Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries

Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 37; H. 46; S. e2417757 - n/a
Hauptverfasser: Zhang, Haozhe, Liu, Di‐Jia, Xu, Kang, Meng, Ying Shirley
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.11.2025
Wiley Blackwell (John Wiley & Sons)
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries with metal anodes promise enhanced energy density, combining higher output voltage and capacity with high safety. This perspective highlights the emerging potential of the Sn metal anode, emphasizing its resistance to hydrogen evolution, high reversibility, and sustainability. Key challenges, including dead Sn formation and electrolyte evolution, as well as innovative design strategies for robust Sn‐based batteries are also discussed. The development of Sn metal batteries could contribute to a sustainable society.
AbstractList Abstract Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries with metal anodes promise enhanced energy density, combining higher output voltage and capacity with high safety. This perspective highlights the emerging potential of the Sn metal anode, emphasizing its resistance to hydrogen evolution, high reversibility, and sustainability. Key challenges, including dead Sn formation and electrolyte evolution, as well as innovative design strategies for robust Sn‐based batteries are also discussed. The development of Sn metal batteries could contribute to a sustainable society.
Author Liu, Di‐Jia
Meng, Ying Shirley
Zhang, Haozhe
Xu, Kang
Author_xml – sequence: 1
  givenname: Haozhe
  orcidid: 0000-0001-6363-5271
  surname: Zhang
  fullname: Zhang, Haozhe
  organization: Argonne National Laboratory
– sequence: 2
  givenname: Di‐Jia
  orcidid: 0000-0003-1747-028X
  surname: Liu
  fullname: Liu, Di‐Jia
  email: djliu@anl.gov
  organization: Argonne National Laboratory
– sequence: 3
  givenname: Kang
  orcidid: 0000-0002-6946-8635
  surname: Xu
  fullname: Xu, Kang
  email: kang.xu@ses.ai
  organization: SES AI Corporation
– sequence: 4
  givenname: Ying Shirley
  orcidid: 0000-0001-8936-8845
  surname: Meng
  fullname: Meng, Ying Shirley
  email: shirleymeng@uchicago.edu
  organization: Argonne National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40079068$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2530768$$D View this record in Osti.gov
BookMark eNqFkV1rFDEUhoNU7LZ666UMetObWU8-Jh-X62qt0FLQ3odM5kw7ZTZZkyzSf2-WbRUK4tWB8DyH9-Q9IUchBiTkLYUlBWAf3bBxSwZMUKU69YIsaMdoK8B0R2QBhnetkUIfk5Oc7wHASJCvyLEAUAakXpCL9Z2bZwy3mBsXhuZ6u42p7MJUpvoyxtR8R3_n0i26fsZm9XOHcZebH6G5wuLm5pMrBVNlX5OXo5szvnmcp-Tm_MvN-qK9vP76bb26bL0QoFqqNB9H6HsuemTMc-FHJ6lGNozj0GlUQg5yUIOjPYI2WnBhBkMN9w4E8lPy_rA25jLZ7KdS4_kYAvpiWcdBSV2hswO0TbEGzsVupuxxnl3Yp7ecKim1AcUr-uEZeh93KdQLLGeKM60NlZV690jt-g0OdpumjUsP9ukfKyAOgE8x54SjrclcmWIoyU2zpWD3ddl9XfZPXVVbPtOeNv9TMAfh1zTjw39ou_p8tfrr_gYeZ6X6
CitedBy_id crossref_primary_10_1002_batt_202500230
crossref_primary_10_1002_adfm_202510065
crossref_primary_10_1002_metm_70007
crossref_primary_10_1021_jacs_5c03861
crossref_primary_10_1021_acsenergylett_5c01329
crossref_primary_10_1039_D5CS00785B
Cites_doi 10.1039/D2EE02416K
10.1126/science.aao2808
10.1039/C4CS00470A
10.31635/renewables.023.202300028
10.1039/an9739800635
10.1002/anie.202103722
10.1126/science.1212741
10.1002/adma.202200085
10.1002/anie.202001191
10.1126/science.abd3352
10.1002/anie.202407856
10.1016/j.joule.2020.11.008
10.1002/cey2.67
10.1126/sciadv.aba4098
10.1039/D4EE01615G
10.1063/1.101580
10.1016/j.ensm.2020.05.028
10.1016/S0013-4686(00)00523-5
10.1016/j.nanoen.2023.108567
10.1038/s41560-018-0147-7
10.1002/adma.202003684
10.1002/advs.202103896
10.1002/er.1284
10.1016/j.jpowsour.2019.226918
10.1038/s41565-021-00905-4
10.1021/acsaem.0c00557
10.1107/S0021889809016690
10.1002/adma.202008095
10.1038/s41586-019-1481-z
10.1016/j.jpowsour.2003.11.048
10.1038/s41560-020-0674-x
10.1016/j.electacta.2011.01.017
10.1016/j.apenergy.2019.113756
10.1021/jp512920f
10.1002/ppsc.201900183
10.1126/sciadv.aau8131
10.1007/s40820-024-01337-0
10.1002/adfm.201807847
10.1038/s41893-022-00864-1
10.1038/s41560-021-00807-8
10.1002/adfm.201900911
10.1038/s41560-018-0309-7
10.1021/cr500232y
10.1002/aenm.202300403
10.1002/adma.201505370
10.1002/cey2.69
10.1002/adma.201605838
10.1021/ja409958a
10.3390/suschem2010011
10.1016/j.joule.2023.04.011
10.3762/bjnano.5.96
10.1038/s41560-020-00710-8
10.1039/D1EE00308A
10.1002/smll.202301931
10.1126/science.abq3750
10.1016/j.electacta.2012.12.036
10.1149/1.2085459
10.1016/j.jpowsour.2018.10.011
10.1103/PhysRevB.79.235436
10.1016/0013-4686(60)87010-7
10.1039/D2EE00004K
10.1016/j.mattod.2020.12.003
10.1016/j.jpowsour.2014.11.031
10.1007/s10971-013-3247-7
10.1177/030751332801400118
10.1021/acsnano.3c00242
10.1002/aenm.202200244
10.1007/BF02755923
10.1039/D1CC01486B
10.1016/j.jpowsour.2009.12.126
10.1016/j.nanoen.2016.04.017
10.1016/0013-4686(84)87028-0
10.1016/j.nxener.2023.100015
10.1002/adma.202408067
10.1038/s41578-022-00511-3
10.1021/ie102267x
10.1016/j.jpowsour.2021.230167
10.1039/C9EE02526J
10.1039/C4CS00015C
10.1039/C9CS00131J
10.1016/0378-7753(96)02322-1
10.1002/aenm.202100608
10.1038/d41586-018-05752-3
10.1126/science.aax6873
10.1002/anie.202312585
10.1038/s41467-018-06209-x
10.1016/j.joule.2025.101820
10.1038/s41570-017-0105
10.1039/D0EE01856B
10.1016/j.joule.2023.05.004
10.1038/s41570-016-0003
10.1002/adfm.202413685
10.1002/anie.202414346
10.1038/s41560-018-0122-3
10.1016/j.jpowsour.2015.01.049
10.1201/9781420017168
10.1038/s41560-020-0655-0
10.1002/aenm.202003065
10.1002/advs.201700298
10.1021/acsami.9b20320
10.1002/anie.202010073
10.1038/sdata.2016.80
10.1038/s41563-018-0063-z
10.1002/aenm.202000968
10.1126/science.abb9554
10.1002/anie.202205472
10.1016/j.matt.2021.01.022
10.1007/s11783-021-1406-6
10.1016/j.nanoen.2022.107333
10.1149/1.3455148
10.1038/s41578-020-00241-4
10.1021/jacs.3c03039
10.1016/j.joule.2024.09.002
10.1016/j.microrel.2017.10.030
10.1038/ncomms10990
10.1021/acs.jpcc.5b08481
10.1002/smsc.202000066
10.1002/adma.201603304
10.1002/anie.202004433
10.1002/anie.202206471
10.1039/D0CS00867B
10.1038/s41560-020-0584-y
10.1016/j.joule.2024.03.007
10.1093/nsr/nwad235
10.1002/aenm.202000962
10.1038/s41560-024-01527-5
10.1002/elan.201600270
10.1002/aenm.201803645
10.1002/aenm.202001386
10.1016/B0-12-176480-X/00109-1
10.1002/adma.201800561
10.1016/S0039-6028(98)00363-X
10.1038/s41467-020-20170-8
10.1126/science.aak9991
10.1021/acsaem.9b00691
10.1021/acs.chemrev.9b00248
10.1038/s41467-020-14748-5
10.1007/978-94-011-4938-9_12
10.1038/nmat4919
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202417757
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 2530768
40079068
10_1002_adma_202417757
ADMA202417757
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Joint Task Force Initiative (JTFI) at the University of Chicago
  funderid: 2‐84889‐4401
– fundername: University of Chicago
– fundername: Office of Science
  funderid: DE‐AC02‐06CH11357
– fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences
– fundername: Office of Science
  grantid: DE-AC02-06CH11357
– fundername: Joint Task Force Initiative (JTFI) at the University of Chicago
  grantid: 2-84889-4401
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ALUQN
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
OTOTI
ID FETCH-LOGICAL-c4407-1783ff0bb34be22c34cfa618e2dffd58e746d6d7da1be08984349d9193ca04e3
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Mon Mar 24 04:17:37 EDT 2025
Wed Oct 01 14:54:41 EDT 2025
Thu Nov 20 06:40:29 EST 2025
Mon Nov 24 02:15:22 EST 2025
Thu Nov 27 01:03:55 EST 2025
Tue Nov 18 22:33:10 EST 2025
Thu Nov 20 09:10:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords reversibility
anode
aqueous batteries
Sn metal
electrodeposition
Language English
License Attribution
2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4407-1783ff0bb34be22c34cfa618e2dffd58e746d6d7da1be08984349d9193ca04e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
ORCID 0000-0001-6363-5271
0000-0002-6946-8635
0000-0001-8936-8845
0000-0003-1747-028X
0000000269468635
000000031747028X
0000000163635271
0000000189368845
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202417757
PMID 40079068
PQID 3273288916
PQPubID 2045203
PageCount 20
ParticipantIDs osti_scitechconnect_2530768
proquest_miscellaneous_3176689073
proquest_journals_3273288916
pubmed_primary_40079068
crossref_citationtrail_10_1002_adma_202417757
crossref_primary_10_1002_adma_202417757
wiley_primary_10_1002_adma_202417757_ADMA202417757
PublicationCentury 2000
PublicationDate 2025-Nov
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-Nov
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2000 2009 2024; 45 79 16
2023 2023; 19 145
2020 2021 2021; 10 45 2
2010; 13
2017; 4
2009; 42
2023; 7
2018; 404
1960; 2
2021 2020; 11 2
2020; 369
2014; 69
1984; 29
2023; 1
2021 2019 2018 2016 2017 2021; 5 9 9 28 356 6
2025; 35
2024
2017; 358
2021 2016; 33 3
2004; 133
2019 2024; 12 9
2020; 2
2018; 4
2014 1973; 136 98
2001
2024; 8
2015; 44
2017; 79
2020 2019; 31 29
2022; 34
2020; 49
2024; 63
2019; 29
2014 2023; 43 52
2020 2019 2019 2021 2022 2020 2021 2020 2020; 11 4 2 57 9 12 60 59 10
2019; 437
2019 2021; 366 16
2018 2019 2018 2020; 120 2 13
2021; 506
1920; 3
2015; 280
2023; 13
2018 2020; 17 5
2021; 4
2023; 17
1928; 14
2011
2025; 9
2019; 36
1998
2013; 90
2018 2023 2018; 3 8 559
2021 2023 2020; 11 7 5
2017; 29
2023 2020; 1 3
1998; 411
2020; 32
2002
2021; 1
2023 2021; 113 14
2011 2011; 56 50
1991; 138
2011 2022 2018; 334 5 30
2024; 17
1996; 59
2007 2017; 31 1
2021 2008; 15
2017 2021 2023; 16 6 10
1846 2020; 2020 49
2010 2004 2014; 195 1 114
1989; 55
2021; 12
2000; 38
2021; 11
2022 2022; 378 15
2014 2016 2020; 5 7 5
2022; 61
2015; 275
2021 2020; 60 6
2022; 12
2019
2018 2020; 3 5
2018
2021; 371
2022; 15
2015; 119
2022; 98
2016; 29
2016; 28
2021; 60
2024 2024 2024; 8 36 64
2019; 255
2019; 572
e_1_2_10_21_3
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_21_2
e_1_2_10_40_1
Gielen M. (e_1_2_10_36_2) 2008
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_2_3
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_2_2
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_6_2
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_79_2
e_1_2_10_32_1
e_1_2_10_51_1
Robertson W. (e_1_2_10_38_1) 2024
Sabatier P. (e_1_2_10_27_1) 1920; 3
Reddy T. B. (e_1_2_10_84_1) 2011
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_63_2
e_1_2_10_25_3
e_1_2_10_25_4
e_1_2_10_67_1
e_1_2_10_25_2
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Wang Q. (e_1_2_10_91_2) 2023; 52
e_1_2_10_90_2
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_3_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_52_2
e_1_2_10_75_1
e_1_2_10_3_3
e_1_2_10_98_1
e_1_2_10_7_2
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_15_1
e_1_2_10_34_3
e_1_2_10_56_2
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_49_9
e_1_2_10_49_8
e_1_2_10_49_7
e_1_2_10_60_1
e_1_2_10_49_6
e_1_2_10_49_5
e_1_2_10_49_4
e_1_2_10_49_3
e_1_2_10_64_1
e_1_2_10_49_2
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_53_2
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_34_2
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
Chao D. (e_1_2_10_7_1) 1846; 2020
Emsley J. (e_1_2_10_39_1) 2011
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_65_1
e_1_2_10_88_1
Eliaz N. (e_1_2_10_25_1) 2018
e_1_2_10_46_2
e_1_2_10_88_2
e_1_2_10_24_1
e_1_2_10_20_2
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_1_2
e_1_2_10_73_1
e_1_2_10_1_3
e_1_2_10_17_2
e_1_2_10_17_3
e_1_2_10_96_1
e_1_2_10_5_2
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_5_3
e_1_2_10_36_1
e_1_2_10_9_2
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
Arblaster J. W. (e_1_2_10_48_1) 2018
e_1_2_10_59_1
e_1_2_10_31_3
e_1_2_10_50_6
e_1_2_10_31_2
e_1_2_10_50_5
e_1_2_10_31_1
e_1_2_10_50_4
e_1_2_10_50_3
e_1_2_10_50_2
Pillot C. (e_1_2_10_83_1) 2019
e_1_2_10_50_1
e_1_2_10_81_1
Suslick K. S. (e_1_2_10_77_1) 2001
e_1_2_10_62_1
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_62_3
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_24_2
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – year: 2011
– volume: 19 145
  year: 2023 2023
  publication-title: Small J. Am. Chem. Soc.
– volume: 1 3
  start-page: 474 5031
  year: 2023 2020
  publication-title: Renewables ACS Appl. Energy Mater.
– volume: 120 2 13
  start-page: 851 0105 3185
  year: 2018 2019 2018 2020
  publication-title: Chem. Rev. Nat. Rev. Chem. Energy Environ. Sci.
– volume: 79
  start-page: 175
  year: 2017
  publication-title: Microelectron. Reliab.
– volume: 31 29
  start-page: 44
  year: 2020 2019
  publication-title: Energy Storage Mater. Adv. Funct. Mater.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 366 16
  start-page: 645 902
  year: 2019 2021
  publication-title: Science Nat. Nanotechnol.
– volume: 9
  year: 2025
  publication-title: Joule
– volume: 11 7 5
  start-page: 1145 743
  year: 2021 2023 2020
  publication-title: Adv. Energy Mater. Joule Nat. Energy
– volume: 138
  start-page: 3560
  year: 1991
  publication-title: J. Electrochem. Soc.
– volume: 255
  year: 2019
  publication-title: Appl. Energy
– year: 2001
– volume: 33 3
  year: 2021 2016
  publication-title: Adv. Mater. Sci. Data
– year: 2024
– year: 2018
– year: 1998
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 56 50
  start-page: 4356 1899
  year: 2011 2011
  publication-title: Electrochim. Acta Ind. Eng. Chem. Res.
– volume: 17
  start-page: 5083
  year: 2023
  publication-title: ACS Nano
– volume: 7
  start-page: 971
  year: 2023
  publication-title: Joule
– volume: 13
  start-page: A125
  year: 2010
  publication-title: Electrochem. Solid‐State Lett.
– volume: 43 52
  start-page: 5257 6239
  year: 2014 2023
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 42
  start-page: 726
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 10 45 2
  start-page: 191 167
  year: 2020 2021 2021
  publication-title: Adv. Energy Mater. Mater. Today Sustain. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 4770
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1252
  year: 2021
  publication-title: Matter
– volume: 8
  start-page: 3386
  year: 2024
  publication-title: Joule
– volume: 28
  start-page: 2256
  year: 2016
  publication-title: Electroanalysis
– volume: 369
  start-page: 923
  year: 2020
  publication-title: Science
– volume: 506
  year: 2021
  publication-title: J. Power Sources
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 334 5 30
  start-page: 928 176
  year: 2011 2022 2018
  publication-title: Science Nat. Sustain. Adv. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 715
  year: 2000
  publication-title: High Temp.
– volume: 280
  start-page: 227
  year: 2015
  publication-title: J. Power Sources
– year: 2019
– volume: 98
  year: 2022
  publication-title: Nano Energy
– volume: 195 1 114
  start-page: 4424 117
  year: 2010 2004 2014
  publication-title: J. Power Sources Encyclopedia Ener. Chem. Rev.
– volume: 5 7 5
  start-page: 846 891
  year: 2014 2016 2020
  publication-title: Beilstein J. Nanotechnol. Nat. Commun. Nat. Energy
– volume: 14
  start-page: 97
  year: 1928
  publication-title: J. Egypt. Archaeol.
– volume: 90
  start-page: 265
  year: 2013
  publication-title: Electrochim. Acta
– volume: 371
  start-page: 46
  year: 2021
  publication-title: Science
– volume: 5 9 9 28 356 6
  start-page: 228 3731 4904 415 592
  year: 2021 2019 2018 2016 2017 2021
  publication-title: Joule Adv. Energy Mater. Nat. Commun. Adv. Mater. Science Nat. Energy
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 133
  start-page: 126
  year: 2004
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 31 1
  start-page: 637 0003
  year: 2007 2017
  publication-title: Int. J. Energy Res. Nat. Rev. Chem.
– volume: 69
  start-page: 480
  year: 2014
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 36
  year: 2019
  publication-title: Part. Syst. Charact.
– volume: 15
  start-page: 118
  year: 2021 2008
  publication-title: Front. Environ. Sci. Eng.
– volume: 11 2
  start-page: 540
  year: 2021 2020
  publication-title: Adv. Energy Mater. Carbon Energy
– volume: 15
  start-page: 5017
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2025
  publication-title: Adv. Funct. Mater.
– volume: 275
  start-page: 595
  year: 2015
  publication-title: J. Power Sources
– volume: 55
  start-page: 1439
  year: 1989
  publication-title: Appl. Phys. Lett.
– volume: 1
  year: 2023
  publication-title: Next Energy
– volume: 136 98
  start-page: 311 635
  year: 2014 1973
  publication-title: J. Am. Chem. Soc. Analyst
– volume: 378 15
  start-page: 1805
  year: 2022 2022
  publication-title: Science Energy Environ. Sci.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 17 5
  start-page: 543 646
  year: 2018 2020
  publication-title: Nat. Mater. Nat. Energy
– volume: 3
  year: 1920
  publication-title: La catalyse en chimie organique
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 113 14
  start-page: 3609
  year: 2023 2021
  publication-title: Nano Energy Energy Environ. Sci.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 45 79 16
  start-page: 4075 111
  year: 2000 2009 2024
  publication-title: Electrochim. Acta Phys. Rev. B Condens. Matter. Nano‐Micro Lett.
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 2
  start-page: 521
  year: 2020
  publication-title: Carbon Energy
– volume: 29
  start-page: 1459
  year: 1984
  publication-title: Electrochim. Acta
– volume: 404
  start-page: 89
  year: 2018
  publication-title: J. Power Sources
– volume: 60
  start-page: 896
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 8 559
  start-page: 261 109 467
  year: 2018 2023 2018
  publication-title: Nat. Energy Nat. Rev. Mater. Nature
– volume: 60 6
  start-page: 598
  year: 2021 2020
  publication-title: Angew. Chem., Int. Ed. Sci. Adv.
– year: 2002
– volume: 572
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 8 36 64
  start-page: 1063
  year: 2024 2024 2024
  publication-title: Joule Adv. Mater. Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 2
  start-page: 130
  year: 1960
  publication-title: Electrochim. Acta
– volume: 12 9
  start-page: 3288 839
  year: 2019 2024
  publication-title: Energy Environ. Sci. Nat. Energy
– volume: 2020 49
  start-page: 4 180
  year: 1846 2020
  publication-title: Joule Chem. Soc. Rev.
– volume: 16 6 10
  start-page: 841 109
  year: 2017 2021 2023
  publication-title: Nat. Mater. Nat. Rev. Mater. Natl. Sci. Rev.
– volume: 49
  start-page: 7284
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 191
  year: 1996
  publication-title: J. Power Sources
– volume: 11 4 2 57 9 12 60 59 10
  start-page: 959 123 4016 4307 9201 9631
  year: 2020 2019 2019 2021 2022 2020 2021 2020 2020
  publication-title: Nat. Commun. Nat. Energy ACS Appl. Energy Mater. Chem. Commun. Adv. Sci. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 29
  start-page: 29
  year: 2016
  publication-title: Nano Energy
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 12
  start-page: 14
  year: 2021
  publication-title: Nat. Commun.
– volume: 411
  start-page: 186
  year: 1998
  publication-title: Surf. Sci.
– volume: 358
  year: 2017
  publication-title: Science
– volume: 119
  start-page: 5506
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 9188
  year: 2016
  publication-title: Adv. Mater.
– volume: 3 5
  start-page: 428 440
  year: 2018 2020
  publication-title: Nat. Energy Nat. Energy
– ident: e_1_2_10_75_1
  doi: 10.1039/D2EE02416K
– volume-title: Tin chemistry: fundamentals, frontiers, and applications
  year: 2008
  ident: e_1_2_10_36_2
– ident: e_1_2_10_73_1
  doi: 10.1126/science.aao2808
– ident: e_1_2_10_33_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_10_56_1
  doi: 10.31635/renewables.023.202300028
– ident: e_1_2_10_63_2
  doi: 10.1039/an9739800635
– ident: e_1_2_10_49_7
  doi: 10.1002/anie.202103722
– ident: e_1_2_10_1_1
  doi: 10.1126/science.1212741
– volume-title: Nature's building blocks: an AZ guide to the elements
  year: 2011
  ident: e_1_2_10_39_1
– ident: e_1_2_10_45_1
  doi: 10.1002/adma.202200085
– ident: e_1_2_10_49_8
  doi: 10.1002/anie.202001191
– ident: e_1_2_10_42_1
  doi: 10.1126/science.abd3352
– ident: e_1_2_10_54_1
  doi: 10.1002/anie.202407856
– ident: e_1_2_10_50_1
  doi: 10.1016/j.joule.2020.11.008
– ident: e_1_2_10_24_2
  doi: 10.1002/cey2.67
– volume-title: Physical electrochemistry: fundamentals, techniques, and applications
  year: 2018
  ident: e_1_2_10_25_1
– ident: e_1_2_10_6_2
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_10_15_1
  doi: 10.1039/D4EE01615G
– ident: e_1_2_10_67_1
  doi: 10.1063/1.101580
– ident: e_1_2_10_90_1
  doi: 10.1016/j.ensm.2020.05.028
– ident: e_1_2_10_34_1
  doi: 10.1016/S0013-4686(00)00523-5
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nanoen.2023.108567
– ident: e_1_2_10_88_1
  doi: 10.1038/s41560-018-0147-7
– volume: 2020
  start-page: 4
  year: 1846
  ident: e_1_2_10_7_1
  publication-title: Joule
– ident: e_1_2_10_19_1
  doi: 10.1002/adma.202003684
– ident: e_1_2_10_49_5
  doi: 10.1002/advs.202103896
– ident: e_1_2_10_28_1
  doi: 10.1002/er.1284
– ident: e_1_2_10_59_1
  doi: 10.1016/j.jpowsour.2019.226918
– ident: e_1_2_10_9_2
  doi: 10.1038/s41565-021-00905-4
– ident: e_1_2_10_56_2
  doi: 10.1021/acsaem.0c00557
– ident: e_1_2_10_69_1
  doi: 10.1107/S0021889809016690
– ident: e_1_2_10_20_1
  doi: 10.1002/adma.202008095
– ident: e_1_2_10_72_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_10_85_1
  doi: 10.1016/j.jpowsour.2003.11.048
– ident: e_1_2_10_17_3
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_10_52_1
  doi: 10.1016/j.electacta.2011.01.017
– ident: e_1_2_10_60_1
  doi: 10.1016/j.apenergy.2019.113756
– ident: e_1_2_10_32_1
  doi: 10.1021/jp512920f
– volume-title: The Rechargeable Battery Market and Main Trends 2018‐2030
  year: 2019
  ident: e_1_2_10_83_1
– ident: e_1_2_10_93_1
  doi: 10.1002/ppsc.201900183
– ident: e_1_2_10_14_1
  doi: 10.1126/sciadv.aau8131
– ident: e_1_2_10_34_3
  doi: 10.1007/s40820-024-01337-0
– ident: e_1_2_10_90_2
  doi: 10.1002/adfm.201807847
– ident: e_1_2_10_1_2
  doi: 10.1038/s41893-022-00864-1
– ident: e_1_2_10_50_6
  doi: 10.1038/s41560-021-00807-8
– ident: e_1_2_10_11_1
  doi: 10.1002/adfm.201900911
– ident: e_1_2_10_49_2
  doi: 10.1038/s41560-018-0309-7
– ident: e_1_2_10_21_3
  doi: 10.1021/cr500232y
– ident: e_1_2_10_81_1
  doi: 10.1002/aenm.202300403
– ident: e_1_2_10_50_4
  doi: 10.1002/adma.201505370
– ident: e_1_2_10_87_1
  doi: 10.1002/cey2.69
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.201605838
– ident: e_1_2_10_63_1
  doi: 10.1021/ja409958a
– ident: e_1_2_10_5_3
  doi: 10.3390/suschem2010011
– ident: e_1_2_10_18_1
  doi: 10.1016/j.joule.2023.04.011
– ident: e_1_2_10_31_1
  doi: 10.3762/bjnano.5.96
– ident: e_1_2_10_31_3
  doi: 10.1038/s41560-020-00710-8
– ident: e_1_2_10_46_2
  doi: 10.1039/D1EE00308A
– ident: e_1_2_10_53_1
  doi: 10.1002/smll.202301931
– ident: e_1_2_10_79_1
  doi: 10.1126/science.abq3750
– ident: e_1_2_10_98_1
  doi: 10.1016/j.electacta.2012.12.036
– volume-title: Linden's Handbook of Batteries
  year: 2011
  ident: e_1_2_10_84_1
– ident: e_1_2_10_40_1
– ident: e_1_2_10_92_1
  doi: 10.1149/1.2085459
– ident: e_1_2_10_58_1
  doi: 10.1016/j.jpowsour.2018.10.011
– ident: e_1_2_10_34_2
  doi: 10.1103/PhysRevB.79.235436
– ident: e_1_2_10_97_1
  doi: 10.1016/0013-4686(60)87010-7
– ident: e_1_2_10_79_2
  doi: 10.1039/D2EE00004K
– ident: e_1_2_10_5_2
  doi: 10.1016/j.mattod.2020.12.003
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jpowsour.2014.11.031
– ident: e_1_2_10_89_1
  doi: 10.1007/s10971-013-3247-7
– ident: e_1_2_10_35_1
  doi: 10.1177/030751332801400118
– ident: e_1_2_10_61_1
  doi: 10.1021/acsnano.3c00242
– ident: e_1_2_10_74_1
  doi: 10.1002/aenm.202200244
– ident: e_1_2_10_64_1
  doi: 10.1007/BF02755923
– ident: e_1_2_10_49_4
  doi: 10.1039/D1CC01486B
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jpowsour.2009.12.126
– ident: e_1_2_10_30_1
  doi: 10.1016/j.nanoen.2016.04.017
– ident: e_1_2_10_47_1
  doi: 10.1016/0013-4686(84)87028-0
– ident: e_1_2_10_100_1
  doi: 10.1016/j.nxener.2023.100015
– volume-title: Sonoluminescence and sonochemistry
  year: 2001
  ident: e_1_2_10_77_1
– ident: e_1_2_10_62_2
  doi: 10.1002/adma.202408067
– ident: e_1_2_10_2_2
  doi: 10.1038/s41578-022-00511-3
– ident: e_1_2_10_52_2
  doi: 10.1021/ie102267x
– ident: e_1_2_10_94_1
  doi: 10.1016/j.jpowsour.2021.230167
– ident: e_1_2_10_4_1
  doi: 10.1039/C9EE02526J
– ident: e_1_2_10_91_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_10_7_2
  doi: 10.1039/C9CS00131J
– ident: e_1_2_10_23_1
  doi: 10.1016/0378-7753(96)02322-1
– ident: e_1_2_10_17_1
  doi: 10.1002/aenm.202100608
– ident: e_1_2_10_2_3
  doi: 10.1038/d41586-018-05752-3
– ident: e_1_2_10_9_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_10_80_1
  doi: 10.1002/anie.202312585
– ident: e_1_2_10_50_3
  doi: 10.1038/s41467-018-06209-x
– ident: e_1_2_10_78_1
  doi: 10.1016/j.joule.2025.101820
– ident: e_1_2_10_25_3
  doi: 10.1038/s41570-017-0105
– ident: e_1_2_10_25_4
  doi: 10.1039/D0EE01856B
– volume: 3
  year: 1920
  ident: e_1_2_10_27_1
  publication-title: La catalyse en chimie organique
– ident: e_1_2_10_17_2
  doi: 10.1016/j.joule.2023.05.004
– ident: e_1_2_10_28_2
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_10_99_1
  doi: 10.1002/adfm.202413685
– ident: e_1_2_10_62_3
  doi: 10.1002/anie.202414346
– volume-title: Tin: its production and marketing
  year: 2024
  ident: e_1_2_10_38_1
– ident: e_1_2_10_2_1
  doi: 10.1038/s41560-018-0122-3
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jpowsour.2015.01.049
– ident: e_1_2_10_37_1
– ident: e_1_2_10_68_1
  doi: 10.1201/9781420017168
– ident: e_1_2_10_16_2
  doi: 10.1038/s41560-020-0655-0
– ident: e_1_2_10_24_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_10_66_1
  doi: 10.1002/advs.201700298
– ident: e_1_2_10_49_6
  doi: 10.1021/acsami.9b20320
– ident: e_1_2_10_82_1
  doi: 10.1002/anie.202010073
– ident: e_1_2_10_20_2
  doi: 10.1038/sdata.2016.80
– ident: e_1_2_10_16_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_10_49_9
  doi: 10.1002/aenm.202000968
– ident: e_1_2_10_95_1
  doi: 10.1126/science.abb9554
– ident: e_1_2_10_10_1
  doi: 10.1002/anie.202205472
– ident: e_1_2_10_86_1
  doi: 10.1016/j.matt.2021.01.022
– ident: e_1_2_10_36_1
  doi: 10.1007/s11783-021-1406-6
– volume: 52
  start-page: 6239
  year: 2023
  ident: e_1_2_10_91_2
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_10_76_1
  doi: 10.1016/j.nanoen.2022.107333
– ident: e_1_2_10_51_1
  doi: 10.1149/1.3455148
– ident: e_1_2_10_3_2
  doi: 10.1038/s41578-020-00241-4
– ident: e_1_2_10_53_2
  doi: 10.1021/jacs.3c03039
– ident: e_1_2_10_55_1
  doi: 10.1016/j.joule.2024.09.002
– ident: e_1_2_10_65_1
  doi: 10.1016/j.microrel.2017.10.030
– ident: e_1_2_10_31_2
  doi: 10.1038/ncomms10990
– ident: e_1_2_10_96_1
  doi: 10.1021/acs.jpcc.5b08481
– ident: e_1_2_10_22_1
  doi: 10.1002/smsc.202000066
– ident: e_1_2_10_43_1
  doi: 10.1002/adma.201603304
– ident: e_1_2_10_6_1
  doi: 10.1002/anie.202004433
– ident: e_1_2_10_13_1
  doi: 10.1002/anie.202206471
– ident: e_1_2_10_71_1
  doi: 10.1039/D0CS00867B
– ident: e_1_2_10_88_2
  doi: 10.1038/s41560-020-0584-y
– ident: e_1_2_10_62_1
  doi: 10.1016/j.joule.2024.03.007
– volume-title: Selected values of the crystallographic properties of elements
  year: 2018
  ident: e_1_2_10_48_1
– ident: e_1_2_10_3_3
  doi: 10.1093/nsr/nwad235
– ident: e_1_2_10_8_1
  doi: 10.1002/aenm.202000962
– ident: e_1_2_10_4_2
  doi: 10.1038/s41560-024-01527-5
– ident: e_1_2_10_29_1
  doi: 10.1002/elan.201600270
– ident: e_1_2_10_50_2
  doi: 10.1002/aenm.201803645
– ident: e_1_2_10_5_1
  doi: 10.1002/aenm.202001386
– ident: e_1_2_10_21_2
  doi: 10.1016/B0-12-176480-X/00109-1
– ident: e_1_2_10_1_3
  doi: 10.1002/adma.201800561
– ident: e_1_2_10_70_1
  doi: 10.1016/S0039-6028(98)00363-X
– ident: e_1_2_10_12_1
  doi: 10.1038/s41467-020-20170-8
– ident: e_1_2_10_50_5
  doi: 10.1126/science.aak9991
– ident: e_1_2_10_49_3
  doi: 10.1021/acsaem.9b00691
– ident: e_1_2_10_25_2
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_10_49_1
  doi: 10.1038/s41467-020-14748-5
– ident: e_1_2_10_41_1
  doi: 10.1007/978-94-011-4938-9_12
– ident: e_1_2_10_3_1
  doi: 10.1038/nmat4919
SSID ssj0009606
Score 2.523244
SecondaryResourceType review_article
Snippet Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working...
Abstract Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2417757
SubjectTerms anode
Anodes
aqueous batteries
Electrode polarization
electrodeposition
Hydrogen evolution
Low voltage
reversibility
Sn metal
Title Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202417757
https://www.ncbi.nlm.nih.gov/pubmed/40079068
https://www.proquest.com/docview/3273288916
https://www.proquest.com/docview/3176689073
https://www.osti.gov/biblio/2530768
Volume 37
WOSCitedRecordID wos001445124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS-QwFMcfOu5BD7vr-qurKxEWPBXbJNOkx0F38OAv1IW5hfwqCNIZ7Ix_v3npTHVAWXAvhdKkDS95ybd9zecB_K5Y4Y3QeZrnwZs4t2EezL1NPfWUW-1MbiIy_0JcXcnRqLx5s4u_5UN0H9zQM-J8jQ6uTXPyCg3VLnKDwgokRF-swho-DZM3UH7zit0tYnZNjPalZcHlAtuY0ZPl-kvLUm8c3Os9ybmsYOMSNPz2_43_Dl_n8pMM2vGyCSu-_gEbb6CEW3B-usiv0hBdO3I9QYk-qyN6lQSNS4LURL6Sx11XZBDaPp415K4mlz4oedISO0PZbbgf_rk_PU_n-RZSy3lkRUpWVZkxjBtPqWXcVrrIpaeuqlxfesELVzjhdG58JkvJGS9dGSSg1Rn3bAd69bj2e0AwXBdePK2ujODO9LUQuRG0KiVjQkudQLqwtrJzFjmmxHhULUWZKjSQ6gyUwHFXftJSOD4suY-dp4J-QAiuxb-F7FTRPsOQYwIHiz5Vc19tFKMILJJBJydw1F0OXoahE12jDRVDjqYsw3yYwG47FrqGYGb5MsOb09jl_2ihGpxdDrqzn5-ptA_rFNMQxy2RB9CbPs38L_hin6cPzdNh9IBwFCN5CGtnt8O_Fy89yQYn
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3ba9swFIcPWzpY-9DdenEvmwaDPZnakmLJj6FtSFmSjS2DvgndDIPhlCbp318d2XEb2BiMPhrL4iDpSD_rSN8B-FSxwhuh8zTPgzdxbsM8mHubeuopt9qZ3ERk_lhMp_L6uvzWnibEuzANH6LbcEPPiPM1OjhuSJ89UEO1i-CgsAQJ0RfPYYuHsRQG-dbF9-HP8QN5t4gJNjHgl5YFl2tyY0bPNmvYWJl68-Bhf1KdmyI2rkLDV09g_2vYbSUoGTRj5g088_Vb2HkEJnwHo_N1jpUF0bUjX29Qpq_qiF8lQeeSIDeRseTx5hUZBOPnqwX5UZOJD2qeNNTOUHYPZsPL2fkobXMupJbzyIuUrKoyYxg3nlLLuK10kUtPXVW5vvSCF65wwunc-EyWkjNeujLIQKsz7tk-9Op57Q-BYMgu_HxaXRnBnelrIXIjaFVKxoSWOoF03dzKtjxyTIvxWzUkZaqwgVTXQAl87srfNCSOv5Y8xt5TQUMgCNfiiSG7VLTPMOyYwMm6U1XrrwvFKEKLZNDKCXzsXgdPw_CJrrENFUOWpizDnJjAQTMYOkMwu3yZYeU09vk_LFSDi8mgezr6n48-wMvRbDJW46vpl2PYppiWOF6RPIHe8nblT-GFvVv-Wty-bx3iHmXiCSU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9swEMePLh1je2j3e167TYPBnkxtSbHkx9A0tCzNytZB34R-wmA4oUn2908nO-4CHYPSR2PZHCed9LVP-hzAp8Aqb4Qu87KM0cS5jfNg6W3uqafcamdKk5D5UzGbyaur-qLbTYhnYVo-RP_DDSMjzdcY4H7hwtENNVS7BA6KS5AQQ_EAdjlWkhnA7vjb5Mf0hrxbpQKbmPDL64rLDbmxoEfbb9hamQbzGGG3qc5tEZtWocn-Pdj_FPY6CUpG7Zh5Bju-eQ5P_gITvoDT402NlSXRjSNfFyjT103Cr5Koc0mUm8hY8njyioyi8fP1knxvyLmPap601M7Y9iVcTk4uj0_zruZCbjlPvEjJQiiMYdx4Si3jNuiqlJ66ENxQesErVznhdGl8IWvJGa9dHWWg1QX37BUMmnnj3wDBlF38-LQ6GMGdGWohSiNoqCVjQkudQb5xt7IdjxzLYvxSLUmZKnSQ6h2Uwee-_aIlcfyz5QH2nooaAkG4FncM2ZWiQ4ZpxwwON52qunhdKkYRWiSjVs7gY387RhqmT3SDPlQMWZqyjnNiBq_bwdAbgtXl6wJfTlOf_8dCNRqfj_qrt3d56AM8uhhP1PRs9uUAHlOsSpxOSB7CYHW99u_gof29-rm8ft_Fwx_iDQig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Opportunities+for+Rechargeable+Aqueous+Sn+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Haozhe&rft.au=Liu%2C+Di%E2%80%90Jia&rft.au=Xu%2C+Kang&rft.au=Meng%2C+Ying+Shirley&rft.date=2025-11-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft_id=info:doi/10.1002%2Fadma.202417757&rft.externalDocID=2530768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon