A multi-objective hyper-heuristic based on choice function
•A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs an...
Saved in:
| Published in: | Expert systems with applications Vol. 41; no. 9; pp. 4475 - 4493 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
01.07.2014
Elsevier |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs and some other approaches.•The proposed method is tested on a generic benchmark and a real-world problem.
Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM. |
|---|---|
| AbstractList | Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM. •A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs and some other approaches.•The proposed method is tested on a generic benchmark and a real-world problem. Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM. |
| Author | Kendall, Graham Özcan, Ender Maashi, Mashael |
| Author_xml | – sequence: 1 givenname: Mashael surname: Maashi fullname: Maashi, Mashael email: psxmm3@exmail.nottingham.ac.uk, m.maashi@gmail.com organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK – sequence: 2 givenname: Ender surname: Özcan fullname: Özcan, Ender email: ender.ozcan@nottingham.ac.uk organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK – sequence: 3 givenname: Graham surname: Kendall fullname: Kendall, Graham email: graham.kendall@nottingham.edu.my organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293409$$DView record in Pascal Francis |
| BookMark | eNqFkctKxDAUQIMoOD5-wFU3gpvWm0ebRtzI4AsEN7oOaXrLZOg0Y9Iq_r0pIy5c6N1kc064nHtE9gc_ICFnFAoKtLpcFxg_TMGA8oKyAkrYIwtaS55XUvF9sgBVylxQKQ7JUYxrACoB5IJc3WSbqR9d7ps12tG9Y7b63GLIVzgFF0dns8ZEbDM_ZHblncWsm4YE-uGEHHSmj3j6_R6T17vbl-VD_vR8_7i8ecqtEDDmom2M4KqBplUca6Y4g8o0aaDDEoUytapEW1cdIgMJRoiWMUCQtIWOlfyYXOz-3Qb_NmEc9cZFi31vBvRT1LSSUpW85Px_tCwpTcF4ndDzb9REa_oumMG6qLfBbUz41GxeVIBKHNtxNvgYA3Y_CAU9t9drPbfXc3tNmU7tk1T_kqwbzRxtDMb1f6vXOxVT0neHQUfrcLDYupAOpFvv_tK_AP1ooDg |
| CitedBy_id | crossref_primary_10_1016_j_cie_2016_02_022 crossref_primary_10_1016_j_cor_2020_105043 crossref_primary_10_1109_TSC_2015_2444849 crossref_primary_10_3390_app11199153 crossref_primary_10_1007_s10732_023_09510_1 crossref_primary_10_1016_j_cie_2020_107010 crossref_primary_10_1016_j_renene_2016_12_022 crossref_primary_10_1109_TSMC_2023_3299982 crossref_primary_10_1109_TEVC_2017_2785346 crossref_primary_10_1016_j_apm_2021_09_022 crossref_primary_10_1016_j_swevo_2018_02_019 crossref_primary_10_1016_j_ins_2014_10_045 crossref_primary_10_1016_j_asoc_2022_109484 crossref_primary_10_1016_j_asoc_2019_105485 crossref_primary_10_1080_00207543_2021_2017056 crossref_primary_10_1016_j_procs_2019_12_104 crossref_primary_10_1016_j_eswa_2023_122931 crossref_primary_10_1155_2021_8834324 crossref_primary_10_1016_j_future_2019_10_039 crossref_primary_10_1007_s10710_017_9301_4 crossref_primary_10_1016_j_asoc_2014_12_012 crossref_primary_10_1007_s40747_020_00230_8 crossref_primary_10_1007_s12559_015_9368_2 crossref_primary_10_1016_j_ejor_2019_07_073 crossref_primary_10_3390_su11061596 crossref_primary_10_1007_s10732_018_9369_x crossref_primary_10_1109_ACCESS_2020_3009318 crossref_primary_10_1109_TASE_2021_3084741 crossref_primary_10_1016_j_eswa_2021_116343 crossref_primary_10_1016_j_swevo_2021_100885 crossref_primary_10_1007_s40313_019_00526_2 crossref_primary_10_1016_j_engappai_2016_02_004 crossref_primary_10_1016_j_eswa_2025_127232 crossref_primary_10_1016_j_swevo_2020_100647 crossref_primary_10_1016_j_cie_2020_106420 crossref_primary_10_1016_j_asoc_2020_106760 crossref_primary_10_1007_s10586_017_1095_x crossref_primary_10_1016_j_asoc_2017_03_012 crossref_primary_10_1016_j_cie_2023_109078 crossref_primary_10_1016_j_swevo_2024_101530 crossref_primary_10_3846_tede_2019_10291 crossref_primary_10_1145_3701236 crossref_primary_10_1109_ACCESS_2021_3106815 crossref_primary_10_1016_j_cie_2023_109815 crossref_primary_10_1016_j_eswa_2022_118075 crossref_primary_10_1016_j_infsof_2019_06_012 crossref_primary_10_1155_2020_8395754 crossref_primary_10_3390_app12115649 crossref_primary_10_1016_j_eswa_2014_03_037 crossref_primary_10_1007_s10479_014_1688_1 crossref_primary_10_1016_j_ast_2020_106346 crossref_primary_10_1002_smr_1992 crossref_primary_10_1016_j_ins_2023_01_047 crossref_primary_10_1007_s10845_014_0984_6 crossref_primary_10_32604_cmes_2025_060481 crossref_primary_10_3390_ijerph16112064 |
| Cites_doi | 10.1109/MCDM.2007.369117 10.1063/1.4765574 10.1145/2001576.2001803 10.1162/evco.1994.2.3.221 10.1109/TEVC.2005.861417 10.1007/s00158-007-0163-x 10.1109/CEC.2010.5585914 10.1109/IAdCC.2013.6514331 10.1073/pnas.0610471104 10.1007/s12293-009-0012-0 10.1061/(ASCE)WR.1943-5452.0000061 10.1016/j.swevo.2011.03.001 10.1162/evco.1999.7.3.205 10.1007/978-3-642-16773-7_30 10.1007/3-540-44719-9_5 10.1057/jors.2013.71 10.1016/B978-0-08-050684-5.50005-7 10.1007/s10479-010-0782-2 10.1109/TSMCB.2006.883270 10.1109/4235.797969 10.1109/TEVC.2008.925798 10.1023/A:1015516501242 10.1109/3468.650319 10.1002/hyp.7528 10.1057/jors.2012.125 10.1007/3-540-36970-8_27 10.1162/106365600568158 10.1057/jors.2008.102 10.1162/106365600568202 10.1016/B978-1-55860-356-1.50016-9 10.1162/EVCO_a_00038 10.3233/IDA-2008-12102 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2013.12.050 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 4493 |
| ExternalDocumentID | 28293409 10_1016_j_eswa_2013_12_050 S095741741400013X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c440t-4dba439b0bd93e8293206abbbb0fe5e49a8964d86fee2070a44d220e071d0f253 |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333778000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 23:40:54 EDT 2025 Sun Sep 28 03:04:44 EDT 2025 Wed Apr 02 07:26:06 EDT 2025 Tue Nov 18 22:23:08 EST 2025 Sat Nov 29 04:44:38 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Metaheuristic Multi-objective optimization Evolutionary algorithm Hyper-heuristic Legged locomotion Multiobjective programming Selection function Adaptive method Optimization Search algorithm Walking Vertebrata Experimental result Pisces Heuristic method Artificial intelligence Metamodel Mathematical programming |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c440t-4dba439b0bd93e8293206abbbb0fe5e49a8964d86fee2070a44d220e071d0f253 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | http://eprints.nottingham.ac.uk/32175/ |
| PQID | 1551110138 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1677953533 proquest_miscellaneous_1551110138 pascalfrancis_primary_28293409 crossref_primary_10_1016_j_eswa_2013_12_050 crossref_citationtrail_10_1016_j_eswa_2013_12_050 elsevier_sciencedirect_doi_10_1016_j_eswa_2013_12_050 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-01 |
| PublicationDateYYYYMMDD | 2014-07-01 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Gomez, Terashima-Marín (b0135) 2010 Vázquez-Rodríguez, Petrovic (b0250) 2013; 64 (pp. 274–282). Anderson, Sayers, Bell (b0005) 2007; 454 Hussin, N. (2005). Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary computation and convergence to a pareto front. In Deb (b0085) 2005 (pp. 95–100). Srinivas, Deb (b0240) 1994; 2 Zhang, Srinivasan, Liew (b0300) 2010; 24 Burke, E., Landa-Silva, D., & Soubeiga, E. (2003). Multi-objective hyperheuristic approaches for space allocation and timetabling. In Liao, Li, Yang, Zhang, Li (b0190) 2008; 35 Len, Miranda, Segura (b0185) 2009; Vol. 5518 Zitzler, Künzli (b0320) 2004 Goldberg (b0130) 1987 (pp. 1683–1690). Whitley (b0290) 1991 (pp. 2003–2010). McClymont, K., & Keedwell, E. C. (2011). Markov chain hyperheuristic (mchh): An online selective hyper-heuristic for multiobjective continuous problems. In Kumari, A., Srinivas, K., & Gupta, M. (2013). Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In Veerapen, N., Landa-Silva, D., & Gandibleux, X. (2009). Hyperheuristic as component of a multi-objective metaheuristic. In Burke, Kendall, Misir, Özcan (b0035) 2012; 196 Bäck (b0010) 1996 (pp. 825–830). Kargupta, H. (1995). Signal-to-noise, crosstalk, and long range problem difficulty in genetic algorithms. In . (pp. 1–8). Zhou, Qu, Li, Zhao, Suganthan, Zhang (b0305) 2011; 1 Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm for multi-objective optimization. In Bai, van Woensel, Kendall, Burke (b0015) 2013; 11 (pp. 42–50). Özcan, Bilgin, Korkmaz (b0220) 2008; 12 Cowling, P., Kendall, G., & Soubeiga, E. (2002). A hyper-heuristic approach to scheduling a sales summit. In Qu, Burke (b0225) 2009; 60 de Armas, J., Miranda, G., & León, C. (2011). Hyperheuristic encoding scheme for multi-objective guillotine cutting problems. In Fonseca, Fleming (b0115) 1998; 28 (pp. 221–228). (Ph.D. thesis). Nottingham, UK: The University of Nottingham. Chow, J., & Regan, A. (2012). A surrogate-based multiobjective metaheuristic and network degradation simulation model for robust toll pricing. Civil Engineering Working Papers. Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In (pp. 129–158). (pp. 193–200). Watanabe, S., Hiroyasu, T., & Miki, M. (2002). Lcga: Local cultivation genetic algorithm for multi-objective optimization problem. In (pp. 376–390). Davidor, Y. (1991). Liu, Tan, Goh, Ho (b0200) 2007; 37 Veldhuizen, Lamont (b0265) 2000; 8 (pp. 382–389). Deb, K., & Goel, T. (2001). Controlled elitist nondominated sorting genetic algorithms for better convergence. In (pp. 813–818). Voutchkov, I., & Keane, A. (2010). Computational intelligence in optimization: Adaptation, learning, and optimization. In Coello, Veldhuizen, Lamont (b0055) 2007 Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In (Vol. 764, p. 1493). Li, Zhang (b0205) 2009; 13 (pp. 67–81). (Ph.D. thesis). UK: University of Nottingham. Li, Landa-Silva (b0195) 2011; 19 Miranda, G., de Armas, J., Segura, C., & León, C. (2010). Hyperheuristic codification for the multi-objective 2d guillotine strip packing problem. In Wang, Li (b0280) 2010; 2 Deb (b0075) 1999; 7 Huband, Hingston, Barone, While (b0145) 2006; 10 Coello, C. C., & Pulido, G. (2001). Multiobjective optimization using a micro-genetic algoritm. In Deb (b0080) 2001 (pp. 155–175). Springer Berlin Heidelberg. (pp. 416–423). Burke, Kendall, Newall, Hart, Ross, Schulenburg (b0040) 2003 Raad, Sinkse, Vuuren (b0230) 2010; 136 Zitzler, Deb, Thiele (b0310) 2000; 8 Furtuna, Curteanu, Leon (b0120) 2012 (pp. 243–270). Vrugt, Robinson (b0275) 2007; 104 Jaszkiewicz (b0155) 2001; 26 Horn, J., & Goldberg, D. E. (1995). Genetic algorithm difficulty and the modality of fitness landscape. In Bradstreet, L., Barone, L., While, L., Huband, S., & Hingston, P. (2007). Use of the wfg toolkit and pisa for comparison of multi-objective evolutionary algorithms. In (pp. 667–671). Burke, Gendreau, Hyde, Kendall, Ochoa, Özcan (b0030) 2013; 64 Gibbs, J., Kendall, G., & Özcan, E. (2011). Scheduling english football fixtures over the holiday period using hyper-heuristics. In Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multiobjective optimization test problems. In Rafique, A. F. (2012). Multiobjective hyper heuristic scheme for system design and optimization. In Zitzler, Thiele (b0325) 1999; 3 Rawlins. Deb, Agrawal (b0090) 1995; 9 Tan, Lee, Khor (b0245) 2002; 17 Deb, K., & Goldberg, D. (1989). An investigation on niche and species formation in genetic function optimization. In Landa-Silva, J. D. (2003). (Vol. 6238, pp. 496–505). Zhang, Li (b0295) 2007; 11 Kendall, G., Cowling, P., & Soubeiga, E. (2002). Choice function and random hyperheuristics. In 10.1016/j.eswa.2013.12.050_b0255 10.1016/j.eswa.2013.12.050_b0210 10.1016/j.eswa.2013.12.050_b0175 10.1016/j.eswa.2013.12.050_b0215 10.1016/j.eswa.2013.12.050_b0170 Liao (10.1016/j.eswa.2013.12.050_b0190) 2008; 35 Özcan (10.1016/j.eswa.2013.12.050_b0220) 2008; 12 10.1016/j.eswa.2013.12.050_b0095 10.1016/j.eswa.2013.12.050_b0050 Zhou (10.1016/j.eswa.2013.12.050_b0305) 2011; 1 Zitzler (10.1016/j.eswa.2013.12.050_b0320) 2004 Coello (10.1016/j.eswa.2013.12.050_b0055) 2007 Liu (10.1016/j.eswa.2013.12.050_b0200) 2007; 37 Deb (10.1016/j.eswa.2013.12.050_b0080) 2001 10.1016/j.eswa.2013.12.050_b0045 10.1016/j.eswa.2013.12.050_b0165 10.1016/j.eswa.2013.12.050_b0285 10.1016/j.eswa.2013.12.050_b0125 Burke (10.1016/j.eswa.2013.12.050_b0040) 2003 Srinivas (10.1016/j.eswa.2013.12.050_b0240) 1994; 2 10.1016/j.eswa.2013.12.050_b0160 Veldhuizen (10.1016/j.eswa.2013.12.050_b0265) 2000; 8 Zhang (10.1016/j.eswa.2013.12.050_b0300) 2010; 24 10.1016/j.eswa.2013.12.050_b0315 Zitzler (10.1016/j.eswa.2013.12.050_b0325) 1999; 3 Li (10.1016/j.eswa.2013.12.050_b0205) 2009; 13 10.1016/j.eswa.2013.12.050_b0110 Vrugt (10.1016/j.eswa.2013.12.050_b0275) 2007; 104 Huband (10.1016/j.eswa.2013.12.050_b0145) 2006; 10 Bai (10.1016/j.eswa.2013.12.050_b0015) 2013; 11 10.1016/j.eswa.2013.12.050_b0235 Len (10.1016/j.eswa.2013.12.050_b0185) 2009; Vol. 5518 Tan (10.1016/j.eswa.2013.12.050_b0245) 2002; 17 Li (10.1016/j.eswa.2013.12.050_b0195) 2011; 19 10.1016/j.eswa.2013.12.050_b0070 10.1016/j.eswa.2013.12.050_b0150 10.1016/j.eswa.2013.12.050_b0270 Anderson (10.1016/j.eswa.2013.12.050_b0005) 2007; 454 Deb (10.1016/j.eswa.2013.12.050_b0085) 2005 Furtuna (10.1016/j.eswa.2013.12.050_b0120) 2012 Vázquez-Rodríguez (10.1016/j.eswa.2013.12.050_b0250) 2013; 64 Fonseca (10.1016/j.eswa.2013.12.050_b0115) 1998; 28 Zitzler (10.1016/j.eswa.2013.12.050_b0310) 2000; 8 Deb (10.1016/j.eswa.2013.12.050_b0075) 1999; 7 10.1016/j.eswa.2013.12.050_b0100 10.1016/j.eswa.2013.12.050_b0065 Whitley (10.1016/j.eswa.2013.12.050_b0290) 1991 Deb (10.1016/j.eswa.2013.12.050_b0090) 1995; 9 10.1016/j.eswa.2013.12.050_b0105 Jaszkiewicz (10.1016/j.eswa.2013.12.050_b0155) 2001; 26 10.1016/j.eswa.2013.12.050_b0025 10.1016/j.eswa.2013.12.050_b0060 10.1016/j.eswa.2013.12.050_b0180 Raad (10.1016/j.eswa.2013.12.050_b0230) 2010; 136 10.1016/j.eswa.2013.12.050_b0020 Gomez (10.1016/j.eswa.2013.12.050_b0135) 2010 10.1016/j.eswa.2013.12.050_b0140 Burke (10.1016/j.eswa.2013.12.050_b0030) 2013; 64 10.1016/j.eswa.2013.12.050_b0260 Burke (10.1016/j.eswa.2013.12.050_b0035) 2012; 196 Qu (10.1016/j.eswa.2013.12.050_b0225) 2009; 60 Bäck (10.1016/j.eswa.2013.12.050_b0010) 1996 Goldberg (10.1016/j.eswa.2013.12.050_b0130) 1987 Wang (10.1016/j.eswa.2013.12.050_b0280) 2010; 2 Zhang (10.1016/j.eswa.2013.12.050_b0295) 2007; 11 |
| References_xml | – volume: 11 start-page: 31 year: 2013 end-page: 55 ident: b0015 article-title: A new model and a hyper-heuristic approach for two-dimensional shelf space allocation publication-title: Journal Operation Research – reference: Chow, J., & Regan, A. (2012). A surrogate-based multiobjective metaheuristic and network degradation simulation model for robust toll pricing. Civil Engineering Working Papers. – reference: de Armas, J., Miranda, G., & León, C. (2011). Hyperheuristic encoding scheme for multi-objective guillotine cutting problems. In – reference: Voutchkov, I., & Keane, A. (2010). Computational intelligence in optimization: Adaptation, learning, and optimization. In: – volume: 136 start-page: 592 year: 2010 end-page: 596 ident: b0230 article-title: Multiobjective optimization for water distribution systemdesign using a hyperheuristic publication-title: Journal of Water Resources Management – year: 2007 ident: b0055 article-title: Evolutionary algorithms for solving multi-objective problems – reference: Kargupta, H. (1995). Signal-to-noise, crosstalk, and long range problem difficulty in genetic algorithms. In – reference: Rafique, A. F. (2012). Multiobjective hyper heuristic scheme for system design and optimization. In – reference: Coello, C. C., & Pulido, G. (2001). Multiobjective optimization using a micro-genetic algoritm. In – volume: Vol. 5518 start-page: 41 year: 2009 end-page: 49 ident: b0185 article-title: Hyperheuristics for a dynamic-mapped multi-objective island-based model publication-title: Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living – volume: 17 start-page: 253 year: 2002 end-page: 290 ident: b0245 article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons publication-title: Artificial Intelligence Review – reference: Kendall, G., Cowling, P., & Soubeiga, E. (2002). Choice function and random hyperheuristics. In – reference: (pp. 667–671). – reference: Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary computation and convergence to a pareto front. In – reference: Landa-Silva, J. D. (2003). – reference: Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In – reference: Gibbs, J., Kendall, G., & Özcan, E. (2011). Scheduling english football fixtures over the holiday period using hyper-heuristics. In – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b0310 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – reference: (pp. 1683–1690). – reference: (pp. 67–81). – volume: 35 start-page: 561 year: 2008 end-page: 569 ident: b0190 article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model publication-title: Structural and Multidisciplinary Optimization – volume: 37 start-page: 42 year: 2007 end-page: 50 ident: b0200 article-title: A multiobjective memetic algorithm based on particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics – reference: (pp. 2003–2010). – volume: 7 start-page: 205 year: 1999 end-page: 230 ident: b0075 article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem publication-title: Evolutionary Computation – reference: Davidor, Y. (1991). – reference: (pp. 1–8). – year: 1987 ident: b0130 publication-title: Genetic algorithms and simulated annealing – reference: Kumari, A., Srinivas, K., & Gupta, M. (2013). Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In – volume: 64 start-page: 1664 year: 2013 end-page: 1675 ident: b0250 article-title: A mixture experiments multi-objective hyper-heuristics publication-title: Journal of the Operational Research Society – volume: 3 start-page: 253 year: 1999 end-page: 290 ident: b0325 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation – reference: (pp. 42–50). – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b0145 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation – reference: (Ph.D. thesis). Nottingham, UK: The University of Nottingham. – reference: (pp. 416–423). – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: b0205 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Transactions on Evolutionary Computation – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0295 article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons publication-title: IEEE Transactions on Evolutionary Computation – reference: (pp. 376–390). – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b0240 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – reference: Bradstreet, L., Barone, L., While, L., Huband, S., & Hingston, P. (2007). Use of the wfg toolkit and pisa for comparison of multi-objective evolutionary algorithms. In – volume: 19 start-page: 561 year: 2011 end-page: 595 ident: b0195 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evolutionary Computation – volume: 60 start-page: 1273 year: 2009 end-page: 1285 ident: b0225 article-title: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems publication-title: Journal of the Operational Research Society – reference: Veerapen, N., Landa-Silva, D., & Gandibleux, X. (2009). Hyperheuristic as component of a multi-objective metaheuristic. In – year: 1991 ident: b0290 publication-title: Foundations of genetic algorithms – volume: 8 start-page: 125 year: 2000 end-page: 147 ident: b0265 article-title: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art publication-title: Evolutionary Computation – volume: 454 start-page: 186 year: 2007 end-page: 190 ident: b0005 article-title: Optimisation of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm publication-title: IEEE Road Transport Information and Control – year: 2005 ident: b0085 publication-title: Introductory tutorials in optimization and decision support methodologies – reference: Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In – reference: (Ph.D. thesis). UK: University of Nottingham. – reference: (pp. 155–175). Springer Berlin Heidelberg. – reference: Hussin, N. (2005). – reference: Deb, K., & Goel, T. (2001). Controlled elitist nondominated sorting genetic algorithms for better convergence. In – reference: (pp. 813–818). – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: b0305 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm and Evolutionary Computation – reference: (pp. 274–282). – reference: Deb, K., & Goldberg, D. (1989). An investigation on niche and species formation in genetic function optimization. In – volume: 28 start-page: 26 year: 1998 end-page: 37 ident: b0115 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans – reference: (pp. 221–228). – reference: (pp. 825–830). – volume: 196 start-page: 73 year: 2012 end-page: 90 ident: b0035 article-title: Monte Carlo hyper-heuristics for examination timetabling publication-title: Annals of Operations Research – reference: (pp. 193–200). – year: 1996 ident: b0010 article-title: Evolutionary algorithms in theory and practice – reference: Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm for multi-objective optimization. In – volume: 64 start-page: 1695 year: 2013 end-page: 1724 ident: b0030 article-title: Hyper-heuristics: A survey of the state of the art publication-title: Journal of the Operational Research Society – reference: Watanabe, S., Hiroyasu, T., & Miki, M. (2002). Lcga: Local cultivation genetic algorithm for multi-objective optimization problem. In – year: 2003 ident: b0040 publication-title: Handbook of meta-heuristics – reference: Horn, J., & Goldberg, D. E. (1995). Genetic algorithm difficulty and the modality of fitness landscape. In – volume: 9 start-page: 115 year: 1995 end-page: 148 ident: b0090 article-title: Simulated binary crossover for continuous search space publication-title: Complex Systems – reference: (pp. 382–389). – volume: 2 start-page: 3 year: 2010 end-page: 24 ident: b0280 article-title: Multi-strategy ensemble evolutionary optimization for dynamic multi-objective optimization publication-title: Memetic Computing – reference: Burke, E., Landa-Silva, D., & Soubeiga, E. (2003). Multi-objective hyperheuristic approaches for space allocation and timetabling. In – reference: (Vol. 6238, pp. 496–505). – volume: 24 start-page: 955 year: 2010 end-page: 1094 ident: b0300 article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the swat model publication-title: Hydrological Processes – reference: Cowling, P., Kendall, G., & Soubeiga, E. (2002). A hyper-heuristic approach to scheduling a sales summit. In – reference: Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multiobjective optimization test problems. In – start-page: 12 year: 2012 ident: b0120 article-title: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic publication-title: Applied Soft Computing – reference: McClymont, K., & Keedwell, E. C. (2011). Markov chain hyperheuristic (mchh): An online selective hyper-heuristic for multiobjective continuous problems. In – volume: 104 start-page: 708 year: 2007 end-page: 711 ident: b0275 article-title: Improved evolutionary optimization from genetically adaptive multimethod search publication-title: Proceedings of the National Academy of Sciences – year: 2004 ident: b0320 article-title: Indicator-based selection in multiobjective search publication-title: Parallel problem solving from nature (PPSN VIII) – volume: 26 start-page: 99 year: 2001 end-page: 120 ident: b0155 article-title: Comparison of local search-based metaheuristics on the multiple objective knapsack problem publication-title: Foundations of Computing and Decision Sciences – start-page: 349 year: 2010 end-page: 360 ident: b0135 article-title: Approximating multi-objective hyper-heuristics for solving 2d irregular cutting stock problems publication-title: In Advances in Soft Computing Lecture Notes in Computer Science – reference: . – reference: . Rawlins. – volume: 12 start-page: 3 year: 2008 end-page: 23 ident: b0220 article-title: A comprehensive analysis of hyper-heuristics publication-title: Intelligent Data Analysis – reference: (Vol. 764, p. 1493). – reference: (pp. 95–100). – reference: Miranda, G., de Armas, J., Segura, C., & León, C. (2010). Hyperheuristic codification for the multi-objective 2d guillotine strip packing problem. In – year: 2001 ident: b0080 article-title: Multi-objective optimization using evolutionary algorithms – reference: (pp. 129–158). – reference: (pp. 243–270). – ident: 10.1016/j.eswa.2013.12.050_b0020 doi: 10.1109/MCDM.2007.369117 – year: 2007 ident: 10.1016/j.eswa.2013.12.050_b0055 – ident: 10.1016/j.eswa.2013.12.050_b0235 doi: 10.1063/1.4765574 – ident: 10.1016/j.eswa.2013.12.050_b0070 doi: 10.1145/2001576.2001803 – ident: 10.1016/j.eswa.2013.12.050_b0270 – ident: 10.1016/j.eswa.2013.12.050_b0165 – ident: 10.1016/j.eswa.2013.12.050_b0180 – volume: 2 start-page: 221 year: 1994 ident: 10.1016/j.eswa.2013.12.050_b0240 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 10 start-page: 477 year: 2006 ident: 10.1016/j.eswa.2013.12.050_b0145 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – volume: 35 start-page: 561 year: 2008 ident: 10.1016/j.eswa.2013.12.050_b0190 article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-007-0163-x – ident: 10.1016/j.eswa.2013.12.050_b0215 doi: 10.1109/CEC.2010.5585914 – ident: 10.1016/j.eswa.2013.12.050_b0175 doi: 10.1109/IAdCC.2013.6514331 – ident: 10.1016/j.eswa.2013.12.050_b0260 – volume: 104 start-page: 708 year: 2007 ident: 10.1016/j.eswa.2013.12.050_b0275 article-title: Improved evolutionary optimization from genetically adaptive multimethod search publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0610471104 – volume: 11 start-page: 712 year: 2007 ident: 10.1016/j.eswa.2013.12.050_b0295 article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons publication-title: IEEE Transactions on Evolutionary Computation – volume: 2 start-page: 3 year: 2010 ident: 10.1016/j.eswa.2013.12.050_b0280 article-title: Multi-strategy ensemble evolutionary optimization for dynamic multi-objective optimization publication-title: Memetic Computing doi: 10.1007/s12293-009-0012-0 – ident: 10.1016/j.eswa.2013.12.050_b0110 – volume: 136 start-page: 592 year: 2010 ident: 10.1016/j.eswa.2013.12.050_b0230 article-title: Multiobjective optimization for water distribution systemdesign using a hyperheuristic publication-title: Journal of Water Resources Management doi: 10.1061/(ASCE)WR.1943-5452.0000061 – volume: Vol. 5518 start-page: 41 year: 2009 ident: 10.1016/j.eswa.2013.12.050_b0185 article-title: Hyperheuristics for a dynamic-mapped multi-objective island-based model – volume: 1 start-page: 32 year: 2011 ident: 10.1016/j.eswa.2013.12.050_b0305 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.03.001 – volume: 7 start-page: 205 year: 1999 ident: 10.1016/j.eswa.2013.12.050_b0075 article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem publication-title: Evolutionary Computation doi: 10.1162/evco.1999.7.3.205 – start-page: 349 year: 2010 ident: 10.1016/j.eswa.2013.12.050_b0135 article-title: Approximating multi-objective hyper-heuristics for solving 2d irregular cutting stock problems publication-title: In Advances in Soft Computing Lecture Notes in Computer Science doi: 10.1007/978-3-642-16773-7_30 – ident: 10.1016/j.eswa.2013.12.050_b0255 – year: 1991 ident: 10.1016/j.eswa.2013.12.050_b0290 – ident: 10.1016/j.eswa.2013.12.050_b0315 – ident: 10.1016/j.eswa.2013.12.050_b0125 – ident: 10.1016/j.eswa.2013.12.050_b0095 doi: 10.1007/3-540-44719-9_5 – ident: 10.1016/j.eswa.2013.12.050_b0100 – volume: 11 start-page: 31 year: 2013 ident: 10.1016/j.eswa.2013.12.050_b0015 article-title: A new model and a hyper-heuristic approach for two-dimensional shelf space allocation publication-title: Journal Operation Research – volume: 64 start-page: 1695 year: 2013 ident: 10.1016/j.eswa.2013.12.050_b0030 article-title: Hyper-heuristics: A survey of the state of the art publication-title: Journal of the Operational Research Society doi: 10.1057/jors.2013.71 – year: 1996 ident: 10.1016/j.eswa.2013.12.050_b0010 – ident: 10.1016/j.eswa.2013.12.050_b0060 – ident: 10.1016/j.eswa.2013.12.050_b0065 doi: 10.1016/B978-0-08-050684-5.50005-7 – start-page: 12 year: 2012 ident: 10.1016/j.eswa.2013.12.050_b0120 article-title: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic publication-title: Applied Soft Computing – volume: 196 start-page: 73 year: 2012 ident: 10.1016/j.eswa.2013.12.050_b0035 article-title: Monte Carlo hyper-heuristics for examination timetabling publication-title: Annals of Operations Research doi: 10.1007/s10479-010-0782-2 – volume: 37 start-page: 42 year: 2007 ident: 10.1016/j.eswa.2013.12.050_b0200 article-title: A multiobjective memetic algorithm based on particle swarm optimization publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics doi: 10.1109/TSMCB.2006.883270 – ident: 10.1016/j.eswa.2013.12.050_b0105 – year: 1987 ident: 10.1016/j.eswa.2013.12.050_b0130 – ident: 10.1016/j.eswa.2013.12.050_b0050 – year: 2001 ident: 10.1016/j.eswa.2013.12.050_b0080 – volume: 3 start-page: 253 year: 1999 ident: 10.1016/j.eswa.2013.12.050_b0325 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 13 start-page: 284 year: 2009 ident: 10.1016/j.eswa.2013.12.050_b0205 article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.925798 – volume: 17 start-page: 253 year: 2002 ident: 10.1016/j.eswa.2013.12.050_b0245 article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons publication-title: Artificial Intelligence Review doi: 10.1023/A:1015516501242 – ident: 10.1016/j.eswa.2013.12.050_b0285 – ident: 10.1016/j.eswa.2013.12.050_b0210 – ident: 10.1016/j.eswa.2013.12.050_b0025 – volume: 28 start-page: 26 year: 1998 ident: 10.1016/j.eswa.2013.12.050_b0115 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans doi: 10.1109/3468.650319 – volume: 24 start-page: 955 year: 2010 ident: 10.1016/j.eswa.2013.12.050_b0300 article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the swat model publication-title: Hydrological Processes doi: 10.1002/hyp.7528 – ident: 10.1016/j.eswa.2013.12.050_b0160 – volume: 64 start-page: 1664 year: 2013 ident: 10.1016/j.eswa.2013.12.050_b0250 article-title: A mixture experiments multi-objective hyper-heuristics publication-title: Journal of the Operational Research Society doi: 10.1057/jors.2012.125 – volume: 26 start-page: 99 year: 2001 ident: 10.1016/j.eswa.2013.12.050_b0155 article-title: Comparison of local search-based metaheuristics on the multiple objective knapsack problem publication-title: Foundations of Computing and Decision Sciences – volume: 454 start-page: 186 year: 2007 ident: 10.1016/j.eswa.2013.12.050_b0005 article-title: Optimisation of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm publication-title: IEEE Road Transport Information and Control – ident: 10.1016/j.eswa.2013.12.050_b0170 doi: 10.1007/3-540-36970-8_27 – volume: 9 start-page: 115 year: 1995 ident: 10.1016/j.eswa.2013.12.050_b0090 article-title: Simulated binary crossover for continuous search space publication-title: Complex Systems – volume: 8 start-page: 125 year: 2000 ident: 10.1016/j.eswa.2013.12.050_b0265 article-title: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art publication-title: Evolutionary Computation doi: 10.1162/106365600568158 – volume: 60 start-page: 1273 year: 2009 ident: 10.1016/j.eswa.2013.12.050_b0225 article-title: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems publication-title: Journal of the Operational Research Society doi: 10.1057/jors.2008.102 – volume: 8 start-page: 173 year: 2000 ident: 10.1016/j.eswa.2013.12.050_b0310 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – ident: 10.1016/j.eswa.2013.12.050_b0140 doi: 10.1016/B978-1-55860-356-1.50016-9 – ident: 10.1016/j.eswa.2013.12.050_b0150 – year: 2003 ident: 10.1016/j.eswa.2013.12.050_b0040 – year: 2005 ident: 10.1016/j.eswa.2013.12.050_b0085 – ident: 10.1016/j.eswa.2013.12.050_b0045 – year: 2004 ident: 10.1016/j.eswa.2013.12.050_b0320 article-title: Indicator-based selection in multiobjective search – volume: 19 start-page: 561 year: 2011 ident: 10.1016/j.eswa.2013.12.050_b0195 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00038 – volume: 12 start-page: 3 year: 2008 ident: 10.1016/j.eswa.2013.12.050_b0220 article-title: A comprehensive analysis of hyper-heuristics publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2008-12102 |
| SSID | ssj0017007 |
| Score | 2.4345927 |
| Snippet | •A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective... Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4475 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Amalgams Applied sciences Artificial intelligence Computer science; control theory; systems Decision theory. Utility theory Evolutionary algorithm Exact sciences and technology Heuristic Hyper-heuristic Learning Learning and adaptive systems Low level Mathematical analysis Mathematical models Metaheuristic Multi-objective optimization Operational research and scientific management Operational research. Management science Optimization Searching Theoretical computing |
| Title | A multi-objective hyper-heuristic based on choice function |
| URI | https://dx.doi.org/10.1016/j.eswa.2013.12.050 https://www.proquest.com/docview/1551110138 https://www.proquest.com/docview/1677953533 |
| Volume | 41 |
| WOSCitedRecordID | wos000333778000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMS4o0oj5WREJfKyE6ch7lVqCtAVeHQlXqz7NjRboXS0rSw4tczjp002xXVciCHKIqcpvJMPo_n9SH0FhCfFU1YPS0s4alNic7jlJjI6EyoREe66a4_yabTfD4X3wIrat3QCWRVlV9eitV_FTXcA2G70tl_EHf3o3ADrkHocAaxw_lGgh_5JEGy1AsPZsNz2Guuybnd-q7MQ7dyGRclAOgDnBi6ta2Tz6LLzbPrTWj03JbA9YLdO0-2Y2PyVT91l4DvvLa_CxVoQswuAxhw3Sgf6fA12n2vA-NdhurOfZgRzjzDTouknPU0RvRg0XUV7C2xnHtWxGvw7T0Ji_e2_uV6QrG4cdX6zrRXe2VPv8rTs8lEzsbz2bvVD-JoxFy4PXCq3EbHUZYIQOrj0efx_EsXWMqor6Bv_36oo_Ipf_uv_Zutcm-laviCSk99cm0Vb0yT2UN0P-wp8MjrwiN0y1aP0YOWrwMH-H6CPozwnmrgPdXAjWrgZYW9auBWNZ6is9Px7OMnErgzSME53RButAJbU1NtRGxzMOoimioNBy1tYrlQuUi5ydPS2ghgX3FuoohasDgNLaMkfoaOqmVlnyOsLYuLMk8SbUteWq2UoVwXJYOhRqV0gFg7S7IIjeUdv8l32WYQLqSbWelmVrJIwswO0LB7ZuXbqhwcnbSTL4Nh6A0-CYpz8LmTK5LqXuXSB2JOxQC9aUUnAVZdrExVdrmtpdtJgGXM4vzAmDTLRBLDhunFDca8RHd3H9IrdLRZb-1rdKf4ubmo1ydBT_8A1AOn5Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+hyper-heuristic+based+on+choice+function&rft.jtitle=Expert+systems+with+applications&rft.au=Maashi%2C+Mashael&rft.au=Ozcan%2C+Ender&rft.au=Kendall%2C+Graham&rft.date=2014-07-01&rft.issn=0957-4174&rft.volume=41&rft.issue=9&rft.spage=4475&rft.epage=4493&rft_id=info:doi/10.1016%2Fj.eswa.2013.12.050&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |