Designing Heteroatom‐Codoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via...
Uloženo v:
| Vydáno v: | Angewandte Chemie (International ed.) Ročník 62; číslo 14; s. e202216232 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
27.03.2023
Wiley |
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively.
The integration of new active sites with beneficial defects in Fe‐MOF MIL‐88B catalysts gives enhanced photoreduction of CO2 to C2H4 under visible light. The modified structure promotes the migration and separation of the photoelectrons to produce the pivotal C−C coupling intermediate for the generation of C2H4, a result supported by in situ FT‐IR analysis. |
|---|---|
| AbstractList | Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively. Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ∙h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively. Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively. The integration of new active sites with beneficial defects in Fe‐MOF MIL‐88B catalysts gives enhanced photoreduction of CO2 to C2H4 under visible light. The modified structure promotes the migration and separation of the photoelectrons to produce the pivotal C−C coupling intermediate for the generation of C2H4, a result supported by in situ FT‐IR analysis. Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively. Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO 2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C 2 H 4 evolution yield of 17.7 μmol g −1 ⋅h, which has been rarely achieved in photocatalytic CO 2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C 2 H 4 effectively. Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C H evolution yield of 17.7 μmol g ⋅h, which has been rarely achieved in photocatalytic CO reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C H effectively. |
| Author | Sun, Wei‐Yin Urban, Jeffrey J. Li, Rui‐Xia Guo, Fan Yang, Sizhuo Yu, Hongjian Zhang, Xiao‐Yu |
| Author_xml | – sequence: 1 givenname: Fan surname: Guo fullname: Guo, Fan email: guofan@yzu.edu.cn organization: Nanjing University – sequence: 2 givenname: Rui‐Xia surname: Li fullname: Li, Rui‐Xia organization: Yangzhou University – sequence: 3 givenname: Sizhuo surname: Yang fullname: Yang, Sizhuo organization: Lawrence Berkeley National Laboratory – sequence: 4 givenname: Xiao‐Yu surname: Zhang fullname: Zhang, Xiao‐Yu organization: Nanjing University – sequence: 5 givenname: Hongjian surname: Yu fullname: Yu, Hongjian organization: Yangzhou University – sequence: 6 givenname: Jeffrey J. surname: Urban fullname: Urban, Jeffrey J. organization: Lawrence Berkeley National Laboratory – sequence: 7 givenname: Wei‐Yin orcidid: 0000-0001-8966-9728 surname: Sun fullname: Sun, Wei‐Yin email: sunwy@nju.edu.cn organization: Nanjing University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36748922$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1963674$$D View this record in Osti.gov |
| BookMark | eNqFkc1u1DAUhSNURH9gyxJZdNNNhsROYmdZTad0pEK7gHXk2DczLonvYDsqw6qPUIk37JPgaEqRKiFWvra-46tzzmGyZ9FCkrzNs1meZfSDtAZmNKM0ryijL5KDvKR5yjhne3EuGEu5KPP95ND7m8gLkVWvkn1W8ULUlB4kP8_Am5U1dkUuIIBDGXB4uLufo8YNaLJ0aMknCLJ_uPt15VZxnyLnTg5wi-4b6dCRa4cDBoNW9uR6jQEd6FFNDwQ7MpeujdOZwR9GAwlIFmG97cHC6-RlJ3sPbx7Po-Tr-eLL_CK9vPq4nJ9epqooMppqWpXQ1aIGxXmuNO1YoWqdKd6qthNQtVCV8a4LIaO9FmTHu1J1VDORM9myo-T97l_0wTRemQBqrdBaUKHJ62oKI0InO2jj8PsIPjSD8Qr6XlrA0TeU84JWohI8osfP0BscXXQ_UUKwQlSsjtS7R2psB9DNxplBum3zJ_oIzHaAcui9g-4JybNm6raZum2euo2C4pkgWpFTzsFJ0_9bVu9kt6aH7X-WNKefl4u_2t_u1rwN |
| CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215623 crossref_primary_10_1016_j_cej_2023_145740 crossref_primary_10_1002_ange_202412090 crossref_primary_10_1016_j_cej_2025_166966 crossref_primary_10_1007_s40242_024_4113_6 crossref_primary_10_1039_D4SC01978D crossref_primary_10_1002_smll_202309194 crossref_primary_10_1002_sstr_202400384 crossref_primary_10_1002_cssc_202401054 crossref_primary_10_1002_anie_202514206 crossref_primary_10_1039_D5CC00705D crossref_primary_10_1016_j_seppur_2024_129431 crossref_primary_10_1039_D4EY00287C crossref_primary_10_1039_D4QM00499J crossref_primary_10_1002_chem_202502207 crossref_primary_10_46670_JSST_2025_34_2_138 crossref_primary_10_1002_anie_202506072 crossref_primary_10_1016_j_cej_2023_148497 crossref_primary_10_1002_cssc_202400504 crossref_primary_10_1007_s40843_024_3241_5 crossref_primary_10_1021_jacs_3c11446 crossref_primary_10_1007_s40843_024_3035_4 crossref_primary_10_1007_s40843_024_2995_0 crossref_primary_10_1002_ange_202506072 crossref_primary_10_1039_D5CC02196K crossref_primary_10_1002_ange_202514206 crossref_primary_10_1038_s41467_024_53066_y crossref_primary_10_1002_cjoc_202300378 crossref_primary_10_1002_smll_202409759 crossref_primary_10_1016_j_cej_2025_162811 crossref_primary_10_1038_s41467_025_56277_z crossref_primary_10_1002_cssc_202400551 crossref_primary_10_1021_acscatal_4c06456 crossref_primary_10_1039_D3SC06046B crossref_primary_10_1002_adma_202416283 crossref_primary_10_1039_D4QI00304G crossref_primary_10_1002_ange_202400965 crossref_primary_10_1016_j_bios_2025_117477 crossref_primary_10_1002_adma_202414994 crossref_primary_10_1002_cssc_202301619 crossref_primary_10_1007_s11426_024_2148_2 crossref_primary_10_1002_anie_202404258 crossref_primary_10_1002_cnma_202300313 crossref_primary_10_1002_ange_202404884 crossref_primary_10_1002_aenm_202402889 crossref_primary_10_1002_anie_202412090 crossref_primary_10_1073_pnas_2318970121 crossref_primary_10_1039_D4RA00812J crossref_primary_10_1002_advs_202307254 crossref_primary_10_1016_j_cej_2023_148350 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1021_acscatal_4c07797 crossref_primary_10_1016_j_mtchem_2025_102723 crossref_primary_10_1002_adfm_202509337 crossref_primary_10_1007_s40843_023_2698_5 crossref_primary_10_1002_ange_202423471 crossref_primary_10_1002_smll_202310677 crossref_primary_10_1039_D4EE01376J crossref_primary_10_1002_adsu_202400852 crossref_primary_10_1016_j_ccr_2023_215333 crossref_primary_10_1021_acs_nanolett_5c00791 crossref_primary_10_1002_anie_202423471 crossref_primary_10_1016_j_cej_2024_153100 crossref_primary_10_1002_anie_202404884 crossref_primary_10_1002_smll_202306616 crossref_primary_10_1016_j_seppur_2024_129248 crossref_primary_10_1002_cphc_202300939 crossref_primary_10_1002_ange_202404258 crossref_primary_10_1002_cssc_202301892 crossref_primary_10_1016_j_colsurfa_2025_137304 crossref_primary_10_1016_j_jcis_2024_02_189 crossref_primary_10_1126_science_adq3445 crossref_primary_10_1002_anie_202400965 crossref_primary_10_1002_vjch_70012 crossref_primary_10_1016_j_cej_2023_146560 |
| Cites_doi | 10.1002/ange.201700580 10.1002/asia.202200380 10.1039/C4CY01464B 10.1021/acs.chemmater.9b02375 10.1021/acssuschemeng.0c04205 10.1021/acsami.7b14919 10.1002/anie.201904537 10.1038/s41578-022-00433-0 10.1002/adma.201704501 10.1021/jacs.1c00206 10.1002/aenm.202003052 10.1002/ange.202101667 10.1021/acsami.9b12638 10.1002/ange.202108892 10.1021/jacs.1c09508 10.1038/s41560-019-0431-1 10.1002/anie.201907074 10.1016/j.apcatb.2022.122020 10.1021/acscatal.0c05446 10.1002/adfm.202203677 10.1002/adfm.202102511 10.1002/ange.202113932 10.1021/acs.cgd.9b00508 10.1021/cs501169t 10.1021/jacs.1c08050 10.1021/ja302483t 10.1021/acsnano.1c03961 10.1126/science.aam6284 10.1021/acs.chemmater.6b00602 10.1038/s41467-018-05659-7 10.1002/ange.201813967 10.1002/anie.202101667 10.1021/acscatal.0c03034 10.1038/s41929-020-00504-x 10.1002/smtd.201800331 10.1021/jacs.1c10295 10.1021/jacs.8b06407 10.1021/jacs.1c05357 10.1016/j.checat.2022.09.009 10.1039/D0TA08402F 10.1038/s41929-019-0397-1 10.1002/anie.202113932 10.1002/anie.201813967 10.1038/s41467-019-10302-0 10.1038/ncomms13869 10.1038/s41467-021-25068-7 10.1002/ange.202017041 10.1002/anie.201700580 10.1002/aenm.202002783 10.1016/j.cej.2020.126570 10.1021/acscatal.8b03975 10.1021/acscatal.2c02789 10.1021/acscatal.6b02382 10.1002/ange.201904537 10.1002/anie.202108892 10.1039/C7CY02265D 10.1038/s41467-021-22991-7 10.1002/anie.202017041 10.1002/ange.201907074 10.1038/nature23016 10.1021/jacs.0c10369 10.1002/adfm.201601492 10.1021/acscatal.0c00478 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 OIOZB OTOTI |
| DOI | 10.1002/anie.202216232 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 1963674 36748922 10_1002_anie_202216232 ANIE202216232 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22101246; 22231006; 22171131 – fundername: Green Yang Jinfeng Talent Project of Yangzhou funderid: YZLYJF2020PHD057 – fundername: Double Innovation Doctor Program of Jiangsu Province funderid: JSSCBS20211022 – fundername: National Natural Science Foundation of China grantid: 22101246 – fundername: National Natural Science Foundation of China grantid: 22231006 – fundername: Double Innovation Doctor Program of Jiangsu Province grantid: JSSCBS20211022 – fundername: National Natural Science Foundation of China grantid: 22171131 – fundername: Green Yang Jinfeng Talent Project of Yangzhou grantid: YZLYJF2020PHD057 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI |
| ID | FETCH-LOGICAL-c4402-d265ef989ec771cd2f34c9d0c7bcbf8e6be659d0d48a880beaf7f5cf2d3813ab3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936765000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Mon Feb 19 05:01:11 EST 2024 Thu Oct 02 12:02:36 EDT 2025 Tue Oct 07 07:22:48 EDT 2025 Wed Feb 19 02:24:59 EST 2025 Tue Nov 18 22:28:55 EST 2025 Sat Nov 29 03:03:44 EST 2025 Wed Jan 22 16:22:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Metal-Organic Frameworks C2H4 Photocatalysis CO2 Reduction Doping |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4402-d265ef989ec771cd2f34c9d0c7bcbf8e6be659d0d48a880beaf7f5cf2d3813ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division AC02-05CH11231 |
| ORCID | 0000-0001-8966-9728 0000000189669728 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1963674 |
| PMID | 36748922 |
| PQID | 2788348639 |
| PQPubID | 946352 |
| PageCount | 8 |
| ParticipantIDs | osti_scitechconnect_1963674 proquest_miscellaneous_2774268687 proquest_journals_2788348639 pubmed_primary_36748922 crossref_primary_10_1002_anie_202216232 crossref_citationtrail_10_1002_anie_202216232 wiley_primary_10_1002_anie_202216232_ANIE202216232 |
| PublicationCentury | 2000 |
| PublicationDate | March 27, 2023 |
| PublicationDateYYYYMMDD | 2023-03-27 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 27, 2023 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2017; 7 2019; 9 2019; 4 2019; 3 2015; 5 2018; 140 2019; 31 2019; 11 2019; 10 2023; 321 2021; 404 2019; 19 2021; 143 2020; 10 2017 2017; 56 129 2017; 355 2019 2019; 58 131 2017; 548 2022; 144 2020; 8 2018; 9 2022 2022; 61 134 2016; 7 2018; 8 2021; 15 2020; 3 2021; 31 2014; 4 2021; 12 2012; 134 2021; 11 2022; 7 2022; 12 2021 2021; 60 133 2018; 30 2022; 32 2022; 2 2016; 28 2018; 10 2016; 26 2022; 17 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_71_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_63_2 e_1_2_7_42_1 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_63_3 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_72_2 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_55_3 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 134 start-page: 11060 year: 2012 end-page: 11063 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4573 year: 2019 end-page: 4581 publication-title: ACS Catal. – volume: 60 133 start-page: 24849 25053 year: 2021 2021 end-page: 24853 25057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 143 start-page: 2984 year: 2021 end-page: 2993 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 4783 year: 2022 end-page: 4791 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 11082 year: 2020 end-page: 11098 publication-title: ACS Catal. – volume: 8 start-page: 14397 year: 2020 end-page: 14406 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 606 year: 2017 end-page: 612 publication-title: ACS Catal. – volume: 15 start-page: 14453 year: 2021 end-page: 14464 publication-title: ACS Nano – volume: 140 start-page: 11378 year: 2018 end-page: 11386 publication-title: J. Am. Chem. Soc. – volume: 548 start-page: 74 year: 2017 end-page: 77 publication-title: Nature – volume: 10 start-page: 3912 year: 2018 end-page: 3920 publication-title: ACS Appl. Mater. Interfaces – volume: 58 131 start-page: 12175 12303 year: 2019 2019 end-page: 12179 12307 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 3353 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 9486 year: 2022 end-page: 9493 publication-title: ACS Catal. – volume: 7 start-page: 13869 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 23162 year: 2020 end-page: 23186 publication-title: J. Mater. Chem. A – volume: 8 start-page: 335 year: 2018 end-page: 343 publication-title: Catal. Sci. Technol. – volume: 60 133 start-page: 8705 8787 year: 2021 2021 end-page: 8709 8791 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 804 year: 2020 end-page: 812 publication-title: Nat. Catal. – volume: 143 start-page: 269 year: 2021 end-page: 278 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1623 year: 2015 end-page: 1628 publication-title: Catal. Sci. Technol. – volume: 56 129 start-page: 3621 3675 year: 2017 2017 end-page: 3624 3678 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 5734 year: 2020 end-page: 5749 publication-title: ACS Catal. – volume: 321 year: 2023 publication-title: Appl. Catal. B – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 404 year: 2021 publication-title: Chem. Eng. J. – volume: 12 start-page: 4747 year: 2021 publication-title: Nat. Commun. – volume: 4 start-page: 690 year: 2019 end-page: 699 publication-title: Nat. Energy – volume: 31 start-page: 7584 year: 2019 end-page: 7589 publication-title: Chem. Mater. – volume: 355 start-page: 126 year: 2017 end-page: 129 publication-title: Science – volume: 2 start-page: 2750 year: 2022 end-page: 2763 publication-title: Chem Catal. – volume: 11 start-page: 7450 year: 2021 end-page: 7459 publication-title: ACS Catal. – volume: 143 start-page: 21511 year: 2021 end-page: 21518 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 98 year: 2020 end-page: 106 publication-title: Nat. Catal. – volume: 60 133 start-page: 21150 21320 year: 2021 2021 end-page: 21172 21342 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 503 year: 2022 end-page: 521 publication-title: Nat. Rev. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 4 start-page: 4254 year: 2014 end-page: 4260 publication-title: ACS Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 35755 year: 2019 end-page: 35763 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2270 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 2682 year: 2021 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 5708 year: 2016 end-page: 5717 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 259 year: 2022 end-page: 269 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 5581 year: 2019 end-page: 5591 publication-title: Cryst. Growth Des. – volume: 58 131 start-page: 9491 9591 year: 2019 2019 end-page: 9495 9595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 3880 3920 year: 2019 2019 end-page: 3884 3924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 3749 year: 2016 end-page: 3761 publication-title: Chem. Mater. – volume: 143 start-page: 19417 year: 2021 end-page: 19424 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_71_3 doi: 10.1002/ange.201700580 – ident: e_1_2_7_13_2 doi: 10.1002/asia.202200380 – ident: e_1_2_7_57_1 doi: 10.1039/C4CY01464B – ident: e_1_2_7_47_2 doi: 10.1021/acs.chemmater.9b02375 – ident: e_1_2_7_60_1 doi: 10.1021/acssuschemeng.0c04205 – ident: e_1_2_7_58_1 doi: 10.1021/acsami.7b14919 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201904537 – ident: e_1_2_7_28_2 doi: 10.1038/s41578-022-00433-0 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201704501 – ident: e_1_2_7_18_2 doi: 10.1021/jacs.1c00206 – ident: e_1_2_7_3_2 doi: 10.1002/aenm.202003052 – ident: e_1_2_7_17_3 doi: 10.1002/ange.202101667 – ident: e_1_2_7_49_1 doi: 10.1021/acsami.9b12638 – ident: e_1_2_7_55_3 doi: 10.1002/ange.202108892 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.1c09508 – ident: e_1_2_7_33_1 – ident: e_1_2_7_67_2 doi: 10.1038/s41560-019-0431-1 – ident: e_1_2_7_4_1 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201907074 – ident: e_1_2_7_56_2 doi: 10.1016/j.apcatb.2022.122020 – ident: e_1_2_7_44_2 doi: 10.1021/acscatal.0c05446 – ident: e_1_2_7_15_2 doi: 10.1002/adfm.202203677 – ident: e_1_2_7_16_1 – ident: e_1_2_7_27_2 doi: 10.1002/adfm.202102511 – ident: e_1_2_7_29_2 doi: 10.1002/ange.202113932 – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 doi: 10.1021/acs.cgd.9b00508 – ident: e_1_2_7_59_1 doi: 10.1021/cs501169t – ident: e_1_2_7_51_2 doi: 10.1021/jacs.1c08050 – ident: e_1_2_7_34_2 doi: 10.1021/ja302483t – ident: e_1_2_7_19_1 – ident: e_1_2_7_46_1 – ident: e_1_2_7_68_1 doi: 10.1021/acsnano.1c03961 – ident: e_1_2_7_43_1 – ident: e_1_2_7_2_2 doi: 10.1126/science.aam6284 – ident: e_1_2_7_39_1 doi: 10.1021/acs.chemmater.6b00602 – ident: e_1_2_7_53_1 doi: 10.1038/s41467-018-05659-7 – ident: e_1_2_7_64_2 doi: 10.1002/ange.201813967 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202101667 – ident: e_1_2_7_25_2 doi: 10.1021/acscatal.0c03034 – ident: e_1_2_7_54_1 – ident: e_1_2_7_11_2 doi: 10.1038/s41929-020-00504-x – ident: e_1_2_7_36_1 doi: 10.1002/smtd.201800331 – ident: e_1_2_7_48_2 doi: 10.1021/jacs.1c10295 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.8b06407 – ident: e_1_2_7_65_1 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.1c05357 – ident: e_1_2_7_52_2 doi: 10.1016/j.checat.2022.09.009 – ident: e_1_2_7_70_1 – ident: e_1_2_7_72_2 doi: 10.1039/D0TA08402F – ident: e_1_2_7_23_2 doi: 10.1038/s41929-019-0397-1 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202113932 – ident: e_1_2_7_64_1 doi: 10.1002/anie.201813967 – ident: e_1_2_7_32_2 doi: 10.1038/s41467-019-10302-0 – ident: e_1_2_7_31_2 doi: 10.1038/ncomms13869 – ident: e_1_2_7_66_2 doi: 10.1038/s41467-021-25068-7 – ident: e_1_2_7_22_1 – ident: e_1_2_7_63_3 doi: 10.1002/ange.202017041 – ident: e_1_2_7_1_1 – ident: e_1_2_7_71_2 doi: 10.1002/anie.201700580 – ident: e_1_2_7_21_2 doi: 10.1002/aenm.202002783 – ident: e_1_2_7_37_1 doi: 10.1016/j.cej.2020.126570 – ident: e_1_2_7_69_1 doi: 10.1021/acscatal.8b03975 – ident: e_1_2_7_7_2 doi: 10.1021/acscatal.2c02789 – ident: e_1_2_7_62_2 doi: 10.1021/acscatal.6b02382 – ident: e_1_2_7_6_3 doi: 10.1002/ange.201904537 – ident: e_1_2_7_61_1 – ident: e_1_2_7_55_2 doi: 10.1002/anie.202108892 – ident: e_1_2_7_50_1 – ident: e_1_2_7_45_2 doi: 10.1039/C7CY02265D – ident: e_1_2_7_5_2 doi: 10.1038/s41467-021-22991-7 – ident: e_1_2_7_63_2 doi: 10.1002/anie.202017041 – ident: e_1_2_7_42_2 doi: 10.1002/ange.201907074 – ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_8_2 doi: 10.1038/nature23016 – ident: e_1_2_7_12_1 – ident: e_1_2_7_10_2 doi: 10.1021/jacs.0c10369 – ident: e_1_2_7_35_2 doi: 10.1002/adfm.201601492 – ident: e_1_2_7_20_2 doi: 10.1021/acscatal.0c00478 |
| SSID | ssj0028806 |
| Score | 2.6986384 |
| Snippet | Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added... Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO 2 to high value‐added... Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO to high value-added C2... Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202216232 |
| SubjectTerms | Acetic acid C2H4 Carbon dioxide Catalysts CO2 Reduction Defects Dimerization Doping Electron density INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermediates Iron Irradiation Metal-organic frameworks Photocatalysis Photoreduction Radiation Solar radiation Synergistic effect |
| Title | Designing Heteroatom‐Codoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202216232 https://www.ncbi.nlm.nih.gov/pubmed/36748922 https://www.proquest.com/docview/2788348639 https://www.proquest.com/docview/2774268687 https://www.osti.gov/servlets/purl/1963674 |
| Volume | 62 |
| WOSCitedRecordID | wos000936765000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZixQxEC50VtAX72PcdYkg-NRsT_pI-nGZg11Yh0FcmbfQuXBAO8vMrIhP-xME_-H-Eqv60gFF0LdOdzpdpKpSX3UqVQCvRrFNcUG0Ue61i1KZos75UkcjE3MT00ZSHVX5_kzM53K5LBa_nOJv8kP0P9xIM-r1mhS81Jujn0lD6QQ2-necj9CC4yK8x1F4swHsTd7Ozs96pwvlszlhlCQRFaLvEjfG_Gh3hB3DNAioYL8DnbsYtjZCs3v_T_59uNsCUHbcSMwDuOGqh3B73NV9ewRfJ3VQB5o0dkKxMgHd8k_XV9_G6MBeOMtO16FibxyC9uur781RTsNmXYwXQxDMFk2MH4F8tvgQ0K2nBLF0gwXPxuVa49VkFb6srGPbwKYoLWj93GM4n03fjU-itkJDZFJ0PCPL88z5QhbOCDEylvskNYWNjdBGe-ly7fIM2zaVJTJCu9ILnxnPLQKFpNTJExhUoXLPgHGhM53YokTzmRaeF4iUYq4FelCa4_BDiDr2KNOmL6cqGh9Vk3iZK5pR1c_oEF73_S-axB1_7LlP3FYIOShvrqEAI7NVtDQhKUM46IRAteq9UVxImaQS0d0QXvaPkU-021JWLlxSH4HoR-YSSX_aCE9PCA0sC46f5rWM_IVCdTw_nfat5__y0j7cweuEoue4OIDBdn3pXsAt83m72qwP4aZYysNWdX4AyQAaUQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBbFKaSXvtKHkzRVIdDTkrVWXmmPwQ9s6hhTkpKbWL2ooV0Fxyklp_yEQv5hfklm9lUMLYHS20qr1Q7SjOYbaWZEyGEvthwWRBulXruISw4y53Md9UzMTIwHSaVX5ZeZmM_l-Xm2qL0JMRamyg_RbrihZJTrNQo4bkgf_c4aiiHYYOAx1gMVDqvwFgdeAibfGn4en81aqwsYtAoxSpIIb6JvMjfG7Gizhw3N1AkgYX9CnZsgttRC42f_gf7n5GkNQelxxTMvyCNXvCTbg-bmtx1yPSzdOkCp0Ql6ywQwzL_f3fwagAl74SydrkJBTxzA9rub2yqY09Bx4-VFAQbTReXlhzCfLr4GMOwxRSxW0ODpIF9peBouw8-ldXQd6Aj4BfSfe0XOxqPTwSSq72iIDAfTM7Is7TufycwZIXrGMp9wk9nYCG20ly7VLu1D2XKZw0xol3vh-8YzC1AhyXXymnSKULi3hDKh-zqxWQ4KlGeeZYCVYqYF2FCaQfddEjXzo0ydwBzv0fimqtTLTOGIqnZEu-Rj2_6iSt3x15Z7ON0KQAdmzjXoYmTWChcnIKVL9hsuULWAXyompEy4BHzXJR_a1zBPeN6SFy5cYRsB-EemEkh_U3FPSwh2LDMGv2YlkzxAoTqeT0dtafdfPnpPtienJzM1m84_7ZEnUJ-gLx0T-6SzXl25d-Sx-bFeXq4Oagm6BwFcHVk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjHdte9v2Rtts0GOzJ1JEVS34sSUzDshDGOvomrC8WaK2QpmPsqX_CoP9h_5Ld-asEVgZjb5Yty4fuTvc763RHyPtBbDksiDZKvXYRlxx0zhc6GpiYmRg3kqqoyq8zMZ_Lk5Ns0UQT4lmYOj9E98MNNaNar1HB3cr6g5usoXgEGxw8xgZgwmEV3uFYSaZHdsaf8-NZ53WBgNZHjJIkwkr0bebGmB1sj7BlmXoBNOxPqHMbxFZWKH_0H-h_TB42EJQe1jLzhNxx5VNyf9RWfntGfo6rsA4wavQIo2UCOOZn15e_RuDCrpyl03Uo6ScHsP368qo-zGlo3kZ5UYDBdFFH-SHMp4tvARx7TBGLN2jwdFSsNVyNl-HH0jq6CXQC8gL2zz0nx_nky-goamo0RIaD6xlZlg6dz2TmjBADY5lPuMlsbIQ22kuXapcOoW25LIAT2hVe-KHxzAJUSAqdvCC9MpTuFaFM6KFObFaAAeWZZxlgpZhpAT6UZjB8n0Qtf5RpEphjHY1TVadeZgpnVHUz2icfuv6rOnXHrT33kN0KQAdmzjUYYmQ2ChcnIKVP9lspUI2CnysmpEy4BHzXJ--6x8An3G8pShcusI8A_CNTCaS_rKWnIwQHlhmDT7NKSP5CoTqcTydda_dfXnpL7i3GuZpN5x_3yAO4nWAoHRP7pLdZX7jX5K75vlmer980CvQbYYEc1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Heteroatom-Codoped+Iron+Metal-Organic+Framework+for+Promotional+Photoreduction+of+Carbon+Dioxide+to+Ethylene&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Fan&rft.au=Li%2C+Rui-Xia&rft.au=Yang%2C+Sizhuo&rft.au=Zhang%2C+Xiao-Yu&rft.date=2023-03-27&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft.spage=e202216232&rft_id=info:doi/10.1002%2Fanie.202216232&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |