 10 Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR17) 2020; 152 Lu, Ye, Zhao, Dai, Pei, Tang (CR39) 2021; 301 Kaveh (CR31) 2017 Mirjalili, Mirjalili, Hatamlou (CR46) 2016; 27 Zhao, Zhang, Li, Wang, Yan, Gao (CR87) 2022; 19 CR34 CR76 CR75 Zhao, Zhang, Ma, Wang (CR88) 2023; 53 Jacob, Darney (CR23) 2021; 3 Liu, Lu (CR38) 2014; 37 Abualigah, Elaziz, Khasawneh, Alshinwan, Ibrahim, Al-Qaness, Gandomi (CR2) 2022 Kumar, Tejani, Mirjalili (CR36) 2019; 35 Chandrashekar, Sahin (CR8) 2014; 40 Papaioannou, Koulocheris (CR53) 2018; 435 Formato (CR18) 2007; 77 Zhang, Wang, Li, Yao, Tao, Yan, Gao (CR83) 2022; 19 Zhang, Yan, Zhao, Gao (CR85) 2022; 17 Guedria (CR20) 2016; 40 CR9 Wang, Hussien, Jia, Abualigah, Zheng (CR73) 2022; 10 Zhang, Wang, Yan, Zhao, Gao (CR86) 2022; 61 CR48 Moloodpoor, Mortazavi, Özbalta (CR51) 2021 Rashedi, Nezamabadi-Pour (CR58) 2009; 179 Ahmed, Rashid, Saeed (CR3) 2020 Dorigo, Birattari, Stutzle (CR13) 2006; 1 Kaveh, Mahdavi (CR33) 2014; 139 Zhang, Jin (CR81) 2020; 148 Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (CR66) 2023; 532 Wu, Rao, Wen, Jia, Liu, Abualigah (CR74) 2022; 10 Kaveh, Khayatazad (CR32) 2012; 112 Yuan, Shen, Wang, Ren, Yang, Yang, Mu (CR80) 2023 He, Wang (CR21) 2007; 20 Mirjalili (CR44) 2015; 89 Talatahari, Azizi, Gandomi (CR67) 2021; 9 Yıldız, Kumar, Panagant, Mehta, Sait, Yildiz, Mirjalili (CR79) 2023; 271 Mahdavi, Rahnamayan, Deb (CR42) 2018; 39 Meloni, Pacciarelli, Pranzo (CR43) 2004; 131 Baykasoglu, Ozsoydan (CR5) 2015; 36 Zhang, Wang, Tao, Yan, Zhao, Gao (CR82) 2022; 114 Zhang, Yan, Zhao, Gao (CR84) 2022; 10 Jia, Wen, Wu, Wang, Wang, Wen, Abualigah (CR25) 2023; 10 Jia, Peng, Lang (CR24) 2021; 185 Rao, Jia, Wu, Wen, Li, Liu, Abualigah (CR56) 2022; 10 Simon (CR64) 2008; 12 Beyer, Schwefel (CR7) 2002; 1 Ezugwu, Agushaka, Abualigah, Mirjalili, Gandomi (CR16) 2022; 34 CR15 CR59 CR57 CR10 Mortazavi (CR52) 2019; 10 Baykasoğlu, Ozsoydan, Senol (CR4) 2020; 20 Moloodpoor, Mortazavi (CR50) 2022; 19 Wang, Zhang, Feng (CR70) 2005; 27 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR47) 2017; 114 Wang, Tan, Liu (CR71) 2018; 22 Sayed, Darwish, Hassanien (CR62) 2018; 30 Mahdavi, Fesanghary, Damangir (CR41) 2007; 188 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR22) 2019; 97 Sadollah, Bahreininejad, Eskandar, Hamdi (CR60) 2013; 13 Too, Mafarja, Mirjalili (CR69) 2021; 33 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (CR1) 2021; 376 Shadravan, Naji, Bardsiri (CR63) 2019; 80 Ma, Zhang, Song, Chen (CR40) 2021; 212 Moghdani, Salimifard (CR49) 2018; 64 Storn, Price (CR65) 1997; 11 Ghaemi, Feizi-Derakhshi (CR19) 2016; 60 CR28 Dhiman, Kaur (CR12) 2019; 82 CR68 Mirjalili (CR45) 2016; 96 Kandemir, Mortazavi (CR30) 2022; 174 Jia, Lu, Wu, Wen, Rao, Abualigah (CR27) 2023 Piotrowski (CR54) 2018; 468 Wang, Hu, Sun, Su, Xia (CR72) 2018 Kuo, Lin (CR37) 2013; 11 Saremi, Mirjalili, Lewis (CR61) 2017; 105 Deng, Liu (CR11) 2023; 225 Kamal, Mortazavi, Cakici (CR29) 2023 Qi, Zhu, Zhang (CR55) 2017; 23 Yang, Deb (CR77) 2014; 24 D Wu (10738_CR74) 2022; 10 S Mahdavi (10738_CR42) 2018; 39 X Qi (10738_CR55) 2017; 23 A Faramarzi (10738_CR17) 2020; 152 M Mahdavi (10738_CR41) 2007; 188 M Ghaemi (10738_CR19) 2016; 60 S Mirjalili (10738_CR47) 2017; 114 A Baykasoglu (10738_CR5) 2015; 36 H Jia (10738_CR24) 2021; 185 H Su (10738_CR66) 2023; 532 H Eskandar (10738_CR14) 2012; 110 E Rashedi (10738_CR58) 2009; 179 BS Yıldız (10738_CR79) 2023; 271 A Kaveh (10738_CR33) 2014; 139 S Zhao (10738_CR88) 2023; 53 M Dorigo (10738_CR13) 2006; 1 A Mortazavi (10738_CR52) 2019; 10 RA Formato (10738_CR18) 2007; 77 L Deng (10738_CR11) 2023; 225 10738_CR68 G Chandrashekar (10738_CR8) 2014; 40 G Dhiman (10738_CR12) 2019; 82 10738_CR28 YJ Zhang (10738_CR82) 2022; 114 H Rao (10738_CR56) 2022; 10 S Saremi (10738_CR61) 2017; 105 10738_CR75 GI Sayed (10738_CR62) 2018; 30 Y Yuan (10738_CR80) 2023 L Abualigah (10738_CR2) 2022 H Wang (10738_CR72) 2018 R Moghdani (10738_CR49) 2018; 64 YJ Zhang (10738_CR85) 2022; 17 MS Kiran (10738_CR35) 2015; 42 D Simon (10738_CR64) 2008; 12 S Talatahari (10738_CR67) 2021; 9 H Jia (10738_CR27) 2023 S Kumar (10738_CR36) 2019; 35 10738_CR34 HC Kuo (10738_CR37) 2013; 11 10738_CR76 AP Piotrowski (10738_CR54) 2018; 468 Ö Yeniay (10738_CR78) 2005; 10 M Kamal (10738_CR29) 2023 S Mirjalili (10738_CR45) 2016; 96 AA Heidari (10738_CR22) 2019; 97 D Wang (10738_CR71) 2018; 22 L Abualigah (10738_CR1) 2021; 376 AE Ezugwu (10738_CR16) 2022; 34 H Jia (10738_CR25) 2023; 10 S Mirjalili (10738_CR46) 2016; 27 M Moloodpoor (10738_CR50) 2022; 19 M Moloodpoor (10738_CR51) 2021 A Sadollah (10738_CR60) 2013; 13 J Zhao (10738_CR87) 2022; 19 C Meloni (10738_CR43) 2004; 131 A Kaveh (10738_CR32) 2012; 112 10738_CR9 Q He (10738_CR21) 2007; 20 A Kaveh (10738_CR31) 2017 XS Yang (10738_CR77) 2014; 24 Y Zhang (10738_CR83) 2022; 19 J Too (10738_CR69) 2021; 33 H Jia (10738_CR26) 2023 10738_CR48 S Wang (10738_CR73) 2022; 10 YJ Zhang (10738_CR86) 2022; 61 P Lu (10738_CR39) 2021; 301 EC Kandemir (10738_CR30) 2022; 174 A Baykasoğlu (10738_CR4) 2020; 20 Y Zhang (10738_CR81) 2020; 148 S Mirjalili (10738_CR44) 2015; 89 DIJ Jacob (10738_CR23) 2021; 3 S Shadravan (10738_CR63) 2019; 80 L Wang (10738_CR70) 2005; 27 R Storn (10738_CR65) 1997; 11 YJ Zhang (10738_CR84) 2022; 10 AM Ahmed (10738_CR3) 2020 E Belge (10738_CR6) 2022; 11 HG Beyer (10738_CR7) 2002; 1 10738_CR57 X Liu (10738_CR38) 2014; 37 G Papaioannou (10738_CR53) 2018; 435 Y Ma (10738_CR40) 2021; 212 10738_CR10 10738_CR15 10738_CR59 NB Guedria (10738_CR20) 2016; 40 |
| References_xml | – volume: 148 year: 2020 ident: CR81 article-title: Group teaching optimization algorithm: a novel metaheuristic method for solving global optimization problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113246 – volume: 10 start-page: 1696 issue: 10 year: 2022 ident: CR73 article-title: Enhanced remora optimization algorithm for solving constrained engineering optimization problems publication-title: Mathematics doi: 10.3390/math10101696 – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: CR60 article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.026 – volume: 17 issue: 5 year: 2022 ident: CR85 article-title: CSCAHHO: chaotic hybridization algorithm of the Sine Cosine with Harris Hawk optimization algorithms for solving global optimization problems publication-title: PLoS ONE doi: 10.1371/journal.pone.0263387 – volume: 19 start-page: 5638 year: 2022 end-page: 5670 ident: CR87 article-title: A chaotic self-adaptive JAYA algorithm for parameter extraction of photovoltaic models publication-title: Math Biosci Eng doi: 10.3934/mbe.2022264 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR22 article-title: Harris hawks optimization: algorithm and applications publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – ident: CR68 – volume: 19 start-page: 2809 issue: 4 year: 2022 end-page: 2822 ident: CR50 article-title: Simultaneous optimization of fuel type and exterior walls insulation attributes for residential buildings using a swarm intelligence publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-021-03323-0 – volume: 112 start-page: 283 year: 2012 end-page: 294 ident: CR32 article-title: A new meta-heuristic method: ray optimization publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.09.003 – year: 2017 ident: CR31 publication-title: Applications of metaheuristic optimization algorithms in civil engineering doi: 10.1007/978-3-319-48012-1 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR47 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 10 start-page: 10907 year: 2022 end-page: 10933 ident: CR84 article-title: AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144431 – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: CR58 article-title: GSA: a gravitational search algorithm publication-title: Inform Sci doi: 10.1016/j.ins.2009.03.004 – volume: 53 start-page: 11833 issue: 10 year: 2023 end-page: 11860 ident: CR88 article-title: Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems publication-title: Appl Intell doi: 10.1007/s10489-022-03994-3 – volume: 77 start-page: 425 issue: 1 year: 2007 end-page: 491 ident: CR18 article-title: Central force optimization publication-title: Prog Electromagn Res doi: 10.2528/PIER07082403 – volume: 35 start-page: 1269 issue: 4 year: 2019 end-page: 1296 ident: CR36 article-title: Modified symbiotic organisms search for structural optimization publication-title: Eng with Comput doi: 10.1007/s00366-018-0662-y – volume: 532 start-page: 183 year: 2023 end-page: 214 ident: CR66 article-title: RIME: a physics-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 23 start-page: 226 year: 2017 end-page: 239 ident: CR55 article-title: A new meta-heuristic butterfly-inspired algorithm publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.06.003 – volume: 1 start-page: 28 issue: 4 year: 2006 end-page: 39 ident: CR13 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR65 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328 – ident: CR75 – year: 2020 ident: CR3 article-title: Cat swarm optimization algorithm: a survey and performance evaluation publication-title: Comput Intell Neurosci doi: 10.1155/2020/4854895 – ident: CR15 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR45 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 10 start-page: 3765 issue: 20 year: 2022 ident: CR56 article-title: A modified group teaching optimization algorithm for solving constrained engineering optimization problems publication-title: Mathematics doi: 10.3390/math10203765 – volume: 37 start-page: 750 issue: 3 year: 2014 end-page: 765 ident: CR38 article-title: Solving nonconvex optimal control problems by convex optimization publication-title: J Guid Control Dyn doi: 10.2514/1.62110 – volume: 225 year: 2023 ident: CR11 article-title: Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120069 – volume: 60 start-page: 121 year: 2016 end-page: 129 ident: CR19 article-title: Feature selection using forest optimization algorithm publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.05.012 – volume: 1 start-page: 3 year: 2002 end-page: 52 ident: CR7 article-title: Evolution strategies–a comprehensive introduction publication-title: Nat Comput doi: 10.1023/A:1015059928466 – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: CR46 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – ident: CR9 – volume: 34 start-page: 20017 issue: 22 year: 2022 end-page: 20065 ident: CR16 article-title: Prairie dog optimization algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07530-9 – ident: CR57 – volume: 114 year: 2022 ident: CR82 article-title: Self-adaptive classification learning hybrid JAYA and Rao-1 algorithm for large-scale numerical and engineering problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105069 – volume: 174 year: 2022 ident: CR30 article-title: Optimization of seismic base isolation system using a fuzzy reinforced swarm intelligence publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103323 – volume: 11 start-page: 510 issue: 4 year: 2013 end-page: 522 ident: CR37 article-title: Cultural evolution algorithm for global optimizations and its applications publication-title: J Appl Res Technol doi: 10.1016/S1665-6423(13)71558-X – volume: 61 start-page: 12367 issue: 12 year: 2022 end-page: 12403 ident: CR86 article-title: LMRAOA: An improved arithmetic optimization algorithm with multi-leader and high-speed jum** based on opposition-based learning solving engineering and numerical problems publication-title: Alex Eng J doi: 10.1016/j.aej.2022.06.017 – year: 2021 ident: CR51 article-title: Thermo-economic optimization of double-pipe heat exchanger using a compound swarm intelligence publication-title: Heat Transfer Res doi: 10.1615/HeatTransRes.2021037293 – volume: 33 start-page: 16229 year: 2021 end-page: 16250 ident: CR69 article-title: Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06224-y – volume: 271 start-page: 110554 year: 2023 ident: CR79 article-title: A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2023.110554 – volume: 185 year: 2021 ident: CR24 article-title: Remora optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115665 – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: CR77 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1367-1 – volume: 188 start-page: 1567 issue: 2 year: 2007 end-page: 1579 ident: CR41 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.11.033 – volume: 12 start-page: 702 issue: 6 year: 2008 end-page: 713 ident: CR64 article-title: Biogeography-based optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – year: 2018 ident: CR72 article-title: Modified backtracking search optimization algorithm inspired by simulated annealing for constrained engineering optimization problems publication-title: Comput Intell Neurosci doi: 10.1155/2018/9167414 – volume: 40 start-page: 16 issue: 1 year: 2014 end-page: 28 ident: CR8 article-title: A survey on feature selection methods publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – volume: 152 year: 2020 ident: CR17 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113377 – volume: 42 start-page: 6686 issue: 19 year: 2015 end-page: 6698 ident: CR35 article-title: TSA: tree-seed algorithm for continuous optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.055 – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: CR21 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2006.03.003 – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: CR49 article-title: Volleyball premier league algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.043 – volume: 10 start-page: 2065 issue: 6 year: 2023 end-page: 2093 ident: CR25 article-title: Modified beluga whale optimization with multi-strategies for solving engineering problems publication-title: J Comput Design Eng doi: 10.1093/jcde/qwad089 – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR44 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – year: 2023 ident: CR27 article-title: An improved reptile search algorithm with ghost opposition-based learning for global optimization problems publication-title: J Comput Design Eng doi: 10.1093/jcde/qwad048 – volume: 10 start-page: 4350 issue: 22 year: 2022 ident: CR74 article-title: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems publication-title: Mathematics doi: 10.3390/math10224350 – ident: CR10 – volume: 9 start-page: 859 issue: 5 year: 2021 ident: CR67 article-title: Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems publication-title: Processes doi: 10.3390/pr9050859 – volume: 10 start-page: 45 issue: 1 year: 2005 end-page: 56 ident: CR78 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math Comput Appl doi: 10.3390/mca10010045 – volume: 10 start-page: 879 issue: 3 year: 2019 end-page: 898 ident: CR52 article-title: Comparative assessment of five metaheuristic methods on distinct problems publication-title: Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi doi: 10.24012/dumf.585790 – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: CR61 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 131 start-page: 215 year: 2004 end-page: 235 ident: CR43 article-title: A rollout metaheuristic for job shop scheduling problems publication-title: Ann Oper Res doi: 10.1023/B:ANOR.0000039520.24932.4b – volume: 20 start-page: 2555 year: 2020 end-page: 2581 ident: CR4 article-title: Weighted superposition attraction algorithm for binary optimization problems publication-title: Oper Res Int Journal doi: 10.1007/s12351-018-0427-9 – year: 2023 ident: CR80 article-title: Coronavirus mask protection algorithm: a new bio-inspired optimization algorithm and its applications publication-title: J Bionic Eng doi: 10.1007/s42235-023-00359-5 – volume: 82 start-page: 148 year: 2019 end-page: 174 ident: CR12 article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.03.021 – volume: 27 start-page: 1334 issue: 8 year: 2005 end-page: 1339 ident: CR70 article-title: On the Euclidean distance of images publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.165 – ident: CR48 – volume: 19 start-page: 5610 issue: 6 year: 2022 end-page: 5637 ident: CR83 article-title: An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models publication-title: Math Biosci Eng doi: 10.3934/mbe.2022263 – volume: 39 start-page: 1 year: 2018 end-page: 23 ident: CR42 article-title: Opposition based learning: a literature review publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.09.010 – volume: 212 year: 2021 ident: CR40 article-title: A modified teaching–learning-based optimization algorithm for solving optimization problem publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110554 – volume: 36 start-page: 152 year: 2015 end-page: 164 ident: CR5 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.06.056 – volume: 110 start-page: 151 year: 2012 end-page: 166 ident: CR14 article-title: Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.07.010 – volume: 22 start-page: 387 year: 2018 end-page: 408 ident: CR71 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 139 start-page: 18 year: 2014 end-page: 27 ident: CR33 article-title: Colliding bodies optimization: a novel meta-heuristic method publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.04.005 – volume: 40 start-page: 455 year: 2016 end-page: 467 ident: CR20 article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.048 – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: CR63 article-title: The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.01.001 – volume: 3 start-page: 62 issue: 1 year: 2021 end-page: 71 ident: CR23 article-title: Artificial bee colony optimization algorithm for enhancing routing in wireless networks publication-title: J Artif Intell Capsule Networks doi: 10.36548/jaicn.2021.1.006 – year: 2023 ident: CR26 article-title: Crayfish optimization algorithm publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10567-4 – ident: CR34 – volume: 301 year: 2021 ident: CR39 article-title: Review of meta-heuristic algorithms for wind power prediction: methodologies, applications and challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117446 – year: 2023 ident: CR29 article-title: Optimal design of RC bracket and footing systems of precast industrial buildings using fuzzy differential evolution incorporated virtual mutant publication-title: Arabian J Sci Eng doi: 10.3934/mbe.2022263 – volume: 468 start-page: 117 year: 2018 end-page: 141 ident: CR54 article-title: L-SHADE optimization algorithms with population-wide inertia publication-title: Inf Sci doi: 10.1016/j.ins.2018.08.030 – volume: 376 year: 2021 ident: CR1 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – year: 2022 ident: CR2 article-title: Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06747-4 – ident: CR59 – ident: CR76 – volume: 11 start-page: 1208 issue: 8 year: 2022 ident: CR6 article-title: Metaheuristic optimization-based path planning and tracking of quadcopter for payload hold-release mission publication-title: Electronics doi: 10.3390/electronics11081208 – ident: CR28 – volume: 435 start-page: 149 year: 2018 end-page: 169 ident: CR53 article-title: An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.08.009 – volume: 30 start-page: 293 issue: 2 year: 2018 end-page: 317 ident: CR62 article-title: A new chaotic multi-verse optimization algorithm for solving engineering optimization problems publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2018.1430858 – volume: 20 start-page: 89 year: 2007 ident: 10738_CR21 publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2006.03.003 – volume: 185 year: 2021 ident: 10738_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115665 – year: 2023 ident: 10738_CR29 publication-title: Arabian J Sci Eng doi: 10.3934/mbe.2022263 – volume: 271 start-page: 110554 year: 2023 ident: 10738_CR79 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2023.110554 – year: 2023 ident: 10738_CR80 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00359-5 – volume: 112 start-page: 283 year: 2012 ident: 10738_CR32 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.09.003 – volume: 34 start-page: 20017 issue: 22 year: 2022 ident: 10738_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07530-9 – volume: 96 start-page: 120 year: 2016 ident: 10738_CR45 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 110 start-page: 151 year: 2012 ident: 10738_CR14 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.07.010 – ident: 10738_CR28 doi: 10.1109/MIPRO.2015.7160458 – volume: 139 start-page: 18 year: 2014 ident: 10738_CR33 publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.04.005 – volume: 27 start-page: 1334 issue: 8 year: 2005 ident: 10738_CR70 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.165 – volume: 188 start-page: 1567 issue: 2 year: 2007 ident: 10738_CR41 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.11.033 – volume: 11 start-page: 510 issue: 4 year: 2013 ident: 10738_CR37 publication-title: J Appl Res Technol doi: 10.1016/S1665-6423(13)71558-X – volume: 435 start-page: 149 year: 2018 ident: 10738_CR53 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.08.009 – volume: 532 start-page: 183 year: 2023 ident: 10738_CR66 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 61 start-page: 12367 issue: 12 year: 2022 ident: 10738_CR86 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.06.017 – volume: 114 start-page: 163 year: 2017 ident: 10738_CR47 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 53 start-page: 11833 issue: 10 year: 2023 ident: 10738_CR88 publication-title: Appl Intell doi: 10.1007/s10489-022-03994-3 – year: 2023 ident: 10738_CR26 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10567-4 – ident: 10738_CR59 doi: 10.1007/978-3-030-56689-0 – volume: 36 start-page: 152 year: 2015 ident: 10738_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.06.056 – volume: 1 start-page: 3 year: 2002 ident: 10738_CR7 publication-title: Nat Comput doi: 10.1023/A:1015059928466 – year: 2020 ident: 10738_CR3 publication-title: Comput Intell Neurosci doi: 10.1155/2020/4854895 – year: 2018 ident: 10738_CR72 publication-title: Comput Intell Neurosci doi: 10.1155/2018/9167414 – year: 2022 ident: 10738_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06747-4 – volume: 39 start-page: 1 year: 2018 ident: 10738_CR42 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.09.010 – ident: 10738_CR34 doi: 10.5555/1867135.1867155 – volume: 42 start-page: 6686 issue: 19 year: 2015 ident: 10738_CR35 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.055 – volume: 37 start-page: 750 issue: 3 year: 2014 ident: 10738_CR38 publication-title: J Guid Control Dyn doi: 10.2514/1.62110 – volume: 148 year: 2020 ident: 10738_CR81 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113246 – ident: 10738_CR75 doi: 10.1007/978-3-642-20662-7_2 – volume: 10 start-page: 45 issue: 1 year: 2005 ident: 10738_CR78 publication-title: Math Comput Appl doi: 10.3390/mca10010045 – volume: 22 start-page: 387 year: 2018 ident: 10738_CR71 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 225 year: 2023 ident: 10738_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120069 – volume: 30 start-page: 293 issue: 2 year: 2018 ident: 10738_CR62 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2018.1430858 – volume: 80 start-page: 20 year: 2019 ident: 10738_CR63 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.01.001 – volume: 19 start-page: 5610 issue: 6 year: 2022 ident: 10738_CR83 publication-title: Math Biosci Eng doi: 10.3934/mbe.2022263 – volume: 24 start-page: 169 year: 2014 ident: 10738_CR77 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1367-1 – ident: 10738_CR68 – ident: 10738_CR9 doi: 10.1109/ICCISci.2019.8716478 – volume: 301 year: 2021 ident: 10738_CR39 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117446 – volume: 77 start-page: 425 issue: 1 year: 2007 ident: 10738_CR18 publication-title: Prog Electromagn Res doi: 10.2528/PIER07082403 – volume: 179 start-page: 2232 year: 2009 ident: 10738_CR58 publication-title: Inform Sci doi: 10.1016/j.ins.2009.03.004 – volume: 212 year: 2021 ident: 10738_CR40 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110554 – volume: 13 start-page: 2592 year: 2013 ident: 10738_CR60 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.026 – volume: 10 start-page: 2065 issue: 6 year: 2023 ident: 10738_CR25 publication-title: J Comput Design Eng doi: 10.1093/jcde/qwad089 – volume: 19 start-page: 2809 issue: 4 year: 2022 ident: 10738_CR50 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-021-03323-0 – volume: 3 start-page: 62 issue: 1 year: 2021 ident: 10738_CR23 publication-title: J Artif Intell Capsule Networks doi: 10.36548/jaicn.2021.1.006 – volume-title: Applications of metaheuristic optimization algorithms in civil engineering year: 2017 ident: 10738_CR31 doi: 10.1007/978-3-319-48012-1 – volume: 9 start-page: 859 issue: 5 year: 2021 ident: 10738_CR67 publication-title: Processes doi: 10.3390/pr9050859 – ident: 10738_CR48 doi: 10.1007/978-3-319-93025-1_4 – volume: 20 start-page: 2555 year: 2020 ident: 10738_CR4 publication-title: Oper Res Int Journal doi: 10.1007/s12351-018-0427-9 – volume: 11 start-page: 341 year: 1997 ident: 10738_CR65 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 82 start-page: 148 year: 2019 ident: 10738_CR12 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.03.021 – volume: 105 start-page: 30 year: 2017 ident: 10738_CR61 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 131 start-page: 215 year: 2004 ident: 10738_CR43 publication-title: Ann Oper Res doi: 10.1023/B:ANOR.0000039520.24932.4b – volume: 10 start-page: 879 issue: 3 year: 2019 ident: 10738_CR52 publication-title: Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi doi: 10.24012/dumf.585790 – year: 2021 ident: 10738_CR51 publication-title: Heat Transfer Res doi: 10.1615/HeatTransRes.2021037293 – volume: 376 year: 2021 ident: 10738_CR1 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 17 issue: 5 year: 2022 ident: 10738_CR85 publication-title: PLoS ONE doi: 10.1371/journal.pone.0263387 – ident: 10738_CR15 doi: 10.1109/TSMCC.2009.2033566 – volume: 97 start-page: 849 year: 2019 ident: 10738_CR22 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 35 start-page: 1269 issue: 4 year: 2019 ident: 10738_CR36 publication-title: Eng with Comput doi: 10.1007/s00366-018-0662-y – volume: 60 start-page: 121 year: 2016 ident: 10738_CR19 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.05.012 – volume: 10 start-page: 4350 issue: 22 year: 2022 ident: 10738_CR74 publication-title: Mathematics doi: 10.3390/math10224350 – ident: 10738_CR57 doi: 10.1016/j.cad.2010.12.015 – volume: 33 start-page: 16229 year: 2021 ident: 10738_CR69 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06224-y – volume: 11 start-page: 1208 issue: 8 year: 2022 ident: 10738_CR6 publication-title: Electronics doi: 10.3390/electronics11081208 – volume: 174 year: 2022 ident: 10738_CR30 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103323 – volume: 64 start-page: 161 year: 2018 ident: 10738_CR49 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.043 – volume: 19 start-page: 5638 year: 2022 ident: 10738_CR87 publication-title: Math Biosci Eng doi: 10.3934/mbe.2022264 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10738_CR13 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – volume: 152 year: 2020 ident: 10738_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113377 – volume: 10 start-page: 3765 issue: 20 year: 2022 ident: 10738_CR56 publication-title: Mathematics doi: 10.3390/math10203765 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10738_CR64 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – volume: 468 start-page: 117 year: 2018 ident: 10738_CR54 publication-title: Inf Sci doi: 10.1016/j.ins.2018.08.030 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10738_CR8 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – year: 2023 ident: 10738_CR27 publication-title: J Comput Design Eng doi: 10.1093/jcde/qwad048 – volume: 114 year: 2022 ident: 10738_CR82 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105069 – volume: 40 start-page: 455 year: 2016 ident: 10738_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.048 – volume: 10 start-page: 10907 year: 2022 ident: 10738_CR84 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144431 – volume: 23 start-page: 226 year: 2017 ident: 10738_CR55 publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.06.003 – ident: 10738_CR10 – volume: 89 start-page: 228 year: 2015 ident: 10738_CR44 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 10 start-page: 1696 issue: 10 year: 2022 ident: 10738_CR73 publication-title: Mathematics doi: 10.3390/math10101696 – ident: 10738_CR76 doi: 10.1007/978-3-642-32894-7_27 – volume: 27 start-page: 495 year: 2016 ident: 10738_CR46 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 |
| SSID | ssj0005243 |
| Score | 2.5727627 |
| Snippet | Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the crayfish search efficiency decreases in the later stage of the algorithm,... |
| SourceID | swepub proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Constraints Engineering Experiments Feature selection Habits Hostility Learning Learning strategies Mathematical optimization Natural environment Optimization Optimization algorithms Performance enhancement Performance evaluation Renewal Water quality |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29T9wwFH9qKQMdSvkSV6DygMpAI2InceKpOpWiLiCGtmLCcmzfEem40MuB4L_nvZzDXRlu6ZIlju3ofdrv4wdwWChymqWKSo6PtFQmUhQplNJkwkrBE-dasIn84qK4ulKX4cKtCWmVnU5sFbWrLd2Rn1BEL5F4GOHf7v5GhBpF0dUAofEW3nGB81JQNo8WUjxmWXMCt4FHCx6KZkLpXCpFhBYKFVGOQv_4j2F6rZ4X4qSveoq2duhs_X__4CN8CB4o689YZgPe-PEmrHfoDiwI-ya8X2hVuAXX57WrBuivMjsxT4OquWE1apvbUMbJzGiIa01vbhl6wQwZmi4qWJeuyPx8LrYQM2cBz6bZht9nP359_xkFbIbIpmk8jYxP49LjWbJMrHKxL8vCSIeWL1WxE9yVWS4SNyAE81g6zzNbcO-yRPHC2twUyQ6sjOux3wVWeKdwnClKrtLYoUdknORWGp9ZO8hUD3hHGG1D43LCzxjpectlIqZGYuqWmPqxB8cv39zN2nYsHX1E9NYk0zizNaE0AfdH3bF0P1dUcI6-ZQ_2O9rqIOyNnhO2B187Npm_XrbulxkrveyRmn2fVn_6up4M9ai614JaMqafli-7B2uCOLnNw9yHlenk3h_Aqn2YVs3kcysTz9lGEjk priority: 102 providerName: ProQuest |
| Title | Modified crayfish optimization algorithm for solving multiple engineering application problems |
| URI | https://link.springer.com/article/10.1007/s10462-024-10738-x https://www.proquest.com/docview/3045360941 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-203444 |
| Volume | 57 |
| WOSCitedRecordID | wos001207745900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: M1O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: C24 dateStart: 20240101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9Ak2DlwY40MrG5UPCA4QKU4cxz6WsmnStFINGIMDlmO7W6SumZJuGv-e59RZuwlNgsuTotiO5ffpvC-AN0J6o5nLqKAIWCF1JL2nkHOdJYYnNLW2bTaRj0bi5ESOQ1JY00W7dy7JVlKvJLsxnkSoU1B05MimaDmuo7oTnh2PvhyvBHawNKTH_H3eLRV0VxCveETvVA9tNc7exv_t9Sk8CRYmGSxIYhMeuNkz2Oi6N5DAzM_h12FlywlaoMTU-vekbM5IhfLjPCRmEj09repyfnZO0K4lSKL-1wPpAhCJWxYyJCtecBI61DQv4Nve7tfhfhS6LUSGsXgeacfiwuHtsEiNtLErCqG5RV3GZGwTaossT1I78T3JY24dzYygzmappMKYXIv0JazNqpnbAiKclThOi4JKFlu0cbTl1HDtMmMmmewB7RCgTChF7jtiTNWyiLI_QIUHqNoDVNc9eH8z52JRiOPe0e88XpXnUlzZ6JBsgPvz9a7UIJc-hRytxR7sdKhXgX0b5d3HKcebL-3Bhw7Dy9f3ffftgmRu9ujLd38qjweqqk_VtLxUiS-yyF7927rb8Djx1NRGWu7A2ry-dK_hkbmal03dh4f59x99WP-4Oxof4dMwYQgP8gjhYTz0kH5GOM5-9lte-QPFjAoE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQCwV84HGAiNhJnPiA0KqlatXuikNBPWEc29tG2m7KZgvtn-I3MpNHd-lhbz1wySXJ2E6--Ty25wHwKlNkNEsV5Bwvca5MoOikUEqTCCsFj5yri02kw2F2eKi-rMCfLhaG3Co7TqyJ2pWW9sg_0IleJHExwj-d_gyoahSdrnYlNBpY7PmL37hkqz7ubuH_fS3E9ueDzZ2grSoQ2DgOZ4HxcZh7XAXlkVUu9HmeGemQs2MVOsFdnqQiciOqvR1K53liM-5dEimeWZuaLEK5N-AmyoqICAbh5oJLSeOlJ3DYuJThbZBOG6oXSxHgjIjElyLJnP8zEV6dDhbOZa_kMK3nve21_-2L3Yd7rYXN-o1KPIAVP1mHta56BWvJbB3uLqRifAjfB6UrRmiPMzs1F6OiOmYlsulJG6bKzPgIxzY7PmFo5TNUWNqIYZ07JvNzWWzBJ4C19XqqR_D1Wsb8GFYn5cQ_AZZ5p_A5k-VcxaFDi884ya00PrF2lKge8A4I2raJ2ak-yFjPU0oTeDSCR9fg0ec9eHf5zmmTlmTp028JX5o4CyVb04ZeYP8o-5fup4oC6tF27sFGhyXdklml50DqwfsOlvPby9p900D3so-UzHyr-NbX5fRIj4szLSjlZPx0ebMv4fbOwWBf7-8O957BHUFaVPucbsDqbHrmn8Mt-2tWVNMXtT4y-HHdcP4LOfVveA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA9UCigLhTwgccBosZO4sQHhFYsK6qFVQ-AesJ1bKeNtN2UzRbav8avY5w43aWHvfXAJZckTpx8882MPQ-AF5lwRjMXQU7xEOdCBcLtFHKuEqY5o5ExTbOJdDzODg7E_hr86XJhXFhlx4kNUZtKuzXyXbejF3F0Ruhu4cMi9gfD96c_A9dByu20du00WoiM7MVvdN_qd3sD_NcvGRt-_PrhU-A7DAQ6jsN5oGwc5hY9ojzSwoQ2zzPFDfJ3LELDqMmTlEWmcH24Q24sTXRGrUkiQTOtU5VFOO4NuIlaOHEyNkqDpfCSNmKP4SdAt4b6hB2fthdzFqB2RBJMkXDO_1GKV1XD0h7tlXqmjQ4cbv7PX-8e3PWWN-m3onIf1ux0Cza7rhbEk9wWbCyVaHwAP75UpizQTid6pi6Ksj4mFbLsiU9fJWpyhHObH58QtP4JCrJboCFdmCaxi7HIUqwA8X186ofw7Vrm_AjWp9XUbgPJrBF4ncpyKuLQoCWoDKeaK5toXSSiB7QDhdS-YLvrGzKRi1LTDkgSgSQbIMnzHry5vOe0LVey8urXDmvScRmOrJVPycD3c1XBZD8VLtEebeoe7HS4kp7karkAVQ_edhBdnF713FctjC_f0RU5H5Tf-7KaHclJeSaZK0UZP1792OdwG1EsP--NR0_gDnMC1YSi7sD6fHZmn8It_Wte1rNnjWgSOLxuNP8FFvR4Hg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+crayfish+optimization+algorithm+for+solving+multiple+engineering+application+problems&rft.jtitle=The+Artificial+intelligence+review&rft.au=Jia%2C+Heming&rft.au=Zhou%2C+Xuelian&rft.au=Zhang%2C+Jinrui&rft.au=Abualigah%2C+Laith&rft.date=2024-05-01&rft.pub=Springer+Netherlands&rft.eissn=1573-7462&rft.volume=57&rft.issue=5&rft_id=info:doi/10.1007%2Fs10462-024-10738-x&rft.externalDocID=10_1007_s10462_024_10738_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7462&client=summon |