Organic Molecules Mimic Alkali Metals Enabling Spontaneous Harpoon Reactions with Halogens
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] p...
Uložené v:
| Vydané v: | Chemistry : a European journal Ročník 30; číslo 20; s. e202400038 - n/a |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
05.04.2024
Wiley Blackwell (John Wiley & Sons) |
| Predmet: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.
Octamethylcalix[4]pyrrole (omC4P) behaves like alkali metals and reacts with halogens (X) via the harpoon mechanism to form charge‐separated omC4P+ ⋅ X− complexes.harpoon reactionlong range electron transferphotoelectron spectroscopy |
|---|---|
| AbstractList | The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P + ⋅ X − ( X =F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P + ⋅ X − could be visualized to form from the reactants omC4P+ X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X . Abstract The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P + ⋅ X − ( X =F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P + ⋅ X − could be visualized to form from the reactants omC4P+ X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X . The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. Octamethylcalix[4]pyrrole (omC4P) behaves like alkali metals and reacts with halogens (X) via the harpoon mechanism to form charge‐separated omC4P+ ⋅ X− complexes.harpoon reactionlong range electron transferphotoelectron spectroscopy The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4]pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+·X- (X= F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+·X- could be visualized to form from the reactants omC4P + X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. |
| Author | Cao, Wenjin Wang, Xue‐Bin |
| Author_xml | – sequence: 1 givenname: Wenjin orcidid: 0000-0002-2852-4047 surname: Cao fullname: Cao, Wenjin organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Xue‐Bin orcidid: 0000-0001-8326-1780 surname: Wang fullname: Wang, Xue‐Bin email: xuebin.wang@pnnl.gov organization: Pacific Northwest National Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38287792$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2308889$$D View this record in Osti.gov |
| BookMark | eNqFkc9r2zAYhsXoWNNu1x2H2S67OPss2bJ0LCFbBg2F_bjsIhT5U6JOljLLpvS_n4K7DgpjJ_GJ55F4v_eCnIUYkJDXFSwrAPrBHLBfUqA1ADDxjCyqhlYla3lzRhYg67bkDZPn5CKl24xIztgLcs4EFW0r6YL8uBn2OjhTbKNHM3lMxdb1eb7yP7V3xRZH7VOxDnrnXdgXX48xjDpgnFKx0cMxxlB8QW1GF0Mq7tx4yNc-7jGkl-S5zS6-ejgvyfeP62-rTXl98-nz6uq6NHUNojRgZYdoG8uqDtAarjmj2qBkXAjTQCc7LqRtsWWSNyBz0ApFs7MSjOaWXZK387sxjU4l40Y0BxNDQDMqykAIITP0foaOQ_w1YRpV75JB7-csikoKleBAT-i7J-htnIaQIygGrBZSsqrN1JsHatr12Knj4Ho93Ks_q83AcgbMEFMa0D4iFahTd-rUnXrsLgv1EyFH0afFjoN2_t-anLU75_H-P5-o1Wa9_ev-BsbvrOI |
| CitedBy_id | crossref_primary_10_1002_chem_202402766 crossref_primary_10_1021_jacs_3c13445 |
| Cites_doi | 10.1080/0144235X.2020.1719699 10.1039/C8CP07831A 10.1063/1.1675263 10.1002/anie.199311113 10.1063/1.1680654 10.1063/1.1750739 10.1021/ct200106a 10.1063/1.470603 10.1088/0953-4075/25/8/012 10.1063/1.1673133 10.1063/1.477774 10.1021/acs.jpclett.0c01099 10.1103/PhysRevA.40.3698 10.1039/D1CP02805G 10.1080/00268977000101561 10.1021/acs.jpca.0c00024 10.1007/s00214-013-1434-9 10.1038/355066a0 10.1021/ar950061f 10.1021/jp065887l 10.1073/pnas.0408029102 10.1039/b508541a 10.1063/1.1681704 10.1021/acs.jpcb.5b07257 10.1007/s00214-007-0310-x 10.1063/1.1672258 10.1007/BF01356227 10.1021/acs.jpca.6b09784 10.1126/science.1151614 10.1063/1.1712068 10.1063/1.4942769 10.1063/1.440892 10.1103/PhysRevA.51.231 10.1016/0263-7855(96)00018-5 10.1063/1.3382344 10.1126/science.240.4851.440 10.1063/5.0004608 10.1063/1.3591179 10.1021/acs.accounts.2c00839 10.1021/jacs.9b01345 10.1039/C8SC03034K 10.1021/acs.jctc.7b00593 10.1063/5.0159326 10.1146/annurev.pc.46.100195.003011 10.1021/acs.jpclett.9b02663 10.1063/1.456153 10.1073/pnas.062633799 10.1063/1.472529 10.1021/ja960307r 10.1002/jcc.22885 10.1021/ja908106e 10.1073/pnas.96.6.2602 10.1039/b204199p |
| ContentType | Journal Article |
| Copyright | 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 OTOTI |
| DOI | 10.1002/chem.202400038 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | n/a |
| ExternalDocumentID | 2308889 38287792 10_1002_chem_202400038 CHEM202400038 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Basic Energy Sciences funderid: FWP 16248 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX ACUHS AEYWJ AGHNM AGYGG CITATION EBD O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
| ID | FETCH-LOGICAL-c4408-c0f9deef5f31d0efc6a632ace93688c50d9d689f7e73965090031e85bf90ca6f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Mon Apr 15 04:52:53 EDT 2024 Fri Jul 11 15:30:53 EDT 2025 Tue Oct 07 07:05:14 EDT 2025 Mon Jul 21 06:07:48 EDT 2025 Tue Nov 18 22:12:06 EST 2025 Sat Nov 29 07:09:43 EST 2025 Wed Jan 22 17:19:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | harpoon reaction long range electron transfer photoelectron spectroscopy |
| Language | English |
| License | Attribution 2024 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4408-c0f9deef5f31d0efc6a632ace93688c50d9d689f7e73965090031e85bf90ca6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
| ORCID | 0000-0002-2852-4047 0000-0001-8326-1780 0000000183261780 0000000228524047 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400038 |
| PMID | 38287792 |
| PQID | 3034899317 |
| PQPubID | 986340 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_2308889 proquest_miscellaneous_2920186029 proquest_journals_3034899317 pubmed_primary_38287792 crossref_primary_10_1002_chem_202400038 crossref_citationtrail_10_1002_chem_202400038 wiley_primary_10_1002_chem_202400038_CHEM202400038 |
| PublicationCentury | 2000 |
| PublicationDate | April 5, 2024 |
| PublicationDateYYYYMMDD | 2024-04-05 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 5, 2024 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 1989; 40 2021; 23 2019; 10 1973; 59 2002; 99 2016; 144 2020; 11 2020; 124 1996; 105 2018; 9 1971; 54 1940; 8 2005; 102 2019; 21 1993; 32 1992; 355 2008; 319 1987 1999; 96 2017; 121 1981; 74 1995; 51 1920; 3 2023; 56 1969; 51 2020; 39 2006; 110 2002; 4 1970; 52 1967; 47 1988; 240 2009; 131 1996; 14 2019; 141 1970; 19 2008; 120 2012; 33 2016; 120 2011; 134 2011; 7 2023 2020; 152 1974; 61 1995; 46 2017; 13 1989; 90 2010; 132 2013; 133 2023; 159 2005; 7 1998; 109 1995; 103 1992; 25 1998; 31 1996; 118 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Terry L. M. (e_1_2_8_28_1) 2023 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Levine R. D. (e_1_2_8_1_1) 1987 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 74 start-page: 5794 year: 1981 end-page: 5801 publication-title: J. Chem. Phys. – volume: 319 start-page: 936 year: 2008 end-page: 939 publication-title: Science – volume: 96 start-page: 2602 year: 1999 end-page: 2607 publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 10754 year: 1998 end-page: 10766 publication-title: J. Chem. Phys. – volume: 159 year: 2023 publication-title: J. Chem. Phys. – volume: 118 start-page: 5140 year: 1996 end-page: 5141 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 3698 year: 1989 end-page: 3701 publication-title: Phys. Rev. A – volume: 51 start-page: 231 year: 1995 end-page: 238 publication-title: Phys. Rev. A – volume: 240 start-page: 440 year: 1988 end-page: 447 publication-title: Science – volume: 7 start-page: 3027 year: 2011 end-page: 3034 publication-title: J. Chem. Theory Comput. – volume: 54 start-page: 2831 year: 1971 end-page: 2851 publication-title: J. Chem. Phys. – volume: 141 start-page: 6132 year: 2019 end-page: 6135 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 3534 year: 2005 end-page: 3539 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 4346 year: 2020 end-page: 4352 publication-title: J. Phys. Chem. Lett. – volume: 133 start-page: 1434 year: 2013 publication-title: Theor. Chem. Acc. – volume: 56 start-page: 500 year: 2023 end-page: 513 publication-title: Acc. Chem. Res. – volume: 47 start-page: 993 year: 1967 end-page: 1004 publication-title: J. Chem. Phys. – volume: 355 start-page: 66 year: 1992 end-page: 68 publication-title: Nature – volume: 19 start-page: 553 year: 1970 end-page: 566 publication-title: Mol. Phys. – volume: 144 year: 2016 publication-title: J. Chem. Phys. – volume: 134 year: 2011 publication-title: J. Chem. Phys. – volume: 90 start-page: 1007 year: 1989 end-page: 1023 publication-title: J. Chem. Phys. – volume: 10 start-page: 6714 year: 2019 end-page: 6719 publication-title: J. Phys. Chem. Lett. – volume: 39 start-page: 83 year: 2020 end-page: 108 publication-title: Int. Rev. Phys. Chem. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 21 start-page: 7239 year: 2019 end-page: 7255 publication-title: Phys. Chem. Chem. Phys. – volume: 33 start-page: 580 year: 2012 end-page: 592 publication-title: J. Comput. Chem. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 120 start-page: 1518 year: 2016 end-page: 1525 publication-title: J. Phys. Chem. B – volume: 105 start-page: 7231 year: 1996 end-page: 7234 publication-title: J. Chem. Phys. – volume: 124 start-page: 2036 year: 2020 end-page: 2045 publication-title: J. Phys. Chem. A – start-page: 134 year: 1987 end-page: 137 – volume: 25 start-page: 1773 year: 1992 publication-title: J. Phys. B: At., Mol. Opt. Phys. – volume: 52 start-page: 1317 year: 1970 end-page: 1331 publication-title: J. Chem. Phys. – volume: 8 start-page: 687 year: 1940 end-page: 698 publication-title: J. Chem. Phys. – volume: 9 start-page: 7186 year: 2018 end-page: 7192 publication-title: Chem. Sci. – volume: 121 start-page: 1389 year: 2017 end-page: 1401 publication-title: J. Phys. Chem. A – volume: 59 start-page: 4557 year: 1973 end-page: 4558 publication-title: J. Chem. Phys. – volume: 110 start-page: 13877 year: 2006 end-page: 13883 publication-title: J. Phys. Chem. A – volume: 32 start-page: 1111 year: 1993 end-page: 1121 publication-title: Angew. Chem. Int. Ed. – year: 2023 publication-title: ChemRxiv preprint – volume: 13 start-page: 3696 year: 2017 end-page: 3705 publication-title: J. Chem. Theory Comput. – volume: 61 start-page: 4091 year: 1974 end-page: 4100 publication-title: J. Chem. Phys. – volume: 131 start-page: 16368 year: 2009 end-page: 16370 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 31 year: 1920 end-page: 35 publication-title: Z. Phys. – volume: 46 start-page: 555 year: 1995 end-page: 594 publication-title: Annu. Rev. Phys. Chem. – volume: 4 start-page: 4285 year: 2002 end-page: 4291 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 1742 year: 1969 end-page: 1753 publication-title: J. Chem. Phys. – volume: 120 start-page: 215 year: 2008 end-page: 241 publication-title: Theor. Chem. Acc. – volume: 23 start-page: 20323 year: 2021 end-page: 20328 publication-title: Phys. Chem. Chem. Phys. – volume: 99 start-page: 4848 year: 2002 end-page: 4853 publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 33 year: 1996 end-page: 38 publication-title: J. Mol. Graphics – volume: 31 start-page: 527 year: 1998 end-page: 534 publication-title: Acc. Chem. Res. – volume: 103 start-page: 5153 year: 1995 end-page: 5156 publication-title: J. Chem. Phys. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_18_1 doi: 10.1080/0144235X.2020.1719699 – ident: e_1_2_8_21_1 doi: 10.1039/C8CP07831A – ident: e_1_2_8_10_1 doi: 10.1063/1.1675263 – ident: e_1_2_8_5_1 doi: 10.1002/anie.199311113 – ident: e_1_2_8_45_1 doi: 10.1063/1.1680654 – ident: e_1_2_8_3_1 doi: 10.1063/1.1750739 – ident: e_1_2_8_43_1 doi: 10.1021/ct200106a – ident: e_1_2_8_14_1 doi: 10.1063/1.470603 – ident: e_1_2_8_32_1 doi: 10.1088/0953-4075/25/8/012 – ident: e_1_2_8_9_1 doi: 10.1063/1.1673133 – ident: e_1_2_8_20_1 doi: 10.1063/1.477774 – ident: e_1_2_8_23_1 doi: 10.1021/acs.jpclett.0c01099 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevA.40.3698 – ident: e_1_2_8_54_1 doi: 10.1039/D1CP02805G – ident: e_1_2_8_46_1 doi: 10.1080/00268977000101561 – ident: e_1_2_8_36_1 doi: 10.1021/acs.jpca.0c00024 – ident: e_1_2_8_49_1 doi: 10.1007/s00214-013-1434-9 – ident: e_1_2_8_13_1 doi: 10.1038/355066a0 – ident: e_1_2_8_16_1 doi: 10.1021/ar950061f – ident: e_1_2_8_44_1 doi: 10.1021/jp065887l – ident: e_1_2_8_6_1 doi: 10.1073/pnas.0408029102 – ident: e_1_2_8_41_1 doi: 10.1039/b508541a – ident: e_1_2_8_11_1 doi: 10.1063/1.1681704 – ident: e_1_2_8_33_1 doi: 10.1021/acs.jpcb.5b07257 – ident: e_1_2_8_39_1 doi: 10.1007/s00214-007-0310-x – ident: e_1_2_8_8_1 doi: 10.1063/1.1672258 – ident: e_1_2_8_2_1 doi: 10.1007/BF01356227 – ident: e_1_2_8_29_1 doi: 10.1021/acs.jpca.6b09784 – ident: e_1_2_8_17_1 doi: 10.1126/science.1151614 – ident: e_1_2_8_7_1 doi: 10.1063/1.1712068 – ident: e_1_2_8_50_1 doi: 10.1063/1.4942769 – year: 2023 ident: e_1_2_8_28_1 publication-title: ChemRxiv preprint – ident: e_1_2_8_48_1 doi: 10.1063/1.440892 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevA.51.231 – ident: e_1_2_8_55_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_8_40_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_4_1 doi: 10.1126/science.240.4851.440 – ident: e_1_2_8_52_1 doi: 10.1063/5.0004608 – ident: e_1_2_8_34_1 doi: 10.1063/1.3591179 – ident: e_1_2_8_27_1 doi: 10.1021/acs.accounts.2c00839 – ident: e_1_2_8_22_1 doi: 10.1021/jacs.9b01345 – ident: e_1_2_8_26_1 doi: 10.1039/C8SC03034K – ident: e_1_2_8_51_1 doi: 10.1021/acs.jctc.7b00593 – ident: e_1_2_8_37_1 doi: 10.1063/5.0159326 – ident: e_1_2_8_12_1 doi: 10.1146/annurev.pc.46.100195.003011 – ident: e_1_2_8_35_1 doi: 10.1021/acs.jpclett.9b02663 – ident: e_1_2_8_42_1 doi: 10.1063/1.456153 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.062633799 – ident: e_1_2_8_19_1 doi: 10.1063/1.472529 – ident: e_1_2_8_24_1 doi: 10.1021/ja960307r – ident: e_1_2_8_53_1 doi: 10.1002/jcc.22885 – ident: e_1_2_8_38_1 doi: 10.1021/ja908106e – start-page: 134 volume-title: Molecular Reaction Dynamics and Chemical Reactivity year: 1987 ident: e_1_2_8_1_1 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.96.6.2602 – ident: e_1_2_8_47_1 doi: 10.1039/b204199p |
| SSID | ssj0009633 |
| Score | 2.4775045 |
| Snippet | The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali... Abstract The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202400038 |
| SubjectTerms | Alkali metals Anions Chemical bonds Electron affinity Halogens Ionization Ionization potentials Organic chemistry Photoelectron spectroscopy Photoelectrons |
| Title | Organic Molecules Mimic Alkali Metals Enabling Spontaneous Harpoon Reactions with Halogens |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400038 https://www.ncbi.nlm.nih.gov/pubmed/38287792 https://www.proquest.com/docview/3034899317 https://www.proquest.com/docview/2920186029 https://www.osti.gov/biblio/2308889 |
| Volume | 30 |
| WOSCitedRecordID | wos001163292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTaG9NH3HTRpUKPRkYsu2bB1DmiWHbghpA0svQh5LEJJ6Q7zJ7--M5XW60BJILsYP2ciSRvPpMd8H8IWcMqY5FjFqW8e5zVVcN7zEXude142X2tpebKI8Pq7mc33yVxR_4IcYJ9zYMvr-mg3c1t3eHWko_RNHkvMeyCSrnsJGmmYVizfI_OSOdlcNYvJ5GTMJ64q2MZF76--vuaXJgszrX5BzHcH2Lmi6-fjMv4KXA_wU-6G9vIYnrn0Dzw9Wqm9v4VcIzkQxC7q5rhOz8990vX95QZBdzByh9U4ccsgVeT3x42rREr50i5tOHFlW7GrFqQvREp3gWV66Tf0rjZbfwdn08OfBUTzoL8TIOtQxJl43zvnCZ2mTOI_KqkxadDpTVYVF0uhGVdqXrsw0M_FxD-GqovY6Qat89h4m7aJ1WyAwt6rxqsZefd2jdtLK0he68L4mlBNBvCp-gwM5OWtkXJpAqywNl5gZSyyCr2P6q0DL8d-U21ybhgAFs-Iibx_CpaGRF439dQQ7q0o2g_F2hrx6TsNQQlYRfB4fUz3wWkooUcMiXynrd9EnPoTGMWYkYxGBUssIZN8G7smhYfKL8erjQ17ahhd83u8oKnZgsry-cZ_gGd4uz7vr3d4k6FjOq13Y-HY6Pfv-B-cVDQc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD7oVZgv_tbVTY0g-FTWm6Zp8zjGxhV3L0MnDF9CeprA2Owd693-fs9pejsuKIL42DQpaZKT8-XH-T6Aj-SUcaqwSNG4OlVO6bRu-Ii9VsHUTZDGuV5solwsqrMzczLcJuRYmMgPMW64sWX08zUbOG9I792xhtJPcSg5X4LM8uo-PFDkanioS3Vyx7urBzV5VabMwrrmbczk3mb5Db80WZJ9_Q5zbkLY3gcdPfkPtX8KjwcAKvbjiHkG93z7HLYO1rpvL-BHDM9EMY_Kub4T8_Of9Lx_eUGgXcw94fVOHHLQFfk98e1q2RLC9MubTswca3a14quP8RKd4H1eSqYZltbLL-H70eHpwSwdFBhSZCXqFLNgGu9DEfJpk_mA2ulcOvQm11WFRdaYRlcmlL7MDXPx8Rzhq6IOJkOnQ_4KJu2y9dsgUDndBF1jr78e0HjpZBkKU4RQE85JIF23v8WBnpxVMi5tJFaWllvMji2WwKcx_1Uk5vhjzh3uTkuQgnlxkS8Q4crS2otW_yaB3XUv28F8O0t-XdFClLBVAh_G19QPfJoSW9SyzNeUFbzoE6_j6BgrkrOMQGlkArIfBH-poWX6i_Hpzb8Ueg9bs9P5sT3-vPiyA484vb9fVOzCZHV949_CQ7xdnXfX73r7-AUz5w5q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RpSq9QMurKbR1pUqcIrJ5OPERASuqsitEi4S4WM7EllBpdkUWfn9n4mzQSlSVqh7jOJZjezyfH_N9AF_IKeMwxSxEZcowNakMy4qP2MvUqbJysTKmFZvIJ5Pi-lpddLcJORbG80P0G25sGe18zQZuZ5U7fGINpZ_iUHK-BBklxQtYTVlJZgCrJ5ejq_Mn5l3Z6cmnecg8rAvmxig-XC5hyTMNpmRhz6HOZRDbeqHRxn-o_xtY7yCoOPJj5i2s2HoT1o4Xym9bcOMDNFGMvXaubcT49hc9H939JNguxpYQeyNOOeyKPJ_4PpvWhDHt9KERZ4ZVu2pxaX3ERCN4p5eSaY6lFfM2XI1OfxyfhZ0GQ4isRR1i5FRlrctcMqwi61AamcQGrUpkUWAWVaqShXK5zRPFbHw8S9giK52K0EiX7MCgntb2HQhMjaycLLFVYHeobGzi3GUqc64kpBNAuGh_jR1BOetk3GlPrRxrbjHdt1gAB33-mafm-GPOPe5OTaCCmXGRrxDhXNPqi9b_KoD9RS_rzoAbTZ49paUooasAPvevqR_4PMW3qGahryFreFERu3509BVJWEggV3EAcTsI_lJDzQQY_dP7f_noE7y6OBnp86-Tb3vwmpPbC0bZPgzm9w_2A7zEx_ltc_-xM5DfoW4PgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Molecules+Mimic+Alkali+Metals+Enabling+Spontaneous+Harpoon+Reactions+with+Halogens&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Cao%2C+Wenjin&rft.au=Xue%E2%80%90Bin+Wang&rft.date=2024-04-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=20&rft_id=info:doi/10.1002%2Fchem.202400038&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |