Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 37; H. 46; S. e2417757 - n/a |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.11.2025
Wiley Blackwell (John Wiley & Sons) |
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.
Rechargeable aqueous batteries with metal anodes promise enhanced energy density, combining higher output voltage and capacity with high safety. This perspective highlights the emerging potential of the Sn metal anode, emphasizing its resistance to hydrogen evolution, high reversibility, and sustainability. Key challenges, including dead Sn formation and electrolyte evolution, as well as innovative design strategies for robust Sn‐based batteries are also discussed. The development of Sn metal batteries could contribute to a sustainable society. |
|---|---|
| AbstractList | Abstract
Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry.Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self‐discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes. New design approaches for more durable and reliable Sn metal batteries are also discussed, with the aim of fully realizing the potential of Sn anode chemistry. Rechargeable aqueous batteries with metal anodes promise enhanced energy density, combining higher output voltage and capacity with high safety. This perspective highlights the emerging potential of the Sn metal anode, emphasizing its resistance to hydrogen evolution, high reversibility, and sustainability. Key challenges, including dead Sn formation and electrolyte evolution, as well as innovative design strategies for robust Sn‐based batteries are also discussed. The development of Sn metal batteries could contribute to a sustainable society. |
| Author | Liu, Di‐Jia Meng, Ying Shirley Zhang, Haozhe Xu, Kang |
| Author_xml | – sequence: 1 givenname: Haozhe orcidid: 0000-0001-6363-5271 surname: Zhang fullname: Zhang, Haozhe organization: Argonne National Laboratory – sequence: 2 givenname: Di‐Jia orcidid: 0000-0003-1747-028X surname: Liu fullname: Liu, Di‐Jia email: djliu@anl.gov organization: Argonne National Laboratory – sequence: 3 givenname: Kang orcidid: 0000-0002-6946-8635 surname: Xu fullname: Xu, Kang email: kang.xu@ses.ai organization: SES AI Corporation – sequence: 4 givenname: Ying Shirley orcidid: 0000-0001-8936-8845 surname: Meng fullname: Meng, Ying Shirley email: shirleymeng@uchicago.edu organization: Argonne National Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40079068$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2530768$$D View this record in Osti.gov |
| BookMark | eNqFkV1rFDEUhoNU7LZ666UMetObWU8-Jh-X62qt0FLQ3odM5kw7ZTZZkyzSf2-WbRUK4tWB8DyH9-Q9IUchBiTkLYUlBWAf3bBxSwZMUKU69YIsaMdoK8B0R2QBhnetkUIfk5Oc7wHASJCvyLEAUAakXpCL9Z2bZwy3mBsXhuZ6u42p7MJUpvoyxtR8R3_n0i26fsZm9XOHcZebH6G5wuLm5pMrBVNlX5OXo5szvnmcp-Tm_MvN-qK9vP76bb26bL0QoFqqNB9H6HsuemTMc-FHJ6lGNozj0GlUQg5yUIOjPYI2WnBhBkMN9w4E8lPy_rA25jLZ7KdS4_kYAvpiWcdBSV2hswO0TbEGzsVupuxxnl3Yp7ecKim1AcUr-uEZeh93KdQLLGeKM60NlZV690jt-g0OdpumjUsP9ukfKyAOgE8x54SjrclcmWIoyU2zpWD3ddl9XfZPXVVbPtOeNv9TMAfh1zTjw39ou_p8tfrr_gYeZ6X6 |
| CitedBy_id | crossref_primary_10_1002_batt_202500230 crossref_primary_10_1002_adfm_202510065 crossref_primary_10_1002_metm_70007 crossref_primary_10_1021_jacs_5c03861 crossref_primary_10_1021_acsenergylett_5c01329 crossref_primary_10_1039_D5CS00785B |
| Cites_doi | 10.1039/D2EE02416K 10.1126/science.aao2808 10.1039/C4CS00470A 10.31635/renewables.023.202300028 10.1039/an9739800635 10.1002/anie.202103722 10.1126/science.1212741 10.1002/adma.202200085 10.1002/anie.202001191 10.1126/science.abd3352 10.1002/anie.202407856 10.1016/j.joule.2020.11.008 10.1002/cey2.67 10.1126/sciadv.aba4098 10.1039/D4EE01615G 10.1063/1.101580 10.1016/j.ensm.2020.05.028 10.1016/S0013-4686(00)00523-5 10.1016/j.nanoen.2023.108567 10.1038/s41560-018-0147-7 10.1002/adma.202003684 10.1002/advs.202103896 10.1002/er.1284 10.1016/j.jpowsour.2019.226918 10.1038/s41565-021-00905-4 10.1021/acsaem.0c00557 10.1107/S0021889809016690 10.1002/adma.202008095 10.1038/s41586-019-1481-z 10.1016/j.jpowsour.2003.11.048 10.1038/s41560-020-0674-x 10.1016/j.electacta.2011.01.017 10.1016/j.apenergy.2019.113756 10.1021/jp512920f 10.1002/ppsc.201900183 10.1126/sciadv.aau8131 10.1007/s40820-024-01337-0 10.1002/adfm.201807847 10.1038/s41893-022-00864-1 10.1038/s41560-021-00807-8 10.1002/adfm.201900911 10.1038/s41560-018-0309-7 10.1021/cr500232y 10.1002/aenm.202300403 10.1002/adma.201505370 10.1002/cey2.69 10.1002/adma.201605838 10.1021/ja409958a 10.3390/suschem2010011 10.1016/j.joule.2023.04.011 10.3762/bjnano.5.96 10.1038/s41560-020-00710-8 10.1039/D1EE00308A 10.1002/smll.202301931 10.1126/science.abq3750 10.1016/j.electacta.2012.12.036 10.1149/1.2085459 10.1016/j.jpowsour.2018.10.011 10.1103/PhysRevB.79.235436 10.1016/0013-4686(60)87010-7 10.1039/D2EE00004K 10.1016/j.mattod.2020.12.003 10.1016/j.jpowsour.2014.11.031 10.1007/s10971-013-3247-7 10.1177/030751332801400118 10.1021/acsnano.3c00242 10.1002/aenm.202200244 10.1007/BF02755923 10.1039/D1CC01486B 10.1016/j.jpowsour.2009.12.126 10.1016/j.nanoen.2016.04.017 10.1016/0013-4686(84)87028-0 10.1016/j.nxener.2023.100015 10.1002/adma.202408067 10.1038/s41578-022-00511-3 10.1021/ie102267x 10.1016/j.jpowsour.2021.230167 10.1039/C9EE02526J 10.1039/C4CS00015C 10.1039/C9CS00131J 10.1016/0378-7753(96)02322-1 10.1002/aenm.202100608 10.1038/d41586-018-05752-3 10.1126/science.aax6873 10.1002/anie.202312585 10.1038/s41467-018-06209-x 10.1016/j.joule.2025.101820 10.1038/s41570-017-0105 10.1039/D0EE01856B 10.1016/j.joule.2023.05.004 10.1038/s41570-016-0003 10.1002/adfm.202413685 10.1002/anie.202414346 10.1038/s41560-018-0122-3 10.1016/j.jpowsour.2015.01.049 10.1201/9781420017168 10.1038/s41560-020-0655-0 10.1002/aenm.202003065 10.1002/advs.201700298 10.1021/acsami.9b20320 10.1002/anie.202010073 10.1038/sdata.2016.80 10.1038/s41563-018-0063-z 10.1002/aenm.202000968 10.1126/science.abb9554 10.1002/anie.202205472 10.1016/j.matt.2021.01.022 10.1007/s11783-021-1406-6 10.1016/j.nanoen.2022.107333 10.1149/1.3455148 10.1038/s41578-020-00241-4 10.1021/jacs.3c03039 10.1016/j.joule.2024.09.002 10.1016/j.microrel.2017.10.030 10.1038/ncomms10990 10.1021/acs.jpcc.5b08481 10.1002/smsc.202000066 10.1002/adma.201603304 10.1002/anie.202004433 10.1002/anie.202206471 10.1039/D0CS00867B 10.1038/s41560-020-0584-y 10.1016/j.joule.2024.03.007 10.1093/nsr/nwad235 10.1002/aenm.202000962 10.1038/s41560-024-01527-5 10.1002/elan.201600270 10.1002/aenm.201803645 10.1002/aenm.202001386 10.1016/B0-12-176480-X/00109-1 10.1002/adma.201800561 10.1016/S0039-6028(98)00363-X 10.1038/s41467-020-20170-8 10.1126/science.aak9991 10.1021/acsaem.9b00691 10.1021/acs.chemrev.9b00248 10.1038/s41467-020-14748-5 10.1007/978-94-011-4938-9_12 10.1038/nmat4919 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
| DOI | 10.1002/adma.202417757 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 2530768 40079068 10_1002_adma_202417757 ADMA202417757 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Joint Task Force Initiative (JTFI) at the University of Chicago funderid: 2‐84889‐4401 – fundername: University of Chicago – fundername: Office of Science funderid: DE‐AC02‐06CH11357 – fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences – fundername: Office of Science grantid: DE-AC02-06CH11357 – fundername: Joint Task Force Initiative (JTFI) at the University of Chicago grantid: 2-84889-4401 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 ALUQN AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE OTOTI |
| ID | FETCH-LOGICAL-c4407-1783ff0bb34be22c34cfa618e2dffd58e746d6d7da1be08984349d9193ca04e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Mon Mar 24 04:17:37 EDT 2025 Wed Oct 01 14:54:41 EDT 2025 Thu Nov 20 06:40:29 EST 2025 Mon Nov 24 02:15:22 EST 2025 Thu Nov 27 01:03:55 EST 2025 Tue Nov 18 22:33:10 EST 2025 Thu Nov 20 09:10:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 46 |
| Keywords | reversibility anode aqueous batteries Sn metal electrodeposition |
| Language | English |
| License | Attribution 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4407-1783ff0bb34be22c34cfa618e2dffd58e746d6d7da1be08984349d9193ca04e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE |
| ORCID | 0000-0001-6363-5271 0000-0002-6946-8635 0000-0001-8936-8845 0000-0003-1747-028X 0000000269468635 000000031747028X 0000000163635271 0000000189368845 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202417757 |
| PMID | 40079068 |
| PQID | 3273288916 |
| PQPubID | 2045203 |
| PageCount | 20 |
| ParticipantIDs | osti_scitechconnect_2530768 proquest_miscellaneous_3176689073 proquest_journals_3273288916 pubmed_primary_40079068 crossref_citationtrail_10_1002_adma_202417757 crossref_primary_10_1002_adma_202417757 wiley_primary_10_1002_adma_202417757_ADMA202417757 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Nov |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-Nov |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2000 2009 2024; 45 79 16 2023 2023; 19 145 2020 2021 2021; 10 45 2 2010; 13 2017; 4 2009; 42 2023; 7 2018; 404 1960; 2 2021 2020; 11 2 2020; 369 2014; 69 1984; 29 2023; 1 2021 2019 2018 2016 2017 2021; 5 9 9 28 356 6 2025; 35 2024 2017; 358 2021 2016; 33 3 2004; 133 2019 2024; 12 9 2020; 2 2018; 4 2014 1973; 136 98 2001 2024; 8 2015; 44 2017; 79 2020 2019; 31 29 2022; 34 2020; 49 2024; 63 2019; 29 2014 2023; 43 52 2020 2019 2019 2021 2022 2020 2021 2020 2020; 11 4 2 57 9 12 60 59 10 2019; 437 2019 2021; 366 16 2018 2019 2018 2020; 120 2 13 2021; 506 1920; 3 2015; 280 2023; 13 2018 2020; 17 5 2021; 4 2023; 17 1928; 14 2011 2025; 9 2019; 36 1998 2013; 90 2018 2023 2018; 3 8 559 2021 2023 2020; 11 7 5 2017; 29 2023 2020; 1 3 1998; 411 2020; 32 2002 2021; 1 2023 2021; 113 14 2011 2011; 56 50 1991; 138 2011 2022 2018; 334 5 30 2024; 17 1996; 59 2007 2017; 31 1 2021 2008; 15 2017 2021 2023; 16 6 10 1846 2020; 2020 49 2010 2004 2014; 195 1 114 1989; 55 2021; 12 2000; 38 2021; 11 2022 2022; 378 15 2014 2016 2020; 5 7 5 2022; 61 2015; 275 2021 2020; 60 6 2022; 12 2019 2018 2020; 3 5 2018 2021; 371 2022; 15 2015; 119 2022; 98 2016; 29 2016; 28 2021; 60 2024 2024 2024; 8 36 64 2019; 255 2019; 572 e_1_2_10_21_3 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_21_2 e_1_2_10_40_1 Gielen M. (e_1_2_10_36_2) 2008 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_2_3 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_2_2 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_6_2 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_79_2 e_1_2_10_32_1 e_1_2_10_51_1 Robertson W. (e_1_2_10_38_1) 2024 Sabatier P. (e_1_2_10_27_1) 1920; 3 Reddy T. B. (e_1_2_10_84_1) 2011 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_63_2 e_1_2_10_25_3 e_1_2_10_25_4 e_1_2_10_67_1 e_1_2_10_25_2 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Wang Q. (e_1_2_10_91_2) 2023; 52 e_1_2_10_90_2 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_3_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_52_2 e_1_2_10_75_1 e_1_2_10_3_3 e_1_2_10_98_1 e_1_2_10_7_2 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_15_1 e_1_2_10_34_3 e_1_2_10_56_2 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_49_9 e_1_2_10_49_8 e_1_2_10_49_7 e_1_2_10_60_1 e_1_2_10_49_6 e_1_2_10_49_5 e_1_2_10_49_4 e_1_2_10_49_3 e_1_2_10_64_1 e_1_2_10_49_2 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_53_2 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_34_2 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 Chao D. (e_1_2_10_7_1) 1846; 2020 Emsley J. (e_1_2_10_39_1) 2011 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_65_1 e_1_2_10_88_1 Eliaz N. (e_1_2_10_25_1) 2018 e_1_2_10_46_2 e_1_2_10_88_2 e_1_2_10_24_1 e_1_2_10_20_2 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_1_2 e_1_2_10_73_1 e_1_2_10_1_3 e_1_2_10_17_2 e_1_2_10_17_3 e_1_2_10_96_1 e_1_2_10_5_2 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_5_3 e_1_2_10_36_1 e_1_2_10_9_2 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 Arblaster J. W. (e_1_2_10_48_1) 2018 e_1_2_10_59_1 e_1_2_10_31_3 e_1_2_10_50_6 e_1_2_10_31_2 e_1_2_10_50_5 e_1_2_10_31_1 e_1_2_10_50_4 e_1_2_10_50_3 e_1_2_10_50_2 Pillot C. (e_1_2_10_83_1) 2019 e_1_2_10_50_1 e_1_2_10_81_1 Suslick K. S. (e_1_2_10_77_1) 2001 e_1_2_10_62_1 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_62_3 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_24_2 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – year: 2011 – volume: 19 145 year: 2023 2023 publication-title: Small J. Am. Chem. Soc. – volume: 1 3 start-page: 474 5031 year: 2023 2020 publication-title: Renewables ACS Appl. Energy Mater. – volume: 120 2 13 start-page: 851 0105 3185 year: 2018 2019 2018 2020 publication-title: Chem. Rev. Nat. Rev. Chem. Energy Environ. Sci. – volume: 79 start-page: 175 year: 2017 publication-title: Microelectron. Reliab. – volume: 31 29 start-page: 44 year: 2020 2019 publication-title: Energy Storage Mater. Adv. Funct. Mater. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 366 16 start-page: 645 902 year: 2019 2021 publication-title: Science Nat. Nanotechnol. – volume: 9 year: 2025 publication-title: Joule – volume: 11 7 5 start-page: 1145 743 year: 2021 2023 2020 publication-title: Adv. Energy Mater. Joule Nat. Energy – volume: 138 start-page: 3560 year: 1991 publication-title: J. Electrochem. Soc. – volume: 255 year: 2019 publication-title: Appl. Energy – year: 2001 – volume: 33 3 year: 2021 2016 publication-title: Adv. Mater. Sci. Data – year: 2024 – year: 2018 – year: 1998 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 56 50 start-page: 4356 1899 year: 2011 2011 publication-title: Electrochim. Acta Ind. Eng. Chem. Res. – volume: 17 start-page: 5083 year: 2023 publication-title: ACS Nano – volume: 7 start-page: 971 year: 2023 publication-title: Joule – volume: 13 start-page: A125 year: 2010 publication-title: Electrochem. Solid‐State Lett. – volume: 43 52 start-page: 5257 6239 year: 2014 2023 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. – volume: 42 start-page: 726 year: 2009 publication-title: J. Appl. Crystallogr. – volume: 10 45 2 start-page: 191 167 year: 2020 2021 2021 publication-title: Adv. Energy Mater. Mater. Today Sustain. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 4770 year: 2024 publication-title: Energy Environ. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1252 year: 2021 publication-title: Matter – volume: 8 start-page: 3386 year: 2024 publication-title: Joule – volume: 28 start-page: 2256 year: 2016 publication-title: Electroanalysis – volume: 369 start-page: 923 year: 2020 publication-title: Science – volume: 506 year: 2021 publication-title: J. Power Sources – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 334 5 30 start-page: 928 176 year: 2011 2022 2018 publication-title: Science Nat. Sustain. Adv. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 38 start-page: 715 year: 2000 publication-title: High Temp. – volume: 280 start-page: 227 year: 2015 publication-title: J. Power Sources – year: 2019 – volume: 98 year: 2022 publication-title: Nano Energy – volume: 195 1 114 start-page: 4424 117 year: 2010 2004 2014 publication-title: J. Power Sources Encyclopedia Ener. Chem. Rev. – volume: 5 7 5 start-page: 846 891 year: 2014 2016 2020 publication-title: Beilstein J. Nanotechnol. Nat. Commun. Nat. Energy – volume: 14 start-page: 97 year: 1928 publication-title: J. Egypt. Archaeol. – volume: 90 start-page: 265 year: 2013 publication-title: Electrochim. Acta – volume: 371 start-page: 46 year: 2021 publication-title: Science – volume: 5 9 9 28 356 6 start-page: 228 3731 4904 415 592 year: 2021 2019 2018 2016 2017 2021 publication-title: Joule Adv. Energy Mater. Nat. Commun. Adv. Mater. Science Nat. Energy – volume: 1 year: 2021 publication-title: Small Sci. – volume: 133 start-page: 126 year: 2004 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 31 1 start-page: 637 0003 year: 2007 2017 publication-title: Int. J. Energy Res. Nat. Rev. Chem. – volume: 69 start-page: 480 year: 2014 publication-title: J. Sol‐Gel Sci. Technol. – volume: 36 year: 2019 publication-title: Part. Syst. Charact. – volume: 15 start-page: 118 year: 2021 2008 publication-title: Front. Environ. Sci. Eng. – volume: 11 2 start-page: 540 year: 2021 2020 publication-title: Adv. Energy Mater. Carbon Energy – volume: 15 start-page: 5017 year: 2022 publication-title: Energy Environ. Sci. – volume: 35 year: 2025 publication-title: Adv. Funct. Mater. – volume: 275 start-page: 595 year: 2015 publication-title: J. Power Sources – volume: 55 start-page: 1439 year: 1989 publication-title: Appl. Phys. Lett. – volume: 1 year: 2023 publication-title: Next Energy – volume: 136 98 start-page: 311 635 year: 2014 1973 publication-title: J. Am. Chem. Soc. Analyst – volume: 378 15 start-page: 1805 year: 2022 2022 publication-title: Science Energy Environ. Sci. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 17 5 start-page: 543 646 year: 2018 2020 publication-title: Nat. Mater. Nat. Energy – volume: 3 year: 1920 publication-title: La catalyse en chimie organique – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 113 14 start-page: 3609 year: 2023 2021 publication-title: Nano Energy Energy Environ. Sci. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 45 79 16 start-page: 4075 111 year: 2000 2009 2024 publication-title: Electrochim. Acta Phys. Rev. B Condens. Matter. Nano‐Micro Lett. – volume: 437 year: 2019 publication-title: J. Power Sources – volume: 2 start-page: 521 year: 2020 publication-title: Carbon Energy – volume: 29 start-page: 1459 year: 1984 publication-title: Electrochim. Acta – volume: 404 start-page: 89 year: 2018 publication-title: J. Power Sources – volume: 60 start-page: 896 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 8 559 start-page: 261 109 467 year: 2018 2023 2018 publication-title: Nat. Energy Nat. Rev. Mater. Nature – volume: 60 6 start-page: 598 year: 2021 2020 publication-title: Angew. Chem., Int. Ed. Sci. Adv. – year: 2002 – volume: 572 start-page: 511 year: 2019 publication-title: Nature – volume: 8 36 64 start-page: 1063 year: 2024 2024 2024 publication-title: Joule Adv. Mater. Angew. Chem., Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 2 start-page: 130 year: 1960 publication-title: Electrochim. Acta – volume: 12 9 start-page: 3288 839 year: 2019 2024 publication-title: Energy Environ. Sci. Nat. Energy – volume: 2020 49 start-page: 4 180 year: 1846 2020 publication-title: Joule Chem. Soc. Rev. – volume: 16 6 10 start-page: 841 109 year: 2017 2021 2023 publication-title: Nat. Mater. Nat. Rev. Mater. Natl. Sci. Rev. – volume: 49 start-page: 7284 year: 2020 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 191 year: 1996 publication-title: J. Power Sources – volume: 11 4 2 57 9 12 60 59 10 start-page: 959 123 4016 4307 9201 9631 year: 2020 2019 2019 2021 2022 2020 2021 2020 2020 publication-title: Nat. Commun. Nat. Energy ACS Appl. Energy Mater. Chem. Commun. Adv. Sci. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 29 start-page: 29 year: 2016 publication-title: Nano Energy – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 12 start-page: 14 year: 2021 publication-title: Nat. Commun. – volume: 411 start-page: 186 year: 1998 publication-title: Surf. Sci. – volume: 358 year: 2017 publication-title: Science – volume: 119 start-page: 5506 year: 2015 publication-title: J. Phys. Chem. C – volume: 28 start-page: 9188 year: 2016 publication-title: Adv. Mater. – volume: 3 5 start-page: 428 440 year: 2018 2020 publication-title: Nat. Energy Nat. Energy – ident: e_1_2_10_75_1 doi: 10.1039/D2EE02416K – volume-title: Tin chemistry: fundamentals, frontiers, and applications year: 2008 ident: e_1_2_10_36_2 – ident: e_1_2_10_73_1 doi: 10.1126/science.aao2808 – ident: e_1_2_10_33_1 doi: 10.1039/C4CS00470A – ident: e_1_2_10_56_1 doi: 10.31635/renewables.023.202300028 – ident: e_1_2_10_63_2 doi: 10.1039/an9739800635 – ident: e_1_2_10_49_7 doi: 10.1002/anie.202103722 – ident: e_1_2_10_1_1 doi: 10.1126/science.1212741 – volume-title: Nature's building blocks: an AZ guide to the elements year: 2011 ident: e_1_2_10_39_1 – ident: e_1_2_10_45_1 doi: 10.1002/adma.202200085 – ident: e_1_2_10_49_8 doi: 10.1002/anie.202001191 – ident: e_1_2_10_42_1 doi: 10.1126/science.abd3352 – ident: e_1_2_10_54_1 doi: 10.1002/anie.202407856 – ident: e_1_2_10_50_1 doi: 10.1016/j.joule.2020.11.008 – ident: e_1_2_10_24_2 doi: 10.1002/cey2.67 – volume-title: Physical electrochemistry: fundamentals, techniques, and applications year: 2018 ident: e_1_2_10_25_1 – ident: e_1_2_10_6_2 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_10_15_1 doi: 10.1039/D4EE01615G – ident: e_1_2_10_67_1 doi: 10.1063/1.101580 – ident: e_1_2_10_90_1 doi: 10.1016/j.ensm.2020.05.028 – ident: e_1_2_10_34_1 doi: 10.1016/S0013-4686(00)00523-5 – ident: e_1_2_10_46_1 doi: 10.1016/j.nanoen.2023.108567 – ident: e_1_2_10_88_1 doi: 10.1038/s41560-018-0147-7 – volume: 2020 start-page: 4 year: 1846 ident: e_1_2_10_7_1 publication-title: Joule – ident: e_1_2_10_19_1 doi: 10.1002/adma.202003684 – ident: e_1_2_10_49_5 doi: 10.1002/advs.202103896 – ident: e_1_2_10_28_1 doi: 10.1002/er.1284 – ident: e_1_2_10_59_1 doi: 10.1016/j.jpowsour.2019.226918 – ident: e_1_2_10_9_2 doi: 10.1038/s41565-021-00905-4 – ident: e_1_2_10_56_2 doi: 10.1021/acsaem.0c00557 – ident: e_1_2_10_69_1 doi: 10.1107/S0021889809016690 – ident: e_1_2_10_20_1 doi: 10.1002/adma.202008095 – ident: e_1_2_10_72_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_10_85_1 doi: 10.1016/j.jpowsour.2003.11.048 – ident: e_1_2_10_17_3 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_10_52_1 doi: 10.1016/j.electacta.2011.01.017 – ident: e_1_2_10_60_1 doi: 10.1016/j.apenergy.2019.113756 – ident: e_1_2_10_32_1 doi: 10.1021/jp512920f – volume-title: The Rechargeable Battery Market and Main Trends 2018‐2030 year: 2019 ident: e_1_2_10_83_1 – ident: e_1_2_10_93_1 doi: 10.1002/ppsc.201900183 – ident: e_1_2_10_14_1 doi: 10.1126/sciadv.aau8131 – ident: e_1_2_10_34_3 doi: 10.1007/s40820-024-01337-0 – ident: e_1_2_10_90_2 doi: 10.1002/adfm.201807847 – ident: e_1_2_10_1_2 doi: 10.1038/s41893-022-00864-1 – ident: e_1_2_10_50_6 doi: 10.1038/s41560-021-00807-8 – ident: e_1_2_10_11_1 doi: 10.1002/adfm.201900911 – ident: e_1_2_10_49_2 doi: 10.1038/s41560-018-0309-7 – ident: e_1_2_10_21_3 doi: 10.1021/cr500232y – ident: e_1_2_10_81_1 doi: 10.1002/aenm.202300403 – ident: e_1_2_10_50_4 doi: 10.1002/adma.201505370 – ident: e_1_2_10_87_1 doi: 10.1002/cey2.69 – ident: e_1_2_10_26_1 doi: 10.1002/adma.201605838 – ident: e_1_2_10_63_1 doi: 10.1021/ja409958a – ident: e_1_2_10_5_3 doi: 10.3390/suschem2010011 – ident: e_1_2_10_18_1 doi: 10.1016/j.joule.2023.04.011 – ident: e_1_2_10_31_1 doi: 10.3762/bjnano.5.96 – ident: e_1_2_10_31_3 doi: 10.1038/s41560-020-00710-8 – ident: e_1_2_10_46_2 doi: 10.1039/D1EE00308A – ident: e_1_2_10_53_1 doi: 10.1002/smll.202301931 – ident: e_1_2_10_79_1 doi: 10.1126/science.abq3750 – ident: e_1_2_10_98_1 doi: 10.1016/j.electacta.2012.12.036 – volume-title: Linden's Handbook of Batteries year: 2011 ident: e_1_2_10_84_1 – ident: e_1_2_10_40_1 – ident: e_1_2_10_92_1 doi: 10.1149/1.2085459 – ident: e_1_2_10_58_1 doi: 10.1016/j.jpowsour.2018.10.011 – ident: e_1_2_10_34_2 doi: 10.1103/PhysRevB.79.235436 – ident: e_1_2_10_97_1 doi: 10.1016/0013-4686(60)87010-7 – ident: e_1_2_10_79_2 doi: 10.1039/D2EE00004K – ident: e_1_2_10_5_2 doi: 10.1016/j.mattod.2020.12.003 – ident: e_1_2_10_44_1 doi: 10.1016/j.jpowsour.2014.11.031 – ident: e_1_2_10_89_1 doi: 10.1007/s10971-013-3247-7 – ident: e_1_2_10_35_1 doi: 10.1177/030751332801400118 – ident: e_1_2_10_61_1 doi: 10.1021/acsnano.3c00242 – ident: e_1_2_10_74_1 doi: 10.1002/aenm.202200244 – ident: e_1_2_10_64_1 doi: 10.1007/BF02755923 – ident: e_1_2_10_49_4 doi: 10.1039/D1CC01486B – ident: e_1_2_10_21_1 doi: 10.1016/j.jpowsour.2009.12.126 – ident: e_1_2_10_30_1 doi: 10.1016/j.nanoen.2016.04.017 – ident: e_1_2_10_47_1 doi: 10.1016/0013-4686(84)87028-0 – ident: e_1_2_10_100_1 doi: 10.1016/j.nxener.2023.100015 – volume-title: Sonoluminescence and sonochemistry year: 2001 ident: e_1_2_10_77_1 – ident: e_1_2_10_62_2 doi: 10.1002/adma.202408067 – ident: e_1_2_10_2_2 doi: 10.1038/s41578-022-00511-3 – ident: e_1_2_10_52_2 doi: 10.1021/ie102267x – ident: e_1_2_10_94_1 doi: 10.1016/j.jpowsour.2021.230167 – ident: e_1_2_10_4_1 doi: 10.1039/C9EE02526J – ident: e_1_2_10_91_1 doi: 10.1039/C4CS00015C – ident: e_1_2_10_7_2 doi: 10.1039/C9CS00131J – ident: e_1_2_10_23_1 doi: 10.1016/0378-7753(96)02322-1 – ident: e_1_2_10_17_1 doi: 10.1002/aenm.202100608 – ident: e_1_2_10_2_3 doi: 10.1038/d41586-018-05752-3 – ident: e_1_2_10_9_1 doi: 10.1126/science.aax6873 – ident: e_1_2_10_80_1 doi: 10.1002/anie.202312585 – ident: e_1_2_10_50_3 doi: 10.1038/s41467-018-06209-x – ident: e_1_2_10_78_1 doi: 10.1016/j.joule.2025.101820 – ident: e_1_2_10_25_3 doi: 10.1038/s41570-017-0105 – ident: e_1_2_10_25_4 doi: 10.1039/D0EE01856B – volume: 3 year: 1920 ident: e_1_2_10_27_1 publication-title: La catalyse en chimie organique – ident: e_1_2_10_17_2 doi: 10.1016/j.joule.2023.05.004 – ident: e_1_2_10_28_2 doi: 10.1038/s41570-016-0003 – ident: e_1_2_10_99_1 doi: 10.1002/adfm.202413685 – ident: e_1_2_10_62_3 doi: 10.1002/anie.202414346 – volume-title: Tin: its production and marketing year: 2024 ident: e_1_2_10_38_1 – ident: e_1_2_10_2_1 doi: 10.1038/s41560-018-0122-3 – ident: e_1_2_10_57_1 doi: 10.1016/j.jpowsour.2015.01.049 – ident: e_1_2_10_37_1 – ident: e_1_2_10_68_1 doi: 10.1201/9781420017168 – ident: e_1_2_10_16_2 doi: 10.1038/s41560-020-0655-0 – ident: e_1_2_10_24_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_10_66_1 doi: 10.1002/advs.201700298 – ident: e_1_2_10_49_6 doi: 10.1021/acsami.9b20320 – ident: e_1_2_10_82_1 doi: 10.1002/anie.202010073 – ident: e_1_2_10_20_2 doi: 10.1038/sdata.2016.80 – ident: e_1_2_10_16_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_10_49_9 doi: 10.1002/aenm.202000968 – ident: e_1_2_10_95_1 doi: 10.1126/science.abb9554 – ident: e_1_2_10_10_1 doi: 10.1002/anie.202205472 – ident: e_1_2_10_86_1 doi: 10.1016/j.matt.2021.01.022 – ident: e_1_2_10_36_1 doi: 10.1007/s11783-021-1406-6 – volume: 52 start-page: 6239 year: 2023 ident: e_1_2_10_91_2 publication-title: Chem. Soc. Rev. – ident: e_1_2_10_76_1 doi: 10.1016/j.nanoen.2022.107333 – ident: e_1_2_10_51_1 doi: 10.1149/1.3455148 – ident: e_1_2_10_3_2 doi: 10.1038/s41578-020-00241-4 – ident: e_1_2_10_53_2 doi: 10.1021/jacs.3c03039 – ident: e_1_2_10_55_1 doi: 10.1016/j.joule.2024.09.002 – ident: e_1_2_10_65_1 doi: 10.1016/j.microrel.2017.10.030 – ident: e_1_2_10_31_2 doi: 10.1038/ncomms10990 – ident: e_1_2_10_96_1 doi: 10.1021/acs.jpcc.5b08481 – ident: e_1_2_10_22_1 doi: 10.1002/smsc.202000066 – ident: e_1_2_10_43_1 doi: 10.1002/adma.201603304 – ident: e_1_2_10_6_1 doi: 10.1002/anie.202004433 – ident: e_1_2_10_13_1 doi: 10.1002/anie.202206471 – ident: e_1_2_10_71_1 doi: 10.1039/D0CS00867B – ident: e_1_2_10_88_2 doi: 10.1038/s41560-020-0584-y – ident: e_1_2_10_62_1 doi: 10.1016/j.joule.2024.03.007 – volume-title: Selected values of the crystallographic properties of elements year: 2018 ident: e_1_2_10_48_1 – ident: e_1_2_10_3_3 doi: 10.1093/nsr/nwad235 – ident: e_1_2_10_8_1 doi: 10.1002/aenm.202000962 – ident: e_1_2_10_4_2 doi: 10.1038/s41560-024-01527-5 – ident: e_1_2_10_29_1 doi: 10.1002/elan.201600270 – ident: e_1_2_10_50_2 doi: 10.1002/aenm.201803645 – ident: e_1_2_10_5_1 doi: 10.1002/aenm.202001386 – ident: e_1_2_10_21_2 doi: 10.1016/B0-12-176480-X/00109-1 – ident: e_1_2_10_1_3 doi: 10.1002/adma.201800561 – ident: e_1_2_10_70_1 doi: 10.1016/S0039-6028(98)00363-X – ident: e_1_2_10_12_1 doi: 10.1038/s41467-020-20170-8 – ident: e_1_2_10_50_5 doi: 10.1126/science.aak9991 – ident: e_1_2_10_49_3 doi: 10.1021/acsaem.9b00691 – ident: e_1_2_10_25_2 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_10_49_1 doi: 10.1038/s41467-020-14748-5 – ident: e_1_2_10_41_1 doi: 10.1007/978-94-011-4938-9_12 – ident: e_1_2_10_3_1 doi: 10.1038/nmat4919 |
| SSID | ssj0009606 |
| Score | 2.523244 |
| SecondaryResourceType | review_article |
| Snippet | Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working... Abstract Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2417757 |
| SubjectTerms | anode Anodes aqueous batteries Electrode polarization electrodeposition Hydrogen evolution Low voltage reversibility Sn metal |
| Title | Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202417757 https://www.ncbi.nlm.nih.gov/pubmed/40079068 https://www.proquest.com/docview/3273288916 https://www.proquest.com/docview/3176689073 https://www.osti.gov/biblio/2530768 |
| Volume | 37 |
| WOSCitedRecordID | wos001445124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS-QwFMcfOu5BD7vr-qurKxEWPBXbJNOkx0F38OAv1IW5hfwqCNIZ7Ix_v3npTHVAWXAvhdKkDS95ybd9zecB_K5Y4Y3QeZrnwZs4t2EezL1NPfWUW-1MbiIy_0JcXcnRqLx5s4u_5UN0H9zQM-J8jQ6uTXPyCg3VLnKDwgokRF-swho-DZM3UH7zit0tYnZNjPalZcHlAtuY0ZPl-kvLUm8c3Os9ybmsYOMSNPz2_43_Dl_n8pMM2vGyCSu-_gEbb6CEW3B-usiv0hBdO3I9QYk-qyN6lQSNS4LURL6Sx11XZBDaPp415K4mlz4oedISO0PZbbgf_rk_PU_n-RZSy3lkRUpWVZkxjBtPqWXcVrrIpaeuqlxfesELVzjhdG58JkvJGS9dGSSg1Rn3bAd69bj2e0AwXBdePK2ujODO9LUQuRG0KiVjQkudQLqwtrJzFjmmxHhULUWZKjSQ6gyUwHFXftJSOD4suY-dp4J-QAiuxb-F7FTRPsOQYwIHiz5Vc19tFKMILJJBJydw1F0OXoahE12jDRVDjqYsw3yYwG47FrqGYGb5MsOb09jl_2ihGpxdDrqzn5-ptA_rFNMQxy2RB9CbPs38L_hin6cPzdNh9IBwFCN5CGtnt8O_Fy89yQYn |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3ba9swFIcPWzpY-9DdenEvmwaDPZnakmLJj6FtSFmSjS2DvgndDIPhlCbp318d2XEb2BiMPhrL4iDpSD_rSN8B-FSxwhuh8zTPgzdxbsM8mHubeuopt9qZ3ERk_lhMp_L6uvzWnibEuzANH6LbcEPPiPM1OjhuSJ89UEO1i-CgsAQJ0RfPYYuHsRQG-dbF9-HP8QN5t4gJNjHgl5YFl2tyY0bPNmvYWJl68-Bhf1KdmyI2rkLDV09g_2vYbSUoGTRj5g088_Vb2HkEJnwHo_N1jpUF0bUjX29Qpq_qiF8lQeeSIDeRseTx5hUZBOPnqwX5UZOJD2qeNNTOUHYPZsPL2fkobXMupJbzyIuUrKoyYxg3nlLLuK10kUtPXVW5vvSCF65wwunc-EyWkjNeujLIQKsz7tk-9Op57Q-BYMgu_HxaXRnBnelrIXIjaFVKxoSWOoF03dzKtjxyTIvxWzUkZaqwgVTXQAl87srfNCSOv5Y8xt5TQUMgCNfiiSG7VLTPMOyYwMm6U1XrrwvFKEKLZNDKCXzsXgdPw_CJrrENFUOWpizDnJjAQTMYOkMwu3yZYeU09vk_LFSDi8mgezr6n48-wMvRbDJW46vpl2PYppiWOF6RPIHe8nblT-GFvVv-Wty-bx3iHmXiCSU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9swEMePLh1je2j3e167TYPBnkxtSbHkx9A0tCzNytZB34R-wmA4oUn2908nO-4CHYPSR2PZHCed9LVP-hzAp8Aqb4Qu87KM0cS5jfNg6W3uqafcamdKk5D5UzGbyaur-qLbTYhnYVo-RP_DDSMjzdcY4H7hwtENNVS7BA6KS5AQQ_EAdjlWkhnA7vjb5Mf0hrxbpQKbmPDL64rLDbmxoEfbb9hamQbzGGG3qc5tEZtWocn-Pdj_FPY6CUpG7Zh5Bju-eQ5P_gITvoDT402NlSXRjSNfFyjT103Cr5Koc0mUm8hY8njyioyi8fP1knxvyLmPap601M7Y9iVcTk4uj0_zruZCbjlPvEjJQiiMYdx4Si3jNuiqlJ66ENxQesErVznhdGl8IWvJGa9dHWWg1QX37BUMmnnj3wDBlF38-LQ6GMGdGWohSiNoqCVjQkudQb5xt7IdjxzLYvxSLUmZKnSQ6h2Uwee-_aIlcfyz5QH2nooaAkG4FncM2ZWiQ4ZpxwwON52qunhdKkYRWiSjVs7gY387RhqmT3SDPlQMWZqyjnNiBq_bwdAbgtXl6wJfTlOf_8dCNRqfj_qrt3d56AM8uhhP1PRs9uUAHlOsSpxOSB7CYHW99u_gof29-rm8ft_Fwx_iDQig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Opportunities+for+Rechargeable+Aqueous+Sn+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Haozhe&rft.au=Liu%2C+Di%E2%80%90Jia&rft.au=Xu%2C+Kang&rft.au=Meng%2C+Ying+Shirley&rft.date=2025-11-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft_id=info:doi/10.1002%2Fadma.202417757&rft.externalDocID=2530768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |