Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data

Abstract Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific diffe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Briefings in bioinformatics Ročník 23; číslo 5
Hlavní autori: Junttila, Sini, Smolander, Johannes, Elo, Laura L
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Predmet:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.
AbstractList Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.
Abstract Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.
Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.
Author Elo, Laura L
Junttila, Sini
Smolander, Johannes
Author_xml – sequence: 1
  givenname: Sini
  surname: Junttila
  fullname: Junttila, Sini
  email: simaju@utu.fi
– sequence: 2
  givenname: Johannes
  orcidid: 0000-0003-3872-9668
  surname: Smolander
  fullname: Smolander, Johannes
  email: johannes.smolander@gmail.com
– sequence: 3
  givenname: Laura L
  surname: Elo
  fullname: Elo, Laura L
  email: laura.elo@utu.fi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35880426$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOA9duZeAIIKUk1ReVRthHHzBoCC6Dknq1nTaqqQnSSn-e1N0j-ggrhKS7xzuuecUHYUYAKHHlLykpGfn1ttza41rO3kPnVCuVMOJ4EfrXapGcMmO0WnOW0Jaojr6AB0z0XWEt_IELa8huM1s0jcfrvEMZROHjMeY8AAFXFlfBz-OkCAUbyaciymQsYXyAyBgF8Pgi4-hilKc8bxMxTd5sdsqxrnKJ2gcTBP-_PGiyXCDB1PMQ3R_NFOGR4fzDH19--bL5fvm6tO7D5cXV43jnJSG8Va0BJglIzhOnDPCOMLUaBR0MLLWEmlEz1w_EmGIJJI7IpWw1BBqesPO0Ku9726xMwyuZkhm0rvka-KfOhqv__4JfqOv43fd805JxavB84NBijcL5KJnn9c4JkBcsm5lz3vR8W5Fn95Bt3FJocbTraKKSSVFW6knf070e5TbRipA94BLMecEo3a-rrxuuA7oJ02JXlvXtXV9aL1qXtzR3Nr-m362p-Oy-y_4Cw2evsk
CitedBy_id crossref_primary_10_1186_s13059_023_03054_0
crossref_primary_10_1186_s12859_024_05724_7
crossref_primary_10_1016_j_gene_2025_149603
crossref_primary_10_3389_fimmu_2023_1315602
crossref_primary_10_1111_acel_70095
crossref_primary_10_1093_bioinformatics_btaf442
crossref_primary_10_1097_MD_0000000000043033
crossref_primary_10_1093_bioinformatics_btae498
crossref_primary_10_1186_s12859_025_06044_0
crossref_primary_10_3390_pharmaceutics16060835
crossref_primary_10_1093_bfgp_elae041
crossref_primary_10_3389_fimmu_2023_1103690
crossref_primary_10_1016_j_neuron_2024_05_013
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_3390_biomedicines12020308
crossref_primary_10_1182_bloodadvances_2023009808
crossref_primary_10_1016_j_xpro_2024_103203
crossref_primary_10_1038_s41580_024_00768_2
crossref_primary_10_1186_s13059_024_03290_y
crossref_primary_10_1038_s44277_025_00041_0
crossref_primary_10_1155_2023_8384882
crossref_primary_10_1038_s41467_025_62579_z
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_7554_eLife_92678
crossref_primary_10_1186_s13062_025_00691_2
crossref_primary_10_3390_genes16091088
crossref_primary_10_1080_2162402X_2025_2502278
crossref_primary_10_1186_s12859_024_05926_z
crossref_primary_10_1186_s13046_023_02734_w
crossref_primary_10_7554_eLife_92678_2
crossref_primary_10_1126_sciadv_adp0467
crossref_primary_10_1038_s41593_025_01993_4
crossref_primary_10_1126_scitranslmed_adn5449
Cites_doi 10.1093/biostatistics/kxj037
10.1038/s41467-020-19894-4
10.1186/s13059-014-0550-8
10.1186/gb-2014-15-2-r29
10.1038/s41467-021-25960-2
10.18637/jss.v067.i01
10.1038/nbt.4096
10.1093/bioinformatics/btab337
10.1038/s41592-021-01336-8
10.1093/nar/gkv007
10.1016/j.cell.2021.02.018
10.1186/gb-2010-11-3-r25
10.1038/ncomms14049
10.2337/db19-0287
10.1186/s13059-016-0888-1
10.1371/journal.pcbi.1005562
10.1016/j.cels.2019.03.010
10.1186/s12864-019-6413-7
10.1038/s41467-021-21038-1
10.1038/nbt.4042
10.1038/s41467-019-12266-7
10.1016/j.cell.2021.04.048
10.1186/s13059-016-1077-y
10.1093/bib/bbu033
10.1038/s42003-021-02146-6
10.1038/nmeth.4612
10.1093/bioinformatics/btp616
10.1186/1471-2105-12-77
10.1186/s13059-015-0844-5
10.1038/s41587-019-0379-5
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbac286
DatabaseName Oxford Academic Journals (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC9487674
35880426
10_1093_bib_bbac286
10.1093/bib/bbac286
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 677943
– fundername: ;
  grantid: 677943
– fundername: ;
  grantid: 955321
– fundername: ;
  grantid: 310561; 314443; 329278; 335434; 335611; 341342
– fundername: ;
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c440t-342520e3b0fec40cca5ac037fa7e8ef32b06a593c9f05a06064c0675b1a01a9a3
IEDL.DBID TOX
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833580100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 17:19:10 EDT 2025
Thu Sep 25 09:07:11 EDT 2025
Mon Oct 06 16:53:25 EDT 2025
Mon Jul 21 06:03:52 EDT 2025
Sat Nov 29 05:43:32 EST 2025
Tue Nov 18 21:59:24 EST 2025
Wed Aug 28 03:18:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords RNA sequencing (RNA-seq)
differential expression
single cell
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-342520e3b0fec40cca5ac037fa7e8ef32b06a593c9f05a06064c0675b1a01a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Sini Junttila and Johannes Smolander have contributed equally to this work.
ORCID 0000-0003-3872-9668
OpenAccessLink https://dx.doi.org/10.1093/bib/bbac286
PMID 35880426
PQID 2717367652
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9487674
proquest_miscellaneous_2694958484
proquest_journals_2717367652
pubmed_primary_35880426
crossref_citationtrail_10_1093_bib_bbac286
crossref_primary_10_1093_bib_bbac286
oup_primary_10_1093_bib_bbac286
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Suomi (2022092013210562400_ref20) 2017; 13
Svensson (2022092013210562400_ref14) 2020; 38
Zimmerman (2022092013210562400_ref8) 2021; 12
Robinson (2022092013210562400_ref17) 2010; 26
Robin (2022092013210562400_ref27) 2011; 12
Jaakkola (2022092013210562400_ref11) 2017; 18
Ritchie (2022092013210562400_ref19) 2015; 43
Thurman (2022092013210562400_ref9) 2021; 37
Vieth (2022092013210562400_ref31) 2019; 10
He (2022092013210562400_ref16) 2021; 4
Ilicic (2022092013210562400_ref1) 2016; 17
Squair (2022092013210562400_ref10) 2021; 12
Butler (2022092013210562400_ref3) 2018; 36
Hao (2022092013210562400_ref23) 2021; 184
Cole (2022092013210562400_ref2) 2019; 8
Kallionpää (2022092013210562400_ref25) 2019; 68
Robinson (2022092013210562400_ref32) 2010; 11
Tiberi (2022092013210562400_ref7) 2021
Chicco (2022092013210562400_ref29) 2020; 21
Ganna (2022092013210562400_ref28) 2015; 16
Luecken (2022092013210562400_ref4) 2022; 19
Kang (2022092013210562400_ref24) 2018; 36
Liu (2022092013210562400_ref26) 2021; 184
Crowell (2022092013210562400_ref6) 2020; 11
Love (2022092013210562400_ref18) 2014; 15
Bates (2022092013210562400_ref21) 2015; 67
Korthauer (2022092013210562400_ref5) 2016; 17
Law (2022092013210562400_ref22) 2014; 15
Zheng (2022092013210562400_ref13) 2017; 8
Finak (2022092013210562400_ref15) 2015; 16
Johnson (2022092013210562400_ref30) 2007; 8
Soneson (2022092013210562400_ref12) 2018; 15
References_xml – volume: 8
  start-page: 118
  year: 2007
  ident: 2022092013210562400_ref30
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 11
  start-page: 6077
  year: 2020
  ident: 2022092013210562400_ref6
  article-title: Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19894-4
– volume: 15
  start-page: 550
  year: 2014
  ident: 2022092013210562400_ref18
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 15
  start-page: R29
  year: 2014
  ident: 2022092013210562400_ref22
  article-title: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-2-r29
– volume: 12
  start-page: 5692
  year: 2021
  ident: 2022092013210562400_ref10
  article-title: Confronting false discoveries in single-cell differential expression
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25960-2
– volume: 67
  start-page: 1
  year: 2015
  ident: 2022092013210562400_ref21
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
– volume: 36
  start-page: 411
  year: 2018
  ident: 2022092013210562400_ref3
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 37
  start-page: 3243
  year: 2021
  ident: 2022092013210562400_ref9
  article-title: Differential gene expression analysis for multi-subject single-cell RNA-sequencing studies withaggregateBioVar
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab337
– volume: 19
  start-page: 41
  year: 2022
  ident: 2022092013210562400_ref4
  article-title: Benchmarking atlas-level data integration in single-cell genomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01336-8
– volume: 43
  start-page: e47
  year: 2015
  ident: 2022092013210562400_ref19
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume-title: Distinct: a novel approach to differential distribution analyses
  year: 2021
  ident: 2022092013210562400_ref7
– volume: 184
  start-page: 1836
  year: 2021
  ident: 2022092013210562400_ref26
  article-title: Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.018
– volume: 11
  start-page: R25
  year: 2010
  ident: 2022092013210562400_ref32
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-3-r25
– volume: 8
  start-page: 14049
  year: 2017
  ident: 2022092013210562400_ref13
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 68
  start-page: 2024
  year: 2019
  ident: 2022092013210562400_ref25
  article-title: Early detection of peripheral blood cell signature in children developing β-cell autoimmunity at a young age
  publication-title: Diabetes
  doi: 10.2337/db19-0287
– volume: 17
  start-page: 29
  year: 2016
  ident: 2022092013210562400_ref1
  article-title: Classification of low quality cells from single-cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0888-1
– volume: 13
  start-page: e1005562
  year: 2017
  ident: 2022092013210562400_ref20
  article-title: ROTS: an R package for reproducibility-optimized statistical testing
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005562
– volume: 8
  start-page: 315
  year: 2019
  ident: 2022092013210562400_ref2
  article-title: Performance assessment and selection of normalization procedures for single-cell RNA-Seq
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.03.010
– volume: 21
  start-page: 6
  year: 2020
  ident: 2022092013210562400_ref29
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 12
  start-page: 738
  year: 2021
  ident: 2022092013210562400_ref8
  article-title: A practical solution to pseudoreplication bias in single-cell studies
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21038-1
– volume: 36
  start-page: 89
  year: 2018
  ident: 2022092013210562400_ref24
  article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4042
– volume: 10
  start-page: 4667
  year: 2019
  ident: 2022092013210562400_ref31
  article-title: A systematic evaluation of single cell RNA-seq analysis pipelines
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12266-7
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2022092013210562400_ref23
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 17
  start-page: 222
  year: 2016
  ident: 2022092013210562400_ref5
  article-title: A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1077-y
– volume: 16
  start-page: 563
  year: 2015
  ident: 2022092013210562400_ref28
  article-title: Rediscovery rate estimation for assessing the validation of significant findings in high-throughput studies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbu033
– volume: 4
  start-page: 1
  year: 2021
  ident: 2022092013210562400_ref16
  article-title: NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02146-6
– volume: 15
  start-page: 255
  year: 2018
  ident: 2022092013210562400_ref12
  article-title: Bias, robustness and scalability in single-cell differential expression analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4612
– volume: 26
  start-page: 139
  year: 2010
  ident: 2022092013210562400_ref17
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 12
  start-page: 77
  year: 2011
  ident: 2022092013210562400_ref27
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 16
  start-page: 278
  year: 2015
  ident: 2022092013210562400_ref15
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 18
  start-page: 735
  year: 2017
  ident: 2022092013210562400_ref11
  article-title: Comparison of methods to detect differentially expressed genes between single-cell populations
  publication-title: Brief Bioinform
– volume: 38
  start-page: 147
  year: 2020
  ident: 2022092013210562400_ref14
  article-title: Droplet scRNA-seq is not zero-inflated
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0379-5
SSID ssj0020781
Score 2.4979994
Snippet Abstract Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic...
Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Benchmarking
Gene Expression Profiling - methods
Gene sequencing
Humans
Problem Solving Protocol
RNA
RNA-Seq
Sequence Analysis, RNA - methods
Transcriptomes
Transcriptomics
Title Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
URI https://www.ncbi.nlm.nih.gov/pubmed/35880426
https://www.proquest.com/docview/2717367652
https://www.proquest.com/docview/2694958484
https://pubmed.ncbi.nlm.nih.gov/PMC9487674
Volume 23
WOSCitedRecordID wos000833580100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BBRIX3o9AKUbqCcmqN3Zi-1gQFacFoSLtLbKntrrSkkKzi8S_ZybJRt2qAq7xJLE8HvubN8Ch9YSSMaKMGLI0VmdJqLWWLqvEgMCiyn2zCTufu8XCfxkDZLsbXPheH8VlPIoxYOm4svascrydTz8vJr2K69UMSURWcnX3MQ3v2rs7F89OMtsVTHk9NPLKXXPy4H9n-RDuj2hSHA_sfwS3UvsY7g79JX8_gc172oPn30NvDxdDs-hOEEwVZ4mdB_x02yGFJH0l-vSiTozBW4J05bMhpEtwGoroow9lt4lsvBFsZVglyaZ_8XV-LLv0U3DA6VP4dvLx9MMnOfZZkGiMWktNcluqpKPKCY0inlYBlbY52ORS1mVUdai8Rp9VFRSpPAZZ0YizoGbBB_0M9tqLNr0AUftYEgBBj640SIdDmFWZvk5HbgoZsYB3WyY0OBYh514Yq2ZwhuuG1rEZ17GAw4n4x1B742ayN8TNv1PsbzndjCLaNSXHH9S2rsoC3k7DJFy8bKFNFxuiqT0pkM44U8DzYWNM_9EVHX2EbwqwO1tmIuDC3bsj7fK8L-DtSUusrXn5z4m_gnslp1uwF0ztw976cpNewx38tV52lwdw2y7cQS8LfwA5cQi_
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+methods+for+detecting+differential+states+between+conditions+from+multi-subject+single-cell+RNA-seq+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Junttila%2C+Sini&rft.au=Smolander%2C+Johannes&rft.au=Elo%2C+Laura+L&rft.date=2022-09-20&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac286&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon