Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
Abstract Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific diffe...
Uloženo v:
| Vydáno v: | Briefings in bioinformatics Ročník 23; číslo 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Oxford University Press
20.09.2022
Oxford Publishing Limited (England) |
| Témata: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods. |
|---|---|
| AbstractList | Abstract
Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods. Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods.Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods. Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis methods that treat cells statistically independent are subject to false positives in the presence of variation between biological replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way. While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of the naïve methods. |
| Author | Elo, Laura L Junttila, Sini Smolander, Johannes |
| Author_xml | – sequence: 1 givenname: Sini surname: Junttila fullname: Junttila, Sini email: simaju@utu.fi – sequence: 2 givenname: Johannes orcidid: 0000-0003-3872-9668 surname: Smolander fullname: Smolander, Johannes email: johannes.smolander@gmail.com – sequence: 3 givenname: Laura L surname: Elo fullname: Elo, Laura L email: laura.elo@utu.fi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35880426$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUuLFDEUhYOMOA9duZeAIIKUk1ReVRthHHzBoCC6Dknq1nTaqqQnSSn-e1N0j-ggrhKS7xzuuecUHYUYAKHHlLykpGfn1ttza41rO3kPnVCuVMOJ4EfrXapGcMmO0WnOW0Jaojr6AB0z0XWEt_IELa8huM1s0jcfrvEMZROHjMeY8AAFXFlfBz-OkCAUbyaciymQsYXyAyBgF8Pgi4-hilKc8bxMxTd5sdsqxrnKJ2gcTBP-_PGiyXCDB1PMQ3R_NFOGR4fzDH19--bL5fvm6tO7D5cXV43jnJSG8Va0BJglIzhOnDPCOMLUaBR0MLLWEmlEz1w_EmGIJJI7IpWw1BBqesPO0Ku9726xMwyuZkhm0rvka-KfOhqv__4JfqOv43fd805JxavB84NBijcL5KJnn9c4JkBcsm5lz3vR8W5Fn95Bt3FJocbTraKKSSVFW6knf070e5TbRipA94BLMecEo3a-rrxuuA7oJ02JXlvXtXV9aL1qXtzR3Nr-m362p-Oy-y_4Cw2evsk |
| CitedBy_id | crossref_primary_10_1186_s13059_023_03054_0 crossref_primary_10_1186_s12859_024_05724_7 crossref_primary_10_1016_j_gene_2025_149603 crossref_primary_10_3389_fimmu_2023_1315602 crossref_primary_10_1111_acel_70095 crossref_primary_10_1093_bioinformatics_btaf442 crossref_primary_10_1097_MD_0000000000043033 crossref_primary_10_1093_bioinformatics_btae498 crossref_primary_10_1186_s12859_025_06044_0 crossref_primary_10_3390_pharmaceutics16060835 crossref_primary_10_1093_bfgp_elae041 crossref_primary_10_3389_fimmu_2023_1103690 crossref_primary_10_1016_j_neuron_2024_05_013 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_3390_biomedicines12020308 crossref_primary_10_1182_bloodadvances_2023009808 crossref_primary_10_1016_j_xpro_2024_103203 crossref_primary_10_1038_s41580_024_00768_2 crossref_primary_10_1186_s13059_024_03290_y crossref_primary_10_1038_s44277_025_00041_0 crossref_primary_10_1155_2023_8384882 crossref_primary_10_1038_s41467_025_62579_z crossref_primary_10_1093_bfgp_elad011 crossref_primary_10_7554_eLife_92678 crossref_primary_10_1186_s13062_025_00691_2 crossref_primary_10_3390_genes16091088 crossref_primary_10_1080_2162402X_2025_2502278 crossref_primary_10_1186_s12859_024_05926_z crossref_primary_10_1186_s13046_023_02734_w crossref_primary_10_7554_eLife_92678_2 crossref_primary_10_1126_sciadv_adp0467 crossref_primary_10_1038_s41593_025_01993_4 crossref_primary_10_1126_scitranslmed_adn5449 |
| Cites_doi | 10.1093/biostatistics/kxj037 10.1038/s41467-020-19894-4 10.1186/s13059-014-0550-8 10.1186/gb-2014-15-2-r29 10.1038/s41467-021-25960-2 10.18637/jss.v067.i01 10.1038/nbt.4096 10.1093/bioinformatics/btab337 10.1038/s41592-021-01336-8 10.1093/nar/gkv007 10.1016/j.cell.2021.02.018 10.1186/gb-2010-11-3-r25 10.1038/ncomms14049 10.2337/db19-0287 10.1186/s13059-016-0888-1 10.1371/journal.pcbi.1005562 10.1016/j.cels.2019.03.010 10.1186/s12864-019-6413-7 10.1038/s41467-021-21038-1 10.1038/nbt.4042 10.1038/s41467-019-12266-7 10.1016/j.cell.2021.04.048 10.1186/s13059-016-1077-y 10.1093/bib/bbu033 10.1038/s42003-021-02146-6 10.1038/nmeth.4612 10.1093/bioinformatics/btp616 10.1186/1471-2105-12-77 10.1186/s13059-015-0844-5 10.1038/s41587-019-0379-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| DOI | 10.1093/bib/bbac286 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | PMC9487674 35880426 10_1093_bib_bbac286 10.1093/bib/bbac286 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Research Council grantid: 677943 – fundername: ; grantid: 677943 – fundername: ; grantid: 955321 – fundername: ; grantid: 310561; 314443; 329278; 335434; 335611; 341342 – fundername: ; |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c440t-342520e3b0fec40cca5ac037fa7e8ef32b06a593c9f05a06064c0675b1a01a9a3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833580100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 17:19:10 EDT 2025 Thu Sep 25 09:07:11 EDT 2025 Mon Oct 06 16:53:25 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Sat Nov 29 05:43:32 EST 2025 Tue Nov 18 21:59:24 EST 2025 Wed Aug 28 03:18:18 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | RNA sequencing (RNA-seq) differential expression single cell |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c440t-342520e3b0fec40cca5ac037fa7e8ef32b06a593c9f05a06064c0675b1a01a9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Sini Junttila and Johannes Smolander have contributed equally to this work. |
| ORCID | 0000-0003-3872-9668 |
| OpenAccessLink | https://dx.doi.org/10.1093/bib/bbac286 |
| PMID | 35880426 |
| PQID | 2717367652 |
| PQPubID | 26846 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9487674 proquest_miscellaneous_2694958484 proquest_journals_2717367652 pubmed_primary_35880426 crossref_citationtrail_10_1093_bib_bbac286 crossref_primary_10_1093_bib_bbac286 oup_primary_10_1093_bib_bbac286 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-20 |
| PublicationDateYYYYMMDD | 2022-09-20 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2022 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Suomi (2022092013210562400_ref20) 2017; 13 Svensson (2022092013210562400_ref14) 2020; 38 Zimmerman (2022092013210562400_ref8) 2021; 12 Robinson (2022092013210562400_ref17) 2010; 26 Robin (2022092013210562400_ref27) 2011; 12 Jaakkola (2022092013210562400_ref11) 2017; 18 Ritchie (2022092013210562400_ref19) 2015; 43 Thurman (2022092013210562400_ref9) 2021; 37 Vieth (2022092013210562400_ref31) 2019; 10 He (2022092013210562400_ref16) 2021; 4 Ilicic (2022092013210562400_ref1) 2016; 17 Squair (2022092013210562400_ref10) 2021; 12 Butler (2022092013210562400_ref3) 2018; 36 Hao (2022092013210562400_ref23) 2021; 184 Cole (2022092013210562400_ref2) 2019; 8 Kallionpää (2022092013210562400_ref25) 2019; 68 Robinson (2022092013210562400_ref32) 2010; 11 Tiberi (2022092013210562400_ref7) 2021 Chicco (2022092013210562400_ref29) 2020; 21 Ganna (2022092013210562400_ref28) 2015; 16 Luecken (2022092013210562400_ref4) 2022; 19 Kang (2022092013210562400_ref24) 2018; 36 Liu (2022092013210562400_ref26) 2021; 184 Crowell (2022092013210562400_ref6) 2020; 11 Love (2022092013210562400_ref18) 2014; 15 Bates (2022092013210562400_ref21) 2015; 67 Korthauer (2022092013210562400_ref5) 2016; 17 Law (2022092013210562400_ref22) 2014; 15 Zheng (2022092013210562400_ref13) 2017; 8 Finak (2022092013210562400_ref15) 2015; 16 Johnson (2022092013210562400_ref30) 2007; 8 Soneson (2022092013210562400_ref12) 2018; 15 |
| References_xml | – volume: 8 start-page: 118 year: 2007 ident: 2022092013210562400_ref30 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 11 start-page: 6077 year: 2020 ident: 2022092013210562400_ref6 article-title: Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data publication-title: Nat Commun doi: 10.1038/s41467-020-19894-4 – volume: 15 start-page: 550 year: 2014 ident: 2022092013210562400_ref18 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 15 start-page: R29 year: 2014 ident: 2022092013210562400_ref22 article-title: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts publication-title: Genome Biol doi: 10.1186/gb-2014-15-2-r29 – volume: 12 start-page: 5692 year: 2021 ident: 2022092013210562400_ref10 article-title: Confronting false discoveries in single-cell differential expression publication-title: Nat Commun doi: 10.1038/s41467-021-25960-2 – volume: 67 start-page: 1 year: 2015 ident: 2022092013210562400_ref21 article-title: Fitting linear mixed-effects models using lme4 publication-title: J Stat Softw doi: 10.18637/jss.v067.i01 – volume: 36 start-page: 411 year: 2018 ident: 2022092013210562400_ref3 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 37 start-page: 3243 year: 2021 ident: 2022092013210562400_ref9 article-title: Differential gene expression analysis for multi-subject single-cell RNA-sequencing studies withaggregateBioVar publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab337 – volume: 19 start-page: 41 year: 2022 ident: 2022092013210562400_ref4 article-title: Benchmarking atlas-level data integration in single-cell genomics publication-title: Nat Methods doi: 10.1038/s41592-021-01336-8 – volume: 43 start-page: e47 year: 2015 ident: 2022092013210562400_ref19 article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume-title: Distinct: a novel approach to differential distribution analyses year: 2021 ident: 2022092013210562400_ref7 – volume: 184 start-page: 1836 year: 2021 ident: 2022092013210562400_ref26 article-title: Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19 publication-title: Cell doi: 10.1016/j.cell.2021.02.018 – volume: 11 start-page: R25 year: 2010 ident: 2022092013210562400_ref32 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol doi: 10.1186/gb-2010-11-3-r25 – volume: 8 start-page: 14049 year: 2017 ident: 2022092013210562400_ref13 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 68 start-page: 2024 year: 2019 ident: 2022092013210562400_ref25 article-title: Early detection of peripheral blood cell signature in children developing β-cell autoimmunity at a young age publication-title: Diabetes doi: 10.2337/db19-0287 – volume: 17 start-page: 29 year: 2016 ident: 2022092013210562400_ref1 article-title: Classification of low quality cells from single-cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-016-0888-1 – volume: 13 start-page: e1005562 year: 2017 ident: 2022092013210562400_ref20 article-title: ROTS: an R package for reproducibility-optimized statistical testing publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005562 – volume: 8 start-page: 315 year: 2019 ident: 2022092013210562400_ref2 article-title: Performance assessment and selection of normalization procedures for single-cell RNA-Seq publication-title: Cell Syst doi: 10.1016/j.cels.2019.03.010 – volume: 21 start-page: 6 year: 2020 ident: 2022092013210562400_ref29 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 12 start-page: 738 year: 2021 ident: 2022092013210562400_ref8 article-title: A practical solution to pseudoreplication bias in single-cell studies publication-title: Nat Commun doi: 10.1038/s41467-021-21038-1 – volume: 36 start-page: 89 year: 2018 ident: 2022092013210562400_ref24 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation publication-title: Nat Biotechnol doi: 10.1038/nbt.4042 – volume: 10 start-page: 4667 year: 2019 ident: 2022092013210562400_ref31 article-title: A systematic evaluation of single cell RNA-seq analysis pipelines publication-title: Nat Commun doi: 10.1038/s41467-019-12266-7 – volume: 184 start-page: 3573 year: 2021 ident: 2022092013210562400_ref23 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 17 start-page: 222 year: 2016 ident: 2022092013210562400_ref5 article-title: A statistical approach for identifying differential distributions in single-cell RNA-seq experiments publication-title: Genome Biol doi: 10.1186/s13059-016-1077-y – volume: 16 start-page: 563 year: 2015 ident: 2022092013210562400_ref28 article-title: Rediscovery rate estimation for assessing the validation of significant findings in high-throughput studies publication-title: Brief Bioinform doi: 10.1093/bib/bbu033 – volume: 4 start-page: 1 year: 2021 ident: 2022092013210562400_ref16 article-title: NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data publication-title: Commun Biol doi: 10.1038/s42003-021-02146-6 – volume: 15 start-page: 255 year: 2018 ident: 2022092013210562400_ref12 article-title: Bias, robustness and scalability in single-cell differential expression analysis publication-title: Nat Methods doi: 10.1038/nmeth.4612 – volume: 26 start-page: 139 year: 2010 ident: 2022092013210562400_ref17 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 12 start-page: 77 year: 2011 ident: 2022092013210562400_ref27 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 16 start-page: 278 year: 2015 ident: 2022092013210562400_ref15 article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 18 start-page: 735 year: 2017 ident: 2022092013210562400_ref11 article-title: Comparison of methods to detect differentially expressed genes between single-cell populations publication-title: Brief Bioinform – volume: 38 start-page: 147 year: 2020 ident: 2022092013210562400_ref14 article-title: Droplet scRNA-seq is not zero-inflated publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0379-5 |
| SSID | ssj0020781 |
| Score | 2.4979994 |
| Snippet | Abstract
Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic... Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and study transcriptomic changes... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Benchmarking Gene Expression Profiling - methods Gene sequencing Humans Problem Solving Protocol RNA RNA-Seq Sequence Analysis, RNA - methods Transcriptomes Transcriptomics |
| Title | Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35880426 https://www.proquest.com/docview/2717367652 https://www.proquest.com/docview/2694958484 https://pubmed.ncbi.nlm.nih.gov/PMC9487674 |
| Volume | 23 |
| WOSCitedRecordID | wos000833580100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB-0KPjS-tmurTVCn4TQXJJNNo9VLD6dIhXubUlyCT04t7Z7J_jfO7O7t_RKUV83s2zIzGzmN58AJykj6PIicyu85zojZnXeeO5dUG4yD0aJ0A2bsNNpNZu5r0OCbHtPCN-p07AIpyH4KCvqrD0pKxLniy-zEVdRv5q-iMhy6u4-lOHdeXfr4tkqZrtlU95Njbx115zv_e8un8LuYE2ys579z-BBap7D436-5O8XsP6AMnj5w3f-cNYPi24Zmqlsnih4QE83E1JQ05esKy9q2ZC8xRArz_uULkZlKKzLPuTtOpDzhpGXYZk4uf7Zt-kZb9M1o4TTl_D9_NPFx898mLPAo9ZixRXqrRRJBZFT1AJ5WvoolM3epiplJYMwvnQquixKLxDy6EhAI0y8mHjn1SvYaa6adABMRmNyJVOI86SdlwEPEjFkVVYuB6lTAe83TKjj0IScZmEs6z4Yrmo8x3o4xwJORuKffe-N-8neIjf_TnG04XQ9qGhbS8o_MNaUsoB34zIqFx2bb9LVGmmMQwCJ-9cF7PeCMX5HlfjrQ_umALslMiMBNe7eXmkWl10Db4co0Vj9-p8bP4QnksotKAomjmBndbNOb-BR_LVatDfH8NDOquNOF_4AH6YJwQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+methods+for+detecting+differential+states+between+conditions+from+multi-subject+single-cell+RNA-seq+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Junttila%2C+Sini&rft.au=Smolander%2C+Johannes&rft.au=Elo%2C+Laura+L&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac286&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |