Organic Molecules Mimic Alkali Metals Enabling Spontaneous Harpoon Reactions with Halogens

The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemistry : a European journal Ročník 30; číslo 20; s. e202400038 - n/a
Hlavní autori: Cao, Wenjin, Wang, Xue‐Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 05.04.2024
Wiley Blackwell (John Wiley & Sons)
Predmet:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. Octamethylcalix[4]pyrrole (omC4P) behaves like alkali metals and reacts with halogens (X) via the harpoon mechanism to form charge‐separated omC4P+ ⋅ X− complexes.harpoon reactionlong range electron transferphotoelectron spectroscopy
AbstractList The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P + ⋅ X − ( X =F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P + ⋅ X − could be visualized to form from the reactants omC4P+ X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X .
Abstract The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P +  ⋅  X − ( X =F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P +  ⋅  X − could be visualized to form from the reactants omC4P+ X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X .
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X. Octamethylcalix[4]pyrrole (omC4P) behaves like alkali metals and reacts with halogens (X) via the harpoon mechanism to form charge‐separated omC4P+ ⋅ X− complexes.harpoon reactionlong range electron transferphotoelectron spectroscopy
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4]pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+·X- (X= F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+·X- could be visualized to form from the reactants omC4P + X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non‐metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge‐separated ionic bonding complexes with halogens omC4P+ ⋅ X− (X=F−I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X− could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.
Author Cao, Wenjin
Wang, Xue‐Bin
Author_xml – sequence: 1
  givenname: Wenjin
  orcidid: 0000-0002-2852-4047
  surname: Cao
  fullname: Cao, Wenjin
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Xue‐Bin
  orcidid: 0000-0001-8326-1780
  surname: Wang
  fullname: Wang, Xue‐Bin
  email: xuebin.wang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38287792$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2308889$$D View this record in Osti.gov
BookMark eNqFkc9r2zAYhsXoWNNu1x2H2S67OPss2bJ0LCFbBg2F_bjsIhT5U6JOljLLpvS_n4K7DgpjJ_GJ55F4v_eCnIUYkJDXFSwrAPrBHLBfUqA1ADDxjCyqhlYla3lzRhYg67bkDZPn5CKl24xIztgLcs4EFW0r6YL8uBn2OjhTbKNHM3lMxdb1eb7yP7V3xRZH7VOxDnrnXdgXX48xjDpgnFKx0cMxxlB8QW1GF0Mq7tx4yNc-7jGkl-S5zS6-ejgvyfeP62-rTXl98-nz6uq6NHUNojRgZYdoG8uqDtAarjmj2qBkXAjTQCc7LqRtsWWSNyBz0ApFs7MSjOaWXZK387sxjU4l40Y0BxNDQDMqykAIITP0foaOQ_w1YRpV75JB7-csikoKleBAT-i7J-htnIaQIygGrBZSsqrN1JsHatr12Knj4Ho93Ks_q83AcgbMEFMa0D4iFahTd-rUnXrsLgv1EyFH0afFjoN2_t-anLU75_H-P5-o1Wa9_ev-BsbvrOI
CitedBy_id crossref_primary_10_1002_chem_202402766
crossref_primary_10_1021_jacs_3c13445
Cites_doi 10.1080/0144235X.2020.1719699
10.1039/C8CP07831A
10.1063/1.1675263
10.1002/anie.199311113
10.1063/1.1680654
10.1063/1.1750739
10.1021/ct200106a
10.1063/1.470603
10.1088/0953-4075/25/8/012
10.1063/1.1673133
10.1063/1.477774
10.1021/acs.jpclett.0c01099
10.1103/PhysRevA.40.3698
10.1039/D1CP02805G
10.1080/00268977000101561
10.1021/acs.jpca.0c00024
10.1007/s00214-013-1434-9
10.1038/355066a0
10.1021/ar950061f
10.1021/jp065887l
10.1073/pnas.0408029102
10.1039/b508541a
10.1063/1.1681704
10.1021/acs.jpcb.5b07257
10.1007/s00214-007-0310-x
10.1063/1.1672258
10.1007/BF01356227
10.1021/acs.jpca.6b09784
10.1126/science.1151614
10.1063/1.1712068
10.1063/1.4942769
10.1063/1.440892
10.1103/PhysRevA.51.231
10.1016/0263-7855(96)00018-5
10.1063/1.3382344
10.1126/science.240.4851.440
10.1063/5.0004608
10.1063/1.3591179
10.1021/acs.accounts.2c00839
10.1021/jacs.9b01345
10.1039/C8SC03034K
10.1021/acs.jctc.7b00593
10.1063/5.0159326
10.1146/annurev.pc.46.100195.003011
10.1021/acs.jpclett.9b02663
10.1063/1.456153
10.1073/pnas.062633799
10.1063/1.472529
10.1021/ja960307r
10.1002/jcc.22885
10.1021/ja908106e
10.1073/pnas.96.6.2602
10.1039/b204199p
ContentType Journal Article
Copyright 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Battelle Memorial Institute. Chemistry - A European Journal published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
OTOTI
DOI 10.1002/chem.202400038
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 2308889
38287792
10_1002_chem_202400038
CHEM202400038
Genre article
Journal Article
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: FWP 16248
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
ACUHS
AEYWJ
AGHNM
AGYGG
CITATION
EBD
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4408-c0f9deef5f31d0efc6a632ace93688c50d9d689f7e73965090031e85bf90ca6f3
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Mon Apr 15 04:52:53 EDT 2024
Fri Jul 11 15:30:53 EDT 2025
Tue Oct 07 07:05:14 EDT 2025
Mon Jul 21 06:07:48 EDT 2025
Tue Nov 18 22:12:06 EST 2025
Sat Nov 29 07:09:43 EST 2025
Wed Jan 22 17:19:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords harpoon reaction long range electron transfer photoelectron spectroscopy
Language English
License Attribution
2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4408-c0f9deef5f31d0efc6a632ace93688c50d9d689f7e73965090031e85bf90ca6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-2852-4047
0000-0001-8326-1780
0000000183261780
0000000228524047
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400038
PMID 38287792
PQID 3034899317
PQPubID 986340
PageCount 5
ParticipantIDs osti_scitechconnect_2308889
proquest_miscellaneous_2920186029
proquest_journals_3034899317
pubmed_primary_38287792
crossref_primary_10_1002_chem_202400038
crossref_citationtrail_10_1002_chem_202400038
wiley_primary_10_1002_chem_202400038_CHEM202400038
PublicationCentury 2000
PublicationDate April 5, 2024
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: April 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 1989; 40
2021; 23
2019; 10
1973; 59
2002; 99
2016; 144
2020; 11
2020; 124
1996; 105
2018; 9
1971; 54
1940; 8
2005; 102
2019; 21
1993; 32
1992; 355
2008; 319
1987
1999; 96
2017; 121
1981; 74
1995; 51
1920; 3
2023; 56
1969; 51
2020; 39
2006; 110
2002; 4
1970; 52
1967; 47
1988; 240
2009; 131
1996; 14
2019; 141
1970; 19
2008; 120
2012; 33
2016; 120
2011; 134
2011; 7
2023
2020; 152
1974; 61
1995; 46
2017; 13
1989; 90
2010; 132
2013; 133
2023; 159
2005; 7
1998; 109
1995; 103
1992; 25
1998; 31
1996; 118
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Terry L. M. (e_1_2_8_28_1) 2023
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Levine R. D. (e_1_2_8_1_1) 1987
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 74
  start-page: 5794
  year: 1981
  end-page: 5801
  publication-title: J. Chem. Phys.
– volume: 319
  start-page: 936
  year: 2008
  end-page: 939
  publication-title: Science
– volume: 96
  start-page: 2602
  year: 1999
  end-page: 2607
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 10754
  year: 1998
  end-page: 10766
  publication-title: J. Chem. Phys.
– volume: 159
  year: 2023
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 5140
  year: 1996
  end-page: 5141
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 3698
  year: 1989
  end-page: 3701
  publication-title: Phys. Rev. A
– volume: 51
  start-page: 231
  year: 1995
  end-page: 238
  publication-title: Phys. Rev. A
– volume: 240
  start-page: 440
  year: 1988
  end-page: 447
  publication-title: Science
– volume: 7
  start-page: 3027
  year: 2011
  end-page: 3034
  publication-title: J. Chem. Theory Comput.
– volume: 54
  start-page: 2831
  year: 1971
  end-page: 2851
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 6132
  year: 2019
  end-page: 6135
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 3534
  year: 2005
  end-page: 3539
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 4346
  year: 2020
  end-page: 4352
  publication-title: J. Phys. Chem. Lett.
– volume: 133
  start-page: 1434
  year: 2013
  publication-title: Theor. Chem. Acc.
– volume: 56
  start-page: 500
  year: 2023
  end-page: 513
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 993
  year: 1967
  end-page: 1004
  publication-title: J. Chem. Phys.
– volume: 355
  start-page: 66
  year: 1992
  end-page: 68
  publication-title: Nature
– volume: 19
  start-page: 553
  year: 1970
  end-page: 566
  publication-title: Mol. Phys.
– volume: 144
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 134
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 1007
  year: 1989
  end-page: 1023
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 6714
  year: 2019
  end-page: 6719
  publication-title: J. Phys. Chem. Lett.
– volume: 39
  start-page: 83
  year: 2020
  end-page: 108
  publication-title: Int. Rev. Phys. Chem.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 7239
  year: 2019
  end-page: 7255
  publication-title: Phys. Chem. Chem. Phys.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 120
  start-page: 1518
  year: 2016
  end-page: 1525
  publication-title: J. Phys. Chem. B
– volume: 105
  start-page: 7231
  year: 1996
  end-page: 7234
  publication-title: J. Chem. Phys.
– volume: 124
  start-page: 2036
  year: 2020
  end-page: 2045
  publication-title: J. Phys. Chem. A
– start-page: 134
  year: 1987
  end-page: 137
– volume: 25
  start-page: 1773
  year: 1992
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 52
  start-page: 1317
  year: 1970
  end-page: 1331
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 687
  year: 1940
  end-page: 698
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 7186
  year: 2018
  end-page: 7192
  publication-title: Chem. Sci.
– volume: 121
  start-page: 1389
  year: 2017
  end-page: 1401
  publication-title: J. Phys. Chem. A
– volume: 59
  start-page: 4557
  year: 1973
  end-page: 4558
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 13877
  year: 2006
  end-page: 13883
  publication-title: J. Phys. Chem. A
– volume: 32
  start-page: 1111
  year: 1993
  end-page: 1121
  publication-title: Angew. Chem. Int. Ed.
– year: 2023
  publication-title: ChemRxiv preprint
– volume: 13
  start-page: 3696
  year: 2017
  end-page: 3705
  publication-title: J. Chem. Theory Comput.
– volume: 61
  start-page: 4091
  year: 1974
  end-page: 4100
  publication-title: J. Chem. Phys.
– volume: 131
  start-page: 16368
  year: 2009
  end-page: 16370
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 31
  year: 1920
  end-page: 35
  publication-title: Z. Phys.
– volume: 46
  start-page: 555
  year: 1995
  end-page: 594
  publication-title: Annu. Rev. Phys. Chem.
– volume: 4
  start-page: 4285
  year: 2002
  end-page: 4291
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 1742
  year: 1969
  end-page: 1753
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  publication-title: Theor. Chem. Acc.
– volume: 23
  start-page: 20323
  year: 2021
  end-page: 20328
  publication-title: Phys. Chem. Chem. Phys.
– volume: 99
  start-page: 4848
  year: 2002
  end-page: 4853
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  publication-title: J. Mol. Graphics
– volume: 31
  start-page: 527
  year: 1998
  end-page: 534
  publication-title: Acc. Chem. Res.
– volume: 103
  start-page: 5153
  year: 1995
  end-page: 5156
  publication-title: J. Chem. Phys.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_18_1
  doi: 10.1080/0144235X.2020.1719699
– ident: e_1_2_8_21_1
  doi: 10.1039/C8CP07831A
– ident: e_1_2_8_10_1
  doi: 10.1063/1.1675263
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.199311113
– ident: e_1_2_8_45_1
  doi: 10.1063/1.1680654
– ident: e_1_2_8_3_1
  doi: 10.1063/1.1750739
– ident: e_1_2_8_43_1
  doi: 10.1021/ct200106a
– ident: e_1_2_8_14_1
  doi: 10.1063/1.470603
– ident: e_1_2_8_32_1
  doi: 10.1088/0953-4075/25/8/012
– ident: e_1_2_8_9_1
  doi: 10.1063/1.1673133
– ident: e_1_2_8_20_1
  doi: 10.1063/1.477774
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.jpclett.0c01099
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevA.40.3698
– ident: e_1_2_8_54_1
  doi: 10.1039/D1CP02805G
– ident: e_1_2_8_46_1
  doi: 10.1080/00268977000101561
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.jpca.0c00024
– ident: e_1_2_8_49_1
  doi: 10.1007/s00214-013-1434-9
– ident: e_1_2_8_13_1
  doi: 10.1038/355066a0
– ident: e_1_2_8_16_1
  doi: 10.1021/ar950061f
– ident: e_1_2_8_44_1
  doi: 10.1021/jp065887l
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.0408029102
– ident: e_1_2_8_41_1
  doi: 10.1039/b508541a
– ident: e_1_2_8_11_1
  doi: 10.1063/1.1681704
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.jpcb.5b07257
– ident: e_1_2_8_39_1
  doi: 10.1007/s00214-007-0310-x
– ident: e_1_2_8_8_1
  doi: 10.1063/1.1672258
– ident: e_1_2_8_2_1
  doi: 10.1007/BF01356227
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.jpca.6b09784
– ident: e_1_2_8_17_1
  doi: 10.1126/science.1151614
– ident: e_1_2_8_7_1
  doi: 10.1063/1.1712068
– ident: e_1_2_8_50_1
  doi: 10.1063/1.4942769
– year: 2023
  ident: e_1_2_8_28_1
  publication-title: ChemRxiv preprint
– ident: e_1_2_8_48_1
  doi: 10.1063/1.440892
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevA.51.231
– ident: e_1_2_8_55_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_40_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_4_1
  doi: 10.1126/science.240.4851.440
– ident: e_1_2_8_52_1
  doi: 10.1063/5.0004608
– ident: e_1_2_8_34_1
  doi: 10.1063/1.3591179
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.accounts.2c00839
– ident: e_1_2_8_22_1
  doi: 10.1021/jacs.9b01345
– ident: e_1_2_8_26_1
  doi: 10.1039/C8SC03034K
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.jctc.7b00593
– ident: e_1_2_8_37_1
  doi: 10.1063/5.0159326
– ident: e_1_2_8_12_1
  doi: 10.1146/annurev.pc.46.100195.003011
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.jpclett.9b02663
– ident: e_1_2_8_42_1
  doi: 10.1063/1.456153
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.062633799
– ident: e_1_2_8_19_1
  doi: 10.1063/1.472529
– ident: e_1_2_8_24_1
  doi: 10.1021/ja960307r
– ident: e_1_2_8_53_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_38_1
  doi: 10.1021/ja908106e
– start-page: 134
  volume-title: Molecular Reaction Dynamics and Chemical Reactivity
  year: 1987
  ident: e_1_2_8_1_1
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.96.6.2602
– ident: e_1_2_8_47_1
  doi: 10.1039/b204199p
SSID ssj0009633
Score 2.4775045
Snippet The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali...
Abstract The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400038
SubjectTerms Alkali metals
Anions
Chemical bonds
Electron affinity
Halogens
Ionization
Ionization potentials
Organic chemistry
Photoelectron spectroscopy
Photoelectrons
Title Organic Molecules Mimic Alkali Metals Enabling Spontaneous Harpoon Reactions with Halogens
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400038
https://www.ncbi.nlm.nih.gov/pubmed/38287792
https://www.proquest.com/docview/3034899317
https://www.proquest.com/docview/2920186029
https://www.osti.gov/biblio/2308889
Volume 30
WOSCitedRecordID wos001163292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTaG9NH3HTRpUKPRkYsu2bB1DmiWHbghpA0svQh5LEJJ6Q7zJ7--M5XW60BJILsYP2ciSRvPpMd8H8IWcMqY5FjFqW8e5zVVcN7zEXude142X2tpebKI8Pq7mc33yVxR_4IcYJ9zYMvr-mg3c1t3eHWko_RNHkvMeyCSrnsJGmmYVizfI_OSOdlcNYvJ5GTMJ64q2MZF76--vuaXJgszrX5BzHcH2Lmi6-fjMv4KXA_wU-6G9vIYnrn0Dzw9Wqm9v4VcIzkQxC7q5rhOz8990vX95QZBdzByh9U4ccsgVeT3x42rREr50i5tOHFlW7GrFqQvREp3gWV66Tf0rjZbfwdn08OfBUTzoL8TIOtQxJl43zvnCZ2mTOI_KqkxadDpTVYVF0uhGVdqXrsw0M_FxD-GqovY6Qat89h4m7aJ1WyAwt6rxqsZefd2jdtLK0he68L4mlBNBvCp-gwM5OWtkXJpAqywNl5gZSyyCr2P6q0DL8d-U21ybhgAFs-Iibx_CpaGRF439dQQ7q0o2g_F2hrx6TsNQQlYRfB4fUz3wWkooUcMiXynrd9EnPoTGMWYkYxGBUssIZN8G7smhYfKL8erjQ17ahhd83u8oKnZgsry-cZ_gGd4uz7vr3d4k6FjOq13Y-HY6Pfv-B-cVDQc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD7oVZgv_tbVTY0g-FTWm6Zp8zjGxhV3L0MnDF9CeprA2Owd693-fs9pejsuKIL42DQpaZKT8-XH-T6Aj-SUcaqwSNG4OlVO6bRu-Ii9VsHUTZDGuV5solwsqrMzczLcJuRYmMgPMW64sWX08zUbOG9I792xhtJPcSg5X4LM8uo-PFDkanioS3Vyx7urBzV5VabMwrrmbczk3mb5Db80WZJ9_Q5zbkLY3gcdPfkPtX8KjwcAKvbjiHkG93z7HLYO1rpvL-BHDM9EMY_Kub4T8_Of9Lx_eUGgXcw94fVOHHLQFfk98e1q2RLC9MubTswca3a14quP8RKd4H1eSqYZltbLL-H70eHpwSwdFBhSZCXqFLNgGu9DEfJpk_mA2ulcOvQm11WFRdaYRlcmlL7MDXPx8Rzhq6IOJkOnQ_4KJu2y9dsgUDndBF1jr78e0HjpZBkKU4RQE85JIF23v8WBnpxVMi5tJFaWllvMji2WwKcx_1Uk5vhjzh3uTkuQgnlxkS8Q4crS2otW_yaB3XUv28F8O0t-XdFClLBVAh_G19QPfJoSW9SyzNeUFbzoE6_j6BgrkrOMQGlkArIfBH-poWX6i_Hpzb8Ueg9bs9P5sT3-vPiyA484vb9fVOzCZHV949_CQ7xdnXfX73r7-AUz5w5q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RpSq9QMurKbR1pUqcIrJ5OPERASuqsitEi4S4WM7EllBpdkUWfn9n4mzQSlSVqh7jOJZjezyfH_N9AF_IKeMwxSxEZcowNakMy4qP2MvUqbJysTKmFZvIJ5Pi-lpddLcJORbG80P0G25sGe18zQZuZ5U7fGINpZ_iUHK-BBklxQtYTVlJZgCrJ5ejq_Mn5l3Z6cmnecg8rAvmxig-XC5hyTMNpmRhz6HOZRDbeqHRxn-o_xtY7yCoOPJj5i2s2HoT1o4Xym9bcOMDNFGMvXaubcT49hc9H939JNguxpYQeyNOOeyKPJ_4PpvWhDHt9KERZ4ZVu2pxaX3ERCN4p5eSaY6lFfM2XI1OfxyfhZ0GQ4isRR1i5FRlrctcMqwi61AamcQGrUpkUWAWVaqShXK5zRPFbHw8S9giK52K0EiX7MCgntb2HQhMjaycLLFVYHeobGzi3GUqc64kpBNAuGh_jR1BOetk3GlPrRxrbjHdt1gAB33-mafm-GPOPe5OTaCCmXGRrxDhXNPqi9b_KoD9RS_rzoAbTZ49paUooasAPvevqR_4PMW3qGahryFreFERu3509BVJWEggV3EAcTsI_lJDzQQY_dP7f_noE7y6OBnp86-Tb3vwmpPbC0bZPgzm9w_2A7zEx_ltc_-xM5DfoW4PgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Molecules+Mimic+Alkali+Metals+Enabling+Spontaneous+Harpoon+Reactions+with+Halogens&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Cao%2C+Wenjin&rft.au=Xue%E2%80%90Bin+Wang&rft.date=2024-04-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=20&rft_id=info:doi/10.1002%2Fchem.202400038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon