Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐sou...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 33; číslo 7; s. 161 - 170
Hlavní autori: Xu, Chunxu, Liu, Yong-Jin, Sun, Qian, Li, Jinyan, He, Ying
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.10.2014
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max{m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm.
Bibliografia:ark:/67375/WNG-18X0SHKM-S
Supporting Information
istex:BC38B30276BFD61D83AA16B93EF388F68E6C6B41
ArticleID:CGF12484
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12484