Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐sou...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 7; pp. 161 - 170
Main Authors: Xu, Chunxu, Liu, Yong-Jin, Sun, Qian, Li, Jinyan, He, Ying
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.10.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max{m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm.
AbstractList This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max {m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm.
This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point‐source based GVDs, since a typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge, we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted Voronoi diagram and line‐segment Voronoi diagram on a mesh triangle. We show that when restricting on a single mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges. Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators. Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n‐face mesh with m generators, where N = max{m, n}. Computational results on real‐world models demonstrate the efficiency of our algorithm.
Author Sun, Qian
Xu, Chunxu
Li, Jinyan
Liu, Yong-Jin
He, Ying
Author_xml – sequence: 1
  givenname: Chunxu
  surname: Xu
  fullname: Xu, Chunxu
  organization: TNList, Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yong-Jin
  surname: Liu
  fullname: Liu, Yong-Jin
  organization: TNList, Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Qian
  surname: Sun
  fullname: Sun, Qian
  organization: School of Computer Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Jinyan
  surname: Li
  fullname: Li, Jinyan
  organization: Advanced Analytics Institute, University of Technology, Australia
– sequence: 5
  givenname: Ying
  surname: He
  fullname: He, Ying
  organization: School of Computer Engineering, Nanyang Technological University, Singapore
BookMark eNp1kM1OAjEUhRuDiYAufINJXLkYaGmn01m4MCiDEdQE_Nk1pdPB4tBiO0R5e6ugC6N3c-_ifOeenBZoGGsUAMcIdlCYrpyXHdQjjOyBJiI0jRlNsgZoQhTuFCbJAWh5v4AQkpQmTXB2Z6tNpY2KvV07qYooV7ZQXsvowTprrI4utJg7sfSRNdHUaWHmlYrGyj8rfwj2S1F5dbTbbXA_uJz2h_HoNr_qn49iSQgkMSsKXPaKLIOK9QRGMyYJCrfASmCW0mxGSZKlhAmakSKkpnJWJCVlWAYQZbgNTra-K2df18rXfBHSmvCSI4pSTCBMcFB1tyrprPdOlVzqWtTamtoJXXEE-WdHPHTEvzoKxOkvYuX0UrjNn9qd-5uu1OZ_Ie_ng28i3hLa1-r9hxDuhdMUpwl_vMk5Yk9wMrwe8wn-ANAYhZU
CitedBy_id crossref_primary_10_1016_j_cad_2022_103333
crossref_primary_10_1007_s41095_022_0326_0
crossref_primary_10_1016_j_cad_2017_05_022
crossref_primary_10_1145_3550454_3555453
crossref_primary_10_1111_cgf_13248
crossref_primary_10_1109_LRA_2019_2899920
crossref_primary_10_1109_TVCG_2019_2904271
crossref_primary_10_1145_2999532
crossref_primary_10_1016_j_cad_2018_04_021
crossref_primary_10_1016_j_tws_2022_109974
crossref_primary_10_1109_TVCG_2025_3531445
crossref_primary_10_26599_TST_2024_9010239
crossref_primary_10_1007_s41095_015_0022_4
crossref_primary_10_1080_15481603_2023_2171703
crossref_primary_10_1145_3144567
crossref_primary_10_1016_j_gmod_2023_101196
Cites_doi 10.1145/77635.77639
10.1002/9780470317013
10.1016/0021-9991(85)90140-8
10.1016/j.cad.2011.08.027
10.1145/2508363.2508379
10.1145/1073204.1073228
10.1016/j.cad.2012.11.005
10.1145/2516971.2516977
10.1073/pnas.95.15.8431
10.1137/0216045
10.1145/73393.73407
10.1007/BF01840357
10.1016/S0010-4485(98)00052-9
10.1016/S0925-7721(02)00077-9
10.1007/s00371-007-0136-5
10.1109/70.678452
10.1145/1559755.1559758
10.1109/CGI.1997.601311
10.1145/98524.98601
10.1145/2159616.2159622
10.1016/0010-4485(95)99797-C
10.1109/TPAMI.2010.221
10.1111/j.1467-8659.2012.03058.x
10.1016/j.ipl.2012.12.010
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.12484
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 170
ExternalDocumentID 3473136201
10_1111_cgf_12484
CGF12484
ark_67375_WNG_18X0SHKM_S
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4404-8dd3f2d990e82a31b8c410e8a3ea38769b6459748a694d4676cbd5f683cd3f193
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344369200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 08:16:53 EST 2025
Sat Nov 29 03:41:11 EST 2025
Tue Nov 18 21:58:46 EST 2025
Sun Sep 21 06:27:08 EDT 2025
Tue Nov 11 03:32:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4404-8dd3f2d990e82a31b8c410e8a3ea38769b6459748a694d4676cbd5f683cd3f193
Notes ark:/67375/WNG-18X0SHKM-S
Supporting Information
istex:BC38B30276BFD61D83AA16B93EF388F68E6C6B41
ArticleID:CGF12484
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12484
PQID 1617340053
PQPubID 30877
PageCount 10
ParticipantIDs proquest_journals_1617340053
crossref_citationtrail_10_1111_cgf_12484
crossref_primary_10_1111_cgf_12484
wiley_primary_10_1111_cgf_12484_CGF12484
istex_primary_ark_67375_WNG_18X0SHKM_S
PublicationCentury 2000
PublicationDate 2014-10
October 2014
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Fortune S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 1-4 (1987), 153-174.
Kim D.-S., Lee S.-W., Shin H.: A cocktail algorithm for planar Bézier curve intersections. Computer-Aided Design 30, 13 (1998), 1047-1051.
Liu Y.-J., Tang K.: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces. Information Processing Letters 113, 4 (2013), 132-136.
Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, 2000.
Edelsbrunner H., Mücke E.P.: Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1 (Jan. 1990), 66-104.
Liu Y.-J.: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Computer-Aided Design 45, 3 (2013), 695-704.
Augenbaum J.M., Peskin C.S.: On the construction of the Voronoi mesh on a sphere. Journal of Computational Physics 59, 2 (1985), 177-192.
Na H.-S., Lee C.-N., Cheong O.: Voronoi diagrams on the sphere. Computational Geometry 23, 2 (2002), 183-194.
Lu L., Lévy B., Wang W.: Centroidal Voronoi tessellation of line segments and graphs. Comp. Graph. Forum 31, 2pt4 (May 2012), 775-784.
Kunze R., Wolter F.-E., Rausch T.: Geodesic Voronoi diagrams on parametric surfaces. In Computer Graphics International (1997), vol. 97, pp. 230-237.
Liu Y.-J., Chen Z., Tang K.: Construction of isocontours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1502-1517.
Kimmel R., Kiryati N., Bruckstein A.M.: Multivalued distance maps for motion planning on surfaces with moving obstacles. IEEE Transactions on Robotics and Automation 14, 3 (1998), 427-436.
Kimmel R., Sethian J.: Computing geodesic paths on manifolds. Proceedings of National Academy of Sciences 95 (1998), 8431-8435.
Mitchell J.S., Mount D.M., Papadimitriou C.H.: The discrete geodesic problem. SIAM Journal on Computing 16, 4 (1987), 647-668.
Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics 32, 5 (2013), 152.
Kim D.-S., Hwang I.-K., Park B.-J.: Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves. Computer-Aided Design 27, 8 (1995), 605-614.
Liu Y.-J., Zhou Q.-Y., Hu S.-M.: Handling degenerate cases in exact geodesic computation on triangle meshes. The Visual Computer 23, 9-11 (2007), 661-668.
Liu Y., Wang W., Levy B., Sun F., Yan D.-M., Lu L., Yang C.: On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Transactions on Graphics 28, 4 (2009), Article No. 101.
Ying X., Wang X., He Y.: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem. ACM Transactions on Graphics (SIGGRAPH ASIA 2013) 32, 6 (2013), 170:1-170:12.
Surazhsky V., Surazhsky T., Kirsanov D., Gortler S.J., Hoppe H.: Fast exact and approximate geodesics on meshes. In ACM Transactions on Graphics (TOG) (2005), vol. 24, pp. 553-560.
Xin S.-Q., Ying X., He Y.: Efficiently computing geodesic offsets on triangle meshes by the extended xin-wang algorithm. Comput. Aided Des. 43, 11 (2011), 1468-1476.
Onishi K., Takayama N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 79, 4 (1996), 533-539.
1987; 2
2012
2013; 45
2007
2011; 33
1996; 79
2012; 31
2005; 24
1999
2009; 28
1987; 16
1990
2013; 32
1995; 27
2000
1997; 97
2002; 23
2013; 113
2011; 43
2014
2013
1998; 30
1998; 95
1990; 9
2007; 23
1985; 59
1998; 14
1988
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
Onishi K. (e_1_2_9_27_2) 1996; 79
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – reference: Xin S.-Q., Ying X., He Y.: Efficiently computing geodesic offsets on triangle meshes by the extended xin-wang algorithm. Comput. Aided Des. 43, 11 (2011), 1468-1476.
– reference: Na H.-S., Lee C.-N., Cheong O.: Voronoi diagrams on the sphere. Computational Geometry 23, 2 (2002), 183-194.
– reference: Liu Y.-J., Tang K.: The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces. Information Processing Letters 113, 4 (2013), 132-136.
– reference: Fortune S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 1-4 (1987), 153-174.
– reference: Surazhsky V., Surazhsky T., Kirsanov D., Gortler S.J., Hoppe H.: Fast exact and approximate geodesics on meshes. In ACM Transactions on Graphics (TOG) (2005), vol. 24, pp. 553-560.
– reference: Augenbaum J.M., Peskin C.S.: On the construction of the Voronoi mesh on a sphere. Journal of Computational Physics 59, 2 (1985), 177-192.
– reference: Ying X., Wang X., He Y.: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem. ACM Transactions on Graphics (SIGGRAPH ASIA 2013) 32, 6 (2013), 170:1-170:12.
– reference: Kim D.-S., Hwang I.-K., Park B.-J.: Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves. Computer-Aided Design 27, 8 (1995), 605-614.
– reference: Mitchell J.S., Mount D.M., Papadimitriou C.H.: The discrete geodesic problem. SIAM Journal on Computing 16, 4 (1987), 647-668.
– reference: Kunze R., Wolter F.-E., Rausch T.: Geodesic Voronoi diagrams on parametric surfaces. In Computer Graphics International (1997), vol. 97, pp. 230-237.
– reference: Edelsbrunner H., Mücke E.P.: Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1 (Jan. 1990), 66-104.
– reference: Kim D.-S., Lee S.-W., Shin H.: A cocktail algorithm for planar Bézier curve intersections. Computer-Aided Design 30, 13 (1998), 1047-1051.
– reference: Liu Y.-J., Chen Z., Tang K.: Construction of isocontours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1502-1517.
– reference: Liu Y.-J.: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Computer-Aided Design 45, 3 (2013), 695-704.
– reference: Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, 2000.
– reference: Kimmel R., Sethian J.: Computing geodesic paths on manifolds. Proceedings of National Academy of Sciences 95 (1998), 8431-8435.
– reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics 32, 5 (2013), 152.
– reference: Liu Y., Wang W., Levy B., Sun F., Yan D.-M., Lu L., Yang C.: On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Transactions on Graphics 28, 4 (2009), Article No. 101.
– reference: Kimmel R., Kiryati N., Bruckstein A.M.: Multivalued distance maps for motion planning on surfaces with moving obstacles. IEEE Transactions on Robotics and Automation 14, 3 (1998), 427-436.
– reference: Lu L., Lévy B., Wang W.: Centroidal Voronoi tessellation of line segments and graphs. Comp. Graph. Forum 31, 2pt4 (May 2012), 775-784.
– reference: Liu Y.-J., Zhou Q.-Y., Hu S.-M.: Handling degenerate cases in exact geodesic computation on triangle meshes. The Visual Computer 23, 9-11 (2007), 661-668.
– reference: Onishi K., Takayama N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 79, 4 (1996), 533-539.
– start-page: 31
  year: 2012
  end-page: 38
– volume: 28
  start-page: 4
  year: 2009
  article-title: On centroidal Voronoi tessellation – energy smoothness and fast computation
  publication-title: ACM Transactions on Graphics
– volume: 32
  start-page: 170:1
  year: 2013
  end-page: 170:12
  article-title: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem
  publication-title: ACM Transactions on Graphics (SIGGRAPH ASIA 2013)
– volume: 31
  start-page: 775
  year: 2012
  end-page: 784
  article-title: Centroidal Voronoi tessellation of line segments and graphs
  publication-title: Comp. Graph. Forum
– volume: 79
  start-page: 533
  year: 1996
  end-page: 539
  article-title: Construction of Voronoi diagram on the upper half‐plane
  publication-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
– volume: 59
  start-page: 177
  year: 1985
  end-page: 192
  article-title: On the construction of the Voronoi mesh on a sphere
  publication-title: Journal of Computational Physics
– volume: 9
  start-page: 66
  year: 1990
  end-page: 104
  article-title: Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms
  publication-title: ACM Trans. Graph
– year: 2000
– volume: 30
  start-page: 1047
  year: 1998
  end-page: 1051
  article-title: A cocktail algorithm for planar Bézier curve intersections
  publication-title: Computer‐Aided Design
– volume: 95
  start-page: 8431
  year: 1998
  end-page: 8435
  article-title: Computing geodesic paths on manifolds
  publication-title: Proceedings of National Academy of Sciences
– volume: 16
  start-page: 647
  year: 1987
  end-page: 668
  article-title: The discrete geodesic problem
  publication-title: SIAM Journal on Computing
– volume: 14
  start-page: 427
  year: 1998
  end-page: 436
  article-title: Multivalued distance maps for motion planning on surfaces with moving obstacles
  publication-title: IEEE Transactions on Robotics and Automation
– year: 2014
– volume: 2
  start-page: 1
  year: 1987
  end-page: 4
  article-title: A sweepline algorithm for Voronoi diagrams
  publication-title: Algorithmica
– volume: 113
  start-page: 132
  year: 2013
  end-page: 136
  article-title: The complexity of geodesic Voronoi diagrams on triangulated 2‐manifold surfaces
  publication-title: Information Processing Letters
– volume: 23
  start-page: 9
  year: 2007
  end-page: 11
  article-title: Handling degenerate cases in exact geodesic computation on triangle meshes
  publication-title: The Visual Computer
– start-page: 360
  year: 1990
  end-page: 369
– volume: 23
  start-page: 183
  year: 2002
  end-page: 194
  article-title: Voronoi diagrams on the sphere
  publication-title: Computational Geometry
– volume: 45
  start-page: 695
  year: 2013
  end-page: 704
  article-title: Exact geodesic metric in 2‐manifold triangle meshes using edge‐based data structures
  publication-title: Computer‐Aided Design
– volume: 97
  start-page: 230
  year: 1997
  end-page: 237
  article-title: Geodesic Voronoi diagrams on parametric surfaces
  publication-title: Computer Graphics International
– volume: 24
  start-page: 553
  year: 2005
  end-page: 560
  article-title: Fast exact and approximate geodesics on meshes
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 151
  year: 2007
  end-page: 160
– volume: 32
  start-page: 152
  year: 2013
  article-title: Geodesics in heat: A new approach to computing distance based on heat flow
  publication-title: ACM Transactions on Graphics
– volume: 33
  start-page: 1502
  year: 2011
  end-page: 1517
  article-title: Construction of isocontours, bisectors, and Voronoi diagrams on triangulated surfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 186
  year: 2007
  end-page: 189
– start-page: 134
  year: 1988
  end-page: 142
– volume: 27
  start-page: 605
  year: 1995
  end-page: 614
  article-title: Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves
  publication-title: Computer‐Aided Design
– volume: 43
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Efficiently computing geodesic offsets on triangle meshes by the extended xin‐wang algorithm
  publication-title: Comput. Aided Des
– year: 2013
– year: 1999
– volume: 79
  start-page: 533
  year: 1996
  ident: e_1_2_9_27_2
  article-title: Construction of Voronoi diagram on the upper half‐plane
  publication-title: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
– ident: e_1_2_9_10_2
– ident: e_1_2_9_8_2
  doi: 10.1145/77635.77639
– ident: e_1_2_9_26_2
  doi: 10.1002/9780470317013
– ident: e_1_2_9_2_2
  doi: 10.1016/0021-9991(85)90140-8
– ident: e_1_2_9_29_2
  doi: 10.1016/j.cad.2011.08.027
– ident: e_1_2_9_32_2
  doi: 10.1145/2508363.2508379
– ident: e_1_2_9_15_2
– ident: e_1_2_9_28_2
  doi: 10.1145/1073204.1073228
– ident: e_1_2_9_18_2
  doi: 10.1016/j.cad.2012.11.005
– ident: e_1_2_9_7_2
  doi: 10.1145/2516971.2516977
– ident: e_1_2_9_14_2
  doi: 10.1073/pnas.95.15.8431
– ident: e_1_2_9_24_2
  doi: 10.1137/0216045
– ident: e_1_2_9_31_2
  doi: 10.1145/73393.73407
– ident: e_1_2_9_9_2
  doi: 10.1007/BF01840357
– ident: e_1_2_9_13_2
  doi: 10.1016/S0010-4485(98)00052-9
– ident: e_1_2_9_6_2
– ident: e_1_2_9_3_2
– ident: e_1_2_9_22_2
– ident: e_1_2_9_25_2
  doi: 10.1016/S0925-7721(02)00077-9
– ident: e_1_2_9_23_2
  doi: 10.1007/s00371-007-0136-5
– ident: e_1_2_9_12_2
  doi: 10.1109/70.678452
– ident: e_1_2_9_21_2
  doi: 10.1145/1559755.1559758
– ident: e_1_2_9_4_2
– ident: e_1_2_9_16_2
  doi: 10.1109/CGI.1997.601311
– ident: e_1_2_9_5_2
  doi: 10.1145/98524.98601
– ident: e_1_2_9_30_2
  doi: 10.1145/2159616.2159622
– ident: e_1_2_9_11_2
  doi: 10.1016/0010-4485(95)99797-C
– ident: e_1_2_9_17_2
  doi: 10.1109/TPAMI.2010.221
– ident: e_1_2_9_19_2
  doi: 10.1111/j.1467-8659.2012.03058.x
– ident: e_1_2_9_20_2
  doi: 10.1016/j.ipl.2012.12.010
SSID ssj0004765
Score 2.1885073
Snippet This paper studies the Voronoi diagrams on 2‐manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline...
This paper studies the Voronoi diagrams on 2-manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Algorithms
Analysis
and object representations
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Curve
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations
solid
Studies
surface
Topological manifolds
Title Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes
URI https://api.istex.fr/ark:/67375/WNG-18X0SHKM-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12484
https://www.proquest.com/docview/1617340053
Volume 33
WOSCitedRecordID wos000344369200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsX6IoiIl0jabJINHkSsraAWsVV7Wza7Gy2WRBoVvfkT_I3-EmfzqBUUBG97mE2Wec8y-w3AdhjU_cB1Q9On3DMJdx2T-7xmCsI9jF4kcNJxPtdnXrtNez3_ogT7xVuYDB9idOGmLSP119rAeZCMGbm4DfcwOFEyAZU66q1Thkrjsnl19vUs0nOdAtpbg8bkwEK6kWe0-Vs4qmjOvnzLNccz1jTkNGf_ddg5mMkzTeMwU415KKloAabH8AcX4eAiHrzqj3-8vWe3-NJoqVgqFJ1xrbEN4r7R6HPdwZUYcWR0UV2j24EyzlVyp5IluGoed49OzHyiAvKeWMSkUtphXWIEUrTO7VpABanhmtuK2-gXUWxEVxiUuz6R6ENdEUgndKktcCPmestQjuJIrYBBAyk59WyBW4miIbcsFQrL9ZXEqlqKKuwWjGUihxvXUy8GrCg7kCcs5UkVtkakDxnGxk9EO6l0RhR8eK-b0jyH3bRbrEZ7Vufk9Jx1qrBeiI_l9pgwXcXZRHscPFcqqN__xI5azXSx-nfSNZjCTIpkXX7rUH4cPqkNmBTPj_1kuJkr5ieJW-V8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD50rbD64GVXsV7Dsiz7EkmbSTIBQaS17dILsla3b8NkZqLFkkijom_-BH-jv8QzudQKLgi-zcOZZDj3M5z5DsDPMKj5geuGpk-5ZxLuOib3edUUhHsYvUjgpON8zrtev0-HQ_-kBAfFW5gMH2J64aYtI_XX2sD1hfSMlYuLcB-jEyVfoExQjVC_y42_zbPu67tIz3UKbG-NGpMjC-lOnunmN_GorFl7_ybZnE1Z05jTXP7caVdgKc81jaNMOVahpKJvsDiDQPgdDk_i8YP--vPjU3aPL42WiqVC4RnnGt0gHhmNEdc9XIkRR8YAFTa6GCujp5JLlazBWfN4UG-b-UwF5D6xiEmltMOaxBikaI3b1YAKUsU1txW30TOi4IiuMSh3fSLRi7oikE7oUlvgRsz21mEuiiO1AQYNpOTUswVuJYqG3LJUKCzXVxLraikq8LvgLBM54LieezFmReGBPGEpTyrwY0p6naFsvEf0KxXPlIJPrnRbmuewf_0Wq9Khddru9NhpBbYL-bHcIhOm6zibaJ-D50ol9f8_sXqrmS42P066B1_bg16Xdf_0O1uwgHkVyXr-tmHuZnKrdmBe3N2MkslurqUvTA3pbA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7obpH2Qa1auq22oRTpSyTZTJIJFIq4Zi2uYam3fRsmM5Pt0iVZNlb0zZ_gb-wv8UxurtBCwbd5OJMM536GM98B-JzE3SD2vMQMKPdNwj3X5AG3TUG4j9GLxG4xzudi4EcRHY2C4RJ8rd_ClPgQzYWbtozCX2sDVzOZLFi5GCd7GJ0oWYY20UNkWtDu_QjPB4_vIn3PrbG9NWpMhSykO3mazU_iUVuz9uZJsrmYshYxJ1x73mnXYbXKNY39Ujlew5JKN-DVAgLhJnwbZtNb_fU_d_flPb40-iqTCoVnXGh0g2xi9CZc93DlRpYaZ6iw6XiqjBOV_1T5FpyHh2cHR2Y1UwG5TyxiUimdpCsxBina5Y4dU0FsXHNHcQc9IwqO6BqDci8gEr2oJ2LpJh51BG7EbO8NtNIsVW_BoLGUnPqOwK1E0YRblkqE5QVKYl0tRQe-1JxlogIc13MvpqwuPJAnrOBJBz41pLMSZeNvRLuFeBoKPv-l29J8l11GfWbTkXV6dHzCTjuwXcuPVRaZM13HOUT7HDxXIal__4kd9MNi8e7_ST_CyrAXssH36Pg9vMS0ipQtf9vQupr_VjvwQlxfTfL5h0pJHwD4Yujn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyline%E2%80%90sourced+Geodesic+Voronoi+Diagrams+on+Triangle+Meshes&rft.jtitle=Computer+graphics+forum&rft.au=Xu%2C+Chunxu&rft.au=Liu%2C+Yong%E2%80%90Jin&rft.au=Sun%2C+Qian&rft.au=Li%2C+Jinyan&rft.date=2014-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=7&rft.spage=161&rft.epage=170&rft_id=info:doi/10.1111%2Fcgf.12484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon