A multi-objective hyper-heuristic based on choice function

•A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs an...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 41; no. 9; pp. 4475 - 4493
Main Authors: Maashi, Mashael, Özcan, Ender, Kendall, Graham
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01.07.2014
Elsevier
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs and some other approaches.•The proposed method is tested on a generic benchmark and a real-world problem. Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM.
AbstractList Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM.
•A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective optimization.•Three MOEAs (NSGAII, SPEA2, and MOGA) are mixes and exploited their strengths.•The proposed method performs better than three MOEAs and some other approaches.•The proposed method is tested on a generic benchmark and a real-world problem. Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the proposed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM.
Author Kendall, Graham
Özcan, Ender
Maashi, Mashael
Author_xml – sequence: 1
  givenname: Mashael
  surname: Maashi
  fullname: Maashi, Mashael
  email: psxmm3@exmail.nottingham.ac.uk, m.maashi@gmail.com
  organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
– sequence: 2
  givenname: Ender
  surname: Özcan
  fullname: Özcan, Ender
  email: ender.ozcan@nottingham.ac.uk
  organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
– sequence: 3
  givenname: Graham
  surname: Kendall
  fullname: Kendall, Graham
  email: graham.kendall@nottingham.edu.my
  organization: Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293409$$DView record in Pascal Francis
BookMark eNqFkctKxDAUQIMoOD5-wFU3gpvWm0ebRtzI4AsEN7oOaXrLZOg0Y9Iq_r0pIy5c6N1kc064nHtE9gc_ICFnFAoKtLpcFxg_TMGA8oKyAkrYIwtaS55XUvF9sgBVylxQKQ7JUYxrACoB5IJc3WSbqR9d7ps12tG9Y7b63GLIVzgFF0dns8ZEbDM_ZHblncWsm4YE-uGEHHSmj3j6_R6T17vbl-VD_vR8_7i8ecqtEDDmom2M4KqBplUca6Y4g8o0aaDDEoUytapEW1cdIgMJRoiWMUCQtIWOlfyYXOz-3Qb_NmEc9cZFi31vBvRT1LSSUpW85Px_tCwpTcF4ndDzb9REa_oumMG6qLfBbUz41GxeVIBKHNtxNvgYA3Y_CAU9t9drPbfXc3tNmU7tk1T_kqwbzRxtDMb1f6vXOxVT0neHQUfrcLDYupAOpFvv_tK_AP1ooDg
CitedBy_id crossref_primary_10_1016_j_cie_2016_02_022
crossref_primary_10_1016_j_cor_2020_105043
crossref_primary_10_1109_TSC_2015_2444849
crossref_primary_10_3390_app11199153
crossref_primary_10_1007_s10732_023_09510_1
crossref_primary_10_1016_j_cie_2020_107010
crossref_primary_10_1016_j_renene_2016_12_022
crossref_primary_10_1109_TSMC_2023_3299982
crossref_primary_10_1109_TEVC_2017_2785346
crossref_primary_10_1016_j_apm_2021_09_022
crossref_primary_10_1016_j_swevo_2018_02_019
crossref_primary_10_1016_j_ins_2014_10_045
crossref_primary_10_1016_j_asoc_2022_109484
crossref_primary_10_1016_j_asoc_2019_105485
crossref_primary_10_1080_00207543_2021_2017056
crossref_primary_10_1016_j_procs_2019_12_104
crossref_primary_10_1016_j_eswa_2023_122931
crossref_primary_10_1155_2021_8834324
crossref_primary_10_1016_j_future_2019_10_039
crossref_primary_10_1007_s10710_017_9301_4
crossref_primary_10_1016_j_asoc_2014_12_012
crossref_primary_10_1007_s40747_020_00230_8
crossref_primary_10_1007_s12559_015_9368_2
crossref_primary_10_1016_j_ejor_2019_07_073
crossref_primary_10_3390_su11061596
crossref_primary_10_1007_s10732_018_9369_x
crossref_primary_10_1109_ACCESS_2020_3009318
crossref_primary_10_1109_TASE_2021_3084741
crossref_primary_10_1016_j_eswa_2021_116343
crossref_primary_10_1016_j_swevo_2021_100885
crossref_primary_10_1007_s40313_019_00526_2
crossref_primary_10_1016_j_engappai_2016_02_004
crossref_primary_10_1016_j_eswa_2025_127232
crossref_primary_10_1016_j_swevo_2020_100647
crossref_primary_10_1016_j_cie_2020_106420
crossref_primary_10_1016_j_asoc_2020_106760
crossref_primary_10_1007_s10586_017_1095_x
crossref_primary_10_1016_j_asoc_2017_03_012
crossref_primary_10_1016_j_cie_2023_109078
crossref_primary_10_1016_j_swevo_2024_101530
crossref_primary_10_3846_tede_2019_10291
crossref_primary_10_1145_3701236
crossref_primary_10_1109_ACCESS_2021_3106815
crossref_primary_10_1016_j_cie_2023_109815
crossref_primary_10_1016_j_eswa_2022_118075
crossref_primary_10_1016_j_infsof_2019_06_012
crossref_primary_10_1155_2020_8395754
crossref_primary_10_3390_app12115649
crossref_primary_10_1016_j_eswa_2014_03_037
crossref_primary_10_1007_s10479_014_1688_1
crossref_primary_10_1016_j_ast_2020_106346
crossref_primary_10_1002_smr_1992
crossref_primary_10_1016_j_ins_2023_01_047
crossref_primary_10_1007_s10845_014_0984_6
crossref_primary_10_32604_cmes_2025_060481
crossref_primary_10_3390_ijerph16112064
Cites_doi 10.1109/MCDM.2007.369117
10.1063/1.4765574
10.1145/2001576.2001803
10.1162/evco.1994.2.3.221
10.1109/TEVC.2005.861417
10.1007/s00158-007-0163-x
10.1109/CEC.2010.5585914
10.1109/IAdCC.2013.6514331
10.1073/pnas.0610471104
10.1007/s12293-009-0012-0
10.1061/(ASCE)WR.1943-5452.0000061
10.1016/j.swevo.2011.03.001
10.1162/evco.1999.7.3.205
10.1007/978-3-642-16773-7_30
10.1007/3-540-44719-9_5
10.1057/jors.2013.71
10.1016/B978-0-08-050684-5.50005-7
10.1007/s10479-010-0782-2
10.1109/TSMCB.2006.883270
10.1109/4235.797969
10.1109/TEVC.2008.925798
10.1023/A:1015516501242
10.1109/3468.650319
10.1002/hyp.7528
10.1057/jors.2012.125
10.1007/3-540-36970-8_27
10.1162/106365600568158
10.1057/jors.2008.102
10.1162/106365600568202
10.1016/B978-1-55860-356-1.50016-9
10.1162/EVCO_a_00038
10.3233/IDA-2008-12102
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.12.050
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 4493
ExternalDocumentID 28293409
10_1016_j_eswa_2013_12_050
S095741741400013X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c440t-4dba439b0bd93e8293206abbbb0fe5e49a8964d86fee2070a44d220e071d0f253
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333778000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Sep 27 23:40:54 EDT 2025
Sun Sep 28 03:04:44 EDT 2025
Wed Apr 02 07:26:06 EDT 2025
Tue Nov 18 22:23:08 EST 2025
Sat Nov 29 04:44:38 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metaheuristic
Multi-objective optimization
Evolutionary algorithm
Hyper-heuristic
Legged locomotion
Multiobjective programming
Selection function
Adaptive method
Optimization
Search algorithm
Walking
Vertebrata
Experimental result
Pisces
Heuristic method
Artificial intelligence
Metamodel
Mathematical programming
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-4dba439b0bd93e8293206abbbb0fe5e49a8964d86fee2070a44d220e071d0f253
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://eprints.nottingham.ac.uk/32175/
PQID 1551110138
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1677953533
proquest_miscellaneous_1551110138
pascalfrancis_primary_28293409
crossref_primary_10_1016_j_eswa_2013_12_050
crossref_citationtrail_10_1016_j_eswa_2013_12_050
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_12_050
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gomez, Terashima-Marín (b0135) 2010
Vázquez-Rodríguez, Petrovic (b0250) 2013; 64
(pp. 274–282).
Anderson, Sayers, Bell (b0005) 2007; 454
Hussin, N. (2005).
Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary computation and convergence to a pareto front. In
Deb (b0085) 2005
(pp. 95–100).
Srinivas, Deb (b0240) 1994; 2
Zhang, Srinivasan, Liew (b0300) 2010; 24
Burke, E., Landa-Silva, D., & Soubeiga, E. (2003). Multi-objective hyperheuristic approaches for space allocation and timetabling. In
Liao, Li, Yang, Zhang, Li (b0190) 2008; 35
Len, Miranda, Segura (b0185) 2009; Vol. 5518
Zitzler, Künzli (b0320) 2004
Goldberg (b0130) 1987
(pp. 1683–1690).
Whitley (b0290) 1991
(pp. 2003–2010).
McClymont, K., & Keedwell, E. C. (2011). Markov chain hyperheuristic (mchh): An online selective hyper-heuristic for multiobjective continuous problems. In
Kumari, A., Srinivas, K., & Gupta, M. (2013). Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In
Veerapen, N., Landa-Silva, D., & Gandibleux, X. (2009). Hyperheuristic as component of a multi-objective metaheuristic. In
Burke, Kendall, Misir, Özcan (b0035) 2012; 196
Bäck (b0010) 1996
(pp. 825–830).
Kargupta, H. (1995). Signal-to-noise, crosstalk, and long range problem difficulty in genetic algorithms. In
.
(pp. 1–8).
Zhou, Qu, Li, Zhao, Suganthan, Zhang (b0305) 2011; 1
Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm for multi-objective optimization. In
Bai, van Woensel, Kendall, Burke (b0015) 2013; 11
(pp. 42–50).
Özcan, Bilgin, Korkmaz (b0220) 2008; 12
Cowling, P., Kendall, G., & Soubeiga, E. (2002). A hyper-heuristic approach to scheduling a sales summit. In
Qu, Burke (b0225) 2009; 60
de Armas, J., Miranda, G., & León, C. (2011). Hyperheuristic encoding scheme for multi-objective guillotine cutting problems. In
Fonseca, Fleming (b0115) 1998; 28
(pp. 221–228).
(Ph.D. thesis). Nottingham, UK: The University of Nottingham.
Chow, J., & Regan, A. (2012). A surrogate-based multiobjective metaheuristic and network degradation simulation model for robust toll pricing. Civil Engineering Working Papers.
Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In
(pp. 129–158).
(pp. 193–200).
Watanabe, S., Hiroyasu, T., & Miki, M. (2002). Lcga: Local cultivation genetic algorithm for multi-objective optimization problem. In
(pp. 376–390).
Davidor, Y. (1991).
Liu, Tan, Goh, Ho (b0200) 2007; 37
Veldhuizen, Lamont (b0265) 2000; 8
(pp. 382–389).
Deb, K., & Goel, T. (2001). Controlled elitist nondominated sorting genetic algorithms for better convergence. In
(pp. 813–818).
Voutchkov, I., & Keane, A. (2010). Computational intelligence in optimization: Adaptation, learning, and optimization. In
Coello, Veldhuizen, Lamont (b0055) 2007
Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In
(Vol. 764, p. 1493).
Li, Zhang (b0205) 2009; 13
(pp. 67–81).
(Ph.D. thesis). UK: University of Nottingham.
Li, Landa-Silva (b0195) 2011; 19
Miranda, G., de Armas, J., Segura, C., & León, C. (2010). Hyperheuristic codification for the multi-objective 2d guillotine strip packing problem. In
Wang, Li (b0280) 2010; 2
Deb (b0075) 1999; 7
Huband, Hingston, Barone, While (b0145) 2006; 10
Coello, C. C., & Pulido, G. (2001). Multiobjective optimization using a micro-genetic algoritm. In
Deb (b0080) 2001
(pp. 155–175). Springer Berlin Heidelberg.
(pp. 416–423).
Burke, Kendall, Newall, Hart, Ross, Schulenburg (b0040) 2003
Raad, Sinkse, Vuuren (b0230) 2010; 136
Zitzler, Deb, Thiele (b0310) 2000; 8
Furtuna, Curteanu, Leon (b0120) 2012
(pp. 243–270).
Vrugt, Robinson (b0275) 2007; 104
Jaszkiewicz (b0155) 2001; 26
Horn, J., & Goldberg, D. E. (1995). Genetic algorithm difficulty and the modality of fitness landscape. In
Bradstreet, L., Barone, L., While, L., Huband, S., & Hingston, P. (2007). Use of the wfg toolkit and pisa for comparison of multi-objective evolutionary algorithms. In
(pp. 667–671).
Burke, Gendreau, Hyde, Kendall, Ochoa, Özcan (b0030) 2013; 64
Gibbs, J., Kendall, G., & Özcan, E. (2011). Scheduling english football fixtures over the holiday period using hyper-heuristics. In
Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multiobjective optimization test problems. In
Rafique, A. F. (2012). Multiobjective hyper heuristic scheme for system design and optimization. In
Zitzler, Thiele (b0325) 1999; 3
Rawlins.
Deb, Agrawal (b0090) 1995; 9
Tan, Lee, Khor (b0245) 2002; 17
Deb, K., & Goldberg, D. (1989). An investigation on niche and species formation in genetic function optimization. In
Landa-Silva, J. D. (2003).
(Vol. 6238, pp. 496–505).
Zhang, Li (b0295) 2007; 11
Kendall, G., Cowling, P., & Soubeiga, E. (2002). Choice function and random hyperheuristics. In
10.1016/j.eswa.2013.12.050_b0255
10.1016/j.eswa.2013.12.050_b0210
10.1016/j.eswa.2013.12.050_b0175
10.1016/j.eswa.2013.12.050_b0215
10.1016/j.eswa.2013.12.050_b0170
Liao (10.1016/j.eswa.2013.12.050_b0190) 2008; 35
Özcan (10.1016/j.eswa.2013.12.050_b0220) 2008; 12
10.1016/j.eswa.2013.12.050_b0095
10.1016/j.eswa.2013.12.050_b0050
Zhou (10.1016/j.eswa.2013.12.050_b0305) 2011; 1
Zitzler (10.1016/j.eswa.2013.12.050_b0320) 2004
Coello (10.1016/j.eswa.2013.12.050_b0055) 2007
Liu (10.1016/j.eswa.2013.12.050_b0200) 2007; 37
Deb (10.1016/j.eswa.2013.12.050_b0080) 2001
10.1016/j.eswa.2013.12.050_b0045
10.1016/j.eswa.2013.12.050_b0165
10.1016/j.eswa.2013.12.050_b0285
10.1016/j.eswa.2013.12.050_b0125
Burke (10.1016/j.eswa.2013.12.050_b0040) 2003
Srinivas (10.1016/j.eswa.2013.12.050_b0240) 1994; 2
10.1016/j.eswa.2013.12.050_b0160
Veldhuizen (10.1016/j.eswa.2013.12.050_b0265) 2000; 8
Zhang (10.1016/j.eswa.2013.12.050_b0300) 2010; 24
10.1016/j.eswa.2013.12.050_b0315
Zitzler (10.1016/j.eswa.2013.12.050_b0325) 1999; 3
Li (10.1016/j.eswa.2013.12.050_b0205) 2009; 13
10.1016/j.eswa.2013.12.050_b0110
Vrugt (10.1016/j.eswa.2013.12.050_b0275) 2007; 104
Huband (10.1016/j.eswa.2013.12.050_b0145) 2006; 10
Bai (10.1016/j.eswa.2013.12.050_b0015) 2013; 11
10.1016/j.eswa.2013.12.050_b0235
Len (10.1016/j.eswa.2013.12.050_b0185) 2009; Vol. 5518
Tan (10.1016/j.eswa.2013.12.050_b0245) 2002; 17
Li (10.1016/j.eswa.2013.12.050_b0195) 2011; 19
10.1016/j.eswa.2013.12.050_b0070
10.1016/j.eswa.2013.12.050_b0150
10.1016/j.eswa.2013.12.050_b0270
Anderson (10.1016/j.eswa.2013.12.050_b0005) 2007; 454
Deb (10.1016/j.eswa.2013.12.050_b0085) 2005
Furtuna (10.1016/j.eswa.2013.12.050_b0120) 2012
Vázquez-Rodríguez (10.1016/j.eswa.2013.12.050_b0250) 2013; 64
Fonseca (10.1016/j.eswa.2013.12.050_b0115) 1998; 28
Zitzler (10.1016/j.eswa.2013.12.050_b0310) 2000; 8
Deb (10.1016/j.eswa.2013.12.050_b0075) 1999; 7
10.1016/j.eswa.2013.12.050_b0100
10.1016/j.eswa.2013.12.050_b0065
Whitley (10.1016/j.eswa.2013.12.050_b0290) 1991
Deb (10.1016/j.eswa.2013.12.050_b0090) 1995; 9
10.1016/j.eswa.2013.12.050_b0105
Jaszkiewicz (10.1016/j.eswa.2013.12.050_b0155) 2001; 26
10.1016/j.eswa.2013.12.050_b0025
10.1016/j.eswa.2013.12.050_b0060
10.1016/j.eswa.2013.12.050_b0180
Raad (10.1016/j.eswa.2013.12.050_b0230) 2010; 136
10.1016/j.eswa.2013.12.050_b0020
Gomez (10.1016/j.eswa.2013.12.050_b0135) 2010
10.1016/j.eswa.2013.12.050_b0140
Burke (10.1016/j.eswa.2013.12.050_b0030) 2013; 64
10.1016/j.eswa.2013.12.050_b0260
Burke (10.1016/j.eswa.2013.12.050_b0035) 2012; 196
Qu (10.1016/j.eswa.2013.12.050_b0225) 2009; 60
Bäck (10.1016/j.eswa.2013.12.050_b0010) 1996
Goldberg (10.1016/j.eswa.2013.12.050_b0130) 1987
Wang (10.1016/j.eswa.2013.12.050_b0280) 2010; 2
Zhang (10.1016/j.eswa.2013.12.050_b0295) 2007; 11
References_xml – volume: 11
  start-page: 31
  year: 2013
  end-page: 55
  ident: b0015
  article-title: A new model and a hyper-heuristic approach for two-dimensional shelf space allocation
  publication-title: Journal Operation Research
– reference: Chow, J., & Regan, A. (2012). A surrogate-based multiobjective metaheuristic and network degradation simulation model for robust toll pricing. Civil Engineering Working Papers.
– reference: de Armas, J., Miranda, G., & León, C. (2011). Hyperheuristic encoding scheme for multi-objective guillotine cutting problems. In
– reference: Voutchkov, I., & Keane, A. (2010). Computational intelligence in optimization: Adaptation, learning, and optimization. In:
– volume: 136
  start-page: 592
  year: 2010
  end-page: 596
  ident: b0230
  article-title: Multiobjective optimization for water distribution systemdesign using a hyperheuristic
  publication-title: Journal of Water Resources Management
– year: 2007
  ident: b0055
  article-title: Evolutionary algorithms for solving multi-objective problems
– reference: Kargupta, H. (1995). Signal-to-noise, crosstalk, and long range problem difficulty in genetic algorithms. In
– reference: Rafique, A. F. (2012). Multiobjective hyper heuristic scheme for system design and optimization. In
– reference: Coello, C. C., & Pulido, G. (2001). Multiobjective optimization using a micro-genetic algoritm. In
– volume: Vol. 5518
  start-page: 41
  year: 2009
  end-page: 49
  ident: b0185
  article-title: Hyperheuristics for a dynamic-mapped multi-objective island-based model
  publication-title: Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living
– volume: 17
  start-page: 253
  year: 2002
  end-page: 290
  ident: b0245
  article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons
  publication-title: Artificial Intelligence Review
– reference: Kendall, G., Cowling, P., & Soubeiga, E. (2002). Choice function and random hyperheuristics. In
– reference: (pp. 667–671).
– reference: Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary computation and convergence to a pareto front. In
– reference: Landa-Silva, J. D. (2003).
– reference: Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In
– reference: Gibbs, J., Kendall, G., & Özcan, E. (2011). Scheduling english football fixtures over the holiday period using hyper-heuristics. In
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0310
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– reference: (pp. 1683–1690).
– reference: (pp. 67–81).
– volume: 35
  start-page: 561
  year: 2008
  end-page: 569
  ident: b0190
  article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model
  publication-title: Structural and Multidisciplinary Optimization
– volume: 37
  start-page: 42
  year: 2007
  end-page: 50
  ident: b0200
  article-title: A multiobjective memetic algorithm based on particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics
– reference: (pp. 2003–2010).
– volume: 7
  start-page: 205
  year: 1999
  end-page: 230
  ident: b0075
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem
  publication-title: Evolutionary Computation
– reference: Davidor, Y. (1991).
– reference: (pp. 1–8).
– year: 1987
  ident: b0130
  publication-title: Genetic algorithms and simulated annealing
– reference: Kumari, A., Srinivas, K., & Gupta, M. (2013). Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In
– volume: 64
  start-page: 1664
  year: 2013
  end-page: 1675
  ident: b0250
  article-title: A mixture experiments multi-objective hyper-heuristics
  publication-title: Journal of the Operational Research Society
– volume: 3
  start-page: 253
  year: 1999
  end-page: 290
  ident: b0325
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 42–50).
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0145
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (Ph.D. thesis). Nottingham, UK: The University of Nottingham.
– reference: (pp. 416–423).
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0205
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0295
  article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 376–390).
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b0240
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– reference: Bradstreet, L., Barone, L., While, L., Huband, S., & Hingston, P. (2007). Use of the wfg toolkit and pisa for comparison of multi-objective evolutionary algorithms. In
– volume: 19
  start-page: 561
  year: 2011
  end-page: 595
  ident: b0195
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evolutionary Computation
– volume: 60
  start-page: 1273
  year: 2009
  end-page: 1285
  ident: b0225
  article-title: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems
  publication-title: Journal of the Operational Research Society
– reference: Veerapen, N., Landa-Silva, D., & Gandibleux, X. (2009). Hyperheuristic as component of a multi-objective metaheuristic. In
– year: 1991
  ident: b0290
  publication-title: Foundations of genetic algorithms
– volume: 8
  start-page: 125
  year: 2000
  end-page: 147
  ident: b0265
  article-title: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art
  publication-title: Evolutionary Computation
– volume: 454
  start-page: 186
  year: 2007
  end-page: 190
  ident: b0005
  article-title: Optimisation of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm
  publication-title: IEEE Road Transport Information and Control
– year: 2005
  ident: b0085
  publication-title: Introductory tutorials in optimization and decision support methodologies
– reference: Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In
– reference: (Ph.D. thesis). UK: University of Nottingham.
– reference: (pp. 155–175). Springer Berlin Heidelberg.
– reference: Hussin, N. (2005).
– reference: Deb, K., & Goel, T. (2001). Controlled elitist nondominated sorting genetic algorithms for better convergence. In
– reference: (pp. 813–818).
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: b0305
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
– reference: (pp. 274–282).
– reference: Deb, K., & Goldberg, D. (1989). An investigation on niche and species formation in genetic function optimization. In
– volume: 28
  start-page: 26
  year: 1998
  end-page: 37
  ident: b0115
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans
– reference: (pp. 221–228).
– reference: (pp. 825–830).
– volume: 196
  start-page: 73
  year: 2012
  end-page: 90
  ident: b0035
  article-title: Monte Carlo hyper-heuristics for examination timetabling
  publication-title: Annals of Operations Research
– reference: (pp. 193–200).
– year: 1996
  ident: b0010
  article-title: Evolutionary algorithms in theory and practice
– reference: Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm for multi-objective optimization. In
– volume: 64
  start-page: 1695
  year: 2013
  end-page: 1724
  ident: b0030
  article-title: Hyper-heuristics: A survey of the state of the art
  publication-title: Journal of the Operational Research Society
– reference: Watanabe, S., Hiroyasu, T., & Miki, M. (2002). Lcga: Local cultivation genetic algorithm for multi-objective optimization problem. In
– year: 2003
  ident: b0040
  publication-title: Handbook of meta-heuristics
– reference: Horn, J., & Goldberg, D. E. (1995). Genetic algorithm difficulty and the modality of fitness landscape. In
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: b0090
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– reference: (pp. 382–389).
– volume: 2
  start-page: 3
  year: 2010
  end-page: 24
  ident: b0280
  article-title: Multi-strategy ensemble evolutionary optimization for dynamic multi-objective optimization
  publication-title: Memetic Computing
– reference: Burke, E., Landa-Silva, D., & Soubeiga, E. (2003). Multi-objective hyperheuristic approaches for space allocation and timetabling. In
– reference: (Vol. 6238, pp. 496–505).
– volume: 24
  start-page: 955
  year: 2010
  end-page: 1094
  ident: b0300
  article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the swat model
  publication-title: Hydrological Processes
– reference: Cowling, P., Kendall, G., & Soubeiga, E. (2002). A hyper-heuristic approach to scheduling a sales summit. In
– reference: Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multiobjective optimization test problems. In
– start-page: 12
  year: 2012
  ident: b0120
  article-title: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic
  publication-title: Applied Soft Computing
– reference: McClymont, K., & Keedwell, E. C. (2011). Markov chain hyperheuristic (mchh): An online selective hyper-heuristic for multiobjective continuous problems. In
– volume: 104
  start-page: 708
  year: 2007
  end-page: 711
  ident: b0275
  article-title: Improved evolutionary optimization from genetically adaptive multimethod search
  publication-title: Proceedings of the National Academy of Sciences
– year: 2004
  ident: b0320
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel problem solving from nature (PPSN VIII)
– volume: 26
  start-page: 99
  year: 2001
  end-page: 120
  ident: b0155
  article-title: Comparison of local search-based metaheuristics on the multiple objective knapsack problem
  publication-title: Foundations of Computing and Decision Sciences
– start-page: 349
  year: 2010
  end-page: 360
  ident: b0135
  article-title: Approximating multi-objective hyper-heuristics for solving 2d irregular cutting stock problems
  publication-title: In Advances in Soft Computing Lecture Notes in Computer Science
– reference: .
– reference: . Rawlins.
– volume: 12
  start-page: 3
  year: 2008
  end-page: 23
  ident: b0220
  article-title: A comprehensive analysis of hyper-heuristics
  publication-title: Intelligent Data Analysis
– reference: (Vol. 764, p. 1493).
– reference: (pp. 95–100).
– reference: Miranda, G., de Armas, J., Segura, C., & León, C. (2010). Hyperheuristic codification for the multi-objective 2d guillotine strip packing problem. In
– year: 2001
  ident: b0080
  article-title: Multi-objective optimization using evolutionary algorithms
– reference: (pp. 129–158).
– reference: (pp. 243–270).
– ident: 10.1016/j.eswa.2013.12.050_b0020
  doi: 10.1109/MCDM.2007.369117
– year: 2007
  ident: 10.1016/j.eswa.2013.12.050_b0055
– ident: 10.1016/j.eswa.2013.12.050_b0235
  doi: 10.1063/1.4765574
– ident: 10.1016/j.eswa.2013.12.050_b0070
  doi: 10.1145/2001576.2001803
– ident: 10.1016/j.eswa.2013.12.050_b0270
– ident: 10.1016/j.eswa.2013.12.050_b0165
– ident: 10.1016/j.eswa.2013.12.050_b0180
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/j.eswa.2013.12.050_b0240
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 10
  start-page: 477
  year: 2006
  ident: 10.1016/j.eswa.2013.12.050_b0145
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– volume: 35
  start-page: 561
  year: 2008
  ident: 10.1016/j.eswa.2013.12.050_b0190
  article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-007-0163-x
– ident: 10.1016/j.eswa.2013.12.050_b0215
  doi: 10.1109/CEC.2010.5585914
– ident: 10.1016/j.eswa.2013.12.050_b0175
  doi: 10.1109/IAdCC.2013.6514331
– ident: 10.1016/j.eswa.2013.12.050_b0260
– volume: 104
  start-page: 708
  year: 2007
  ident: 10.1016/j.eswa.2013.12.050_b0275
  article-title: Improved evolutionary optimization from genetically adaptive multimethod search
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0610471104
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.eswa.2013.12.050_b0295
  article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 2
  start-page: 3
  year: 2010
  ident: 10.1016/j.eswa.2013.12.050_b0280
  article-title: Multi-strategy ensemble evolutionary optimization for dynamic multi-objective optimization
  publication-title: Memetic Computing
  doi: 10.1007/s12293-009-0012-0
– ident: 10.1016/j.eswa.2013.12.050_b0110
– volume: 136
  start-page: 592
  year: 2010
  ident: 10.1016/j.eswa.2013.12.050_b0230
  article-title: Multiobjective optimization for water distribution systemdesign using a hyperheuristic
  publication-title: Journal of Water Resources Management
  doi: 10.1061/(ASCE)WR.1943-5452.0000061
– volume: Vol. 5518
  start-page: 41
  year: 2009
  ident: 10.1016/j.eswa.2013.12.050_b0185
  article-title: Hyperheuristics for a dynamic-mapped multi-objective island-based model
– volume: 1
  start-page: 32
  year: 2011
  ident: 10.1016/j.eswa.2013.12.050_b0305
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.03.001
– volume: 7
  start-page: 205
  year: 1999
  ident: 10.1016/j.eswa.2013.12.050_b0075
  article-title: Multi-objective genetic algorithms: Problem difficulties and construction of test problem
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1999.7.3.205
– start-page: 349
  year: 2010
  ident: 10.1016/j.eswa.2013.12.050_b0135
  article-title: Approximating multi-objective hyper-heuristics for solving 2d irregular cutting stock problems
  publication-title: In Advances in Soft Computing Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-16773-7_30
– ident: 10.1016/j.eswa.2013.12.050_b0255
– year: 1991
  ident: 10.1016/j.eswa.2013.12.050_b0290
– ident: 10.1016/j.eswa.2013.12.050_b0315
– ident: 10.1016/j.eswa.2013.12.050_b0125
– ident: 10.1016/j.eswa.2013.12.050_b0095
  doi: 10.1007/3-540-44719-9_5
– ident: 10.1016/j.eswa.2013.12.050_b0100
– volume: 11
  start-page: 31
  year: 2013
  ident: 10.1016/j.eswa.2013.12.050_b0015
  article-title: A new model and a hyper-heuristic approach for two-dimensional shelf space allocation
  publication-title: Journal Operation Research
– volume: 64
  start-page: 1695
  year: 2013
  ident: 10.1016/j.eswa.2013.12.050_b0030
  article-title: Hyper-heuristics: A survey of the state of the art
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2013.71
– year: 1996
  ident: 10.1016/j.eswa.2013.12.050_b0010
– ident: 10.1016/j.eswa.2013.12.050_b0060
– ident: 10.1016/j.eswa.2013.12.050_b0065
  doi: 10.1016/B978-0-08-050684-5.50005-7
– start-page: 12
  year: 2012
  ident: 10.1016/j.eswa.2013.12.050_b0120
  article-title: Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic
  publication-title: Applied Soft Computing
– volume: 196
  start-page: 73
  year: 2012
  ident: 10.1016/j.eswa.2013.12.050_b0035
  article-title: Monte Carlo hyper-heuristics for examination timetabling
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-010-0782-2
– volume: 37
  start-page: 42
  year: 2007
  ident: 10.1016/j.eswa.2013.12.050_b0200
  article-title: A multiobjective memetic algorithm based on particle swarm optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics
  doi: 10.1109/TSMCB.2006.883270
– ident: 10.1016/j.eswa.2013.12.050_b0105
– year: 1987
  ident: 10.1016/j.eswa.2013.12.050_b0130
– ident: 10.1016/j.eswa.2013.12.050_b0050
– year: 2001
  ident: 10.1016/j.eswa.2013.12.050_b0080
– volume: 3
  start-page: 253
  year: 1999
  ident: 10.1016/j.eswa.2013.12.050_b0325
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 13
  start-page: 284
  year: 2009
  ident: 10.1016/j.eswa.2013.12.050_b0205
  article-title: Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.925798
– volume: 17
  start-page: 253
  year: 2002
  ident: 10.1016/j.eswa.2013.12.050_b0245
  article-title: Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1015516501242
– ident: 10.1016/j.eswa.2013.12.050_b0285
– ident: 10.1016/j.eswa.2013.12.050_b0210
– ident: 10.1016/j.eswa.2013.12.050_b0025
– volume: 28
  start-page: 26
  year: 1998
  ident: 10.1016/j.eswa.2013.12.050_b0115
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans
  doi: 10.1109/3468.650319
– volume: 24
  start-page: 955
  year: 2010
  ident: 10.1016/j.eswa.2013.12.050_b0300
  article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the swat model
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.7528
– ident: 10.1016/j.eswa.2013.12.050_b0160
– volume: 64
  start-page: 1664
  year: 2013
  ident: 10.1016/j.eswa.2013.12.050_b0250
  article-title: A mixture experiments multi-objective hyper-heuristics
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2012.125
– volume: 26
  start-page: 99
  year: 2001
  ident: 10.1016/j.eswa.2013.12.050_b0155
  article-title: Comparison of local search-based metaheuristics on the multiple objective knapsack problem
  publication-title: Foundations of Computing and Decision Sciences
– volume: 454
  start-page: 186
  year: 2007
  ident: 10.1016/j.eswa.2013.12.050_b0005
  article-title: Optimisation of a fuzzy logic traffic signal controller by a multiobjective genetic algorithm
  publication-title: IEEE Road Transport Information and Control
– ident: 10.1016/j.eswa.2013.12.050_b0170
  doi: 10.1007/3-540-36970-8_27
– volume: 9
  start-page: 115
  year: 1995
  ident: 10.1016/j.eswa.2013.12.050_b0090
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 8
  start-page: 125
  year: 2000
  ident: 10.1016/j.eswa.2013.12.050_b0265
  article-title: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568158
– volume: 60
  start-page: 1273
  year: 2009
  ident: 10.1016/j.eswa.2013.12.050_b0225
  article-title: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2008.102
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.eswa.2013.12.050_b0310
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– ident: 10.1016/j.eswa.2013.12.050_b0140
  doi: 10.1016/B978-1-55860-356-1.50016-9
– ident: 10.1016/j.eswa.2013.12.050_b0150
– year: 2003
  ident: 10.1016/j.eswa.2013.12.050_b0040
– year: 2005
  ident: 10.1016/j.eswa.2013.12.050_b0085
– ident: 10.1016/j.eswa.2013.12.050_b0045
– year: 2004
  ident: 10.1016/j.eswa.2013.12.050_b0320
  article-title: Indicator-based selection in multiobjective search
– volume: 19
  start-page: 561
  year: 2011
  ident: 10.1016/j.eswa.2013.12.050_b0195
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00038
– volume: 12
  start-page: 3
  year: 2008
  ident: 10.1016/j.eswa.2013.12.050_b0220
  article-title: A comprehensive analysis of hyper-heuristics
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2008-12102
SSID ssj0017007
Score 2.4345927
Snippet •A learning selection hyper-heuristic is proposed for multi-objective optimization.•A choice function utilized within the framework for multi-objective...
Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational optimization...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4475
SubjectTerms Algorithmics. Computability. Computer arithmetics
Amalgams
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Decision theory. Utility theory
Evolutionary algorithm
Exact sciences and technology
Heuristic
Hyper-heuristic
Learning
Learning and adaptive systems
Low level
Mathematical analysis
Mathematical models
Metaheuristic
Multi-objective optimization
Operational research and scientific management
Operational research. Management science
Optimization
Searching
Theoretical computing
Title A multi-objective hyper-heuristic based on choice function
URI https://dx.doi.org/10.1016/j.eswa.2013.12.050
https://www.proquest.com/docview/1551110138
https://www.proquest.com/docview/1677953533
Volume 41
WOSCitedRecordID wos000333778000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMS4o0oj5WREJfKyE6ch7lVqCtAVeHQlXqz7NjRboXS0rSw4tczjp002xXVciCHKIqcpvJMPo_n9SH0FhCfFU1YPS0s4alNic7jlJjI6EyoREe66a4_yabTfD4X3wIrat3QCWRVlV9eitV_FTXcA2G70tl_EHf3o3ADrkHocAaxw_lGgh_5JEGy1AsPZsNz2Guuybnd-q7MQ7dyGRclAOgDnBi6ta2Tz6LLzbPrTWj03JbA9YLdO0-2Y2PyVT91l4DvvLa_CxVoQswuAxhw3Sgf6fA12n2vA-NdhurOfZgRzjzDTouknPU0RvRg0XUV7C2xnHtWxGvw7T0Ji_e2_uV6QrG4cdX6zrRXe2VPv8rTs8lEzsbz2bvVD-JoxFy4PXCq3EbHUZYIQOrj0efx_EsXWMqor6Bv_36oo_Ipf_uv_Zutcm-laviCSk99cm0Vb0yT2UN0P-wp8MjrwiN0y1aP0YOWrwMH-H6CPozwnmrgPdXAjWrgZYW9auBWNZ6is9Px7OMnErgzSME53RButAJbU1NtRGxzMOoimioNBy1tYrlQuUi5ydPS2ghgX3FuoohasDgNLaMkfoaOqmVlnyOsLYuLMk8SbUteWq2UoVwXJYOhRqV0gFg7S7IIjeUdv8l32WYQLqSbWelmVrJIwswO0LB7ZuXbqhwcnbSTL4Nh6A0-CYpz8LmTK5LqXuXSB2JOxQC9aUUnAVZdrExVdrmtpdtJgGXM4vzAmDTLRBLDhunFDca8RHd3H9IrdLRZb-1rdKf4ubmo1ydBT_8A1AOn5Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+hyper-heuristic+based+on+choice+function&rft.jtitle=Expert+systems+with+applications&rft.au=Maashi%2C+Mashael&rft.au=Ozcan%2C+Ender&rft.au=Kendall%2C+Graham&rft.date=2014-07-01&rft.issn=0957-4174&rft.volume=41&rft.issue=9&rft.spage=4475&rft.epage=4493&rft_id=info:doi/10.1016%2Fj.eswa.2013.12.050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon