Designing Heteroatom‐Codoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene

Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) Jg. 62; H. 14; S. e202216232 - n/a
Hauptverfasser: Guo, Fan, Li, Rui‐Xia, Yang, Sizhuo, Zhang, Xiao‐Yu, Yu, Hongjian, Urban, Jeffrey J., Sun, Wei‐Yin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 27.03.2023
Wiley
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively. The integration of new active sites with beneficial defects in Fe‐MOF MIL‐88B catalysts gives enhanced photoreduction of CO2 to C2H4 under visible light. The modified structure promotes the migration and separation of the photoelectrons to produce the pivotal C−C coupling intermediate for the generation of C2H4, a result supported by in situ FT‐IR analysis.
AbstractList Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ∙h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively. The integration of new active sites with beneficial defects in Fe‐MOF MIL‐88B catalysts gives enhanced photoreduction of CO2 to C2H4 under visible light. The modified structure promotes the migration and separation of the photoelectrons to produce the pivotal C−C coupling intermediate for the generation of C2H4, a result supported by in situ FT‐IR analysis.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2 H4 evolution yield of 17.7 μmol g-1 ⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C2 H4 effectively.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO 2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C 2 H 4 evolution yield of 17.7 μmol g −1 ⋅h, which has been rarely achieved in photocatalytic CO 2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C 2 H 4 effectively.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C H evolution yield of 17.7 μmol g ⋅h, which has been rarely achieved in photocatalytic CO reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C H effectively.
Author Sun, Wei‐Yin
Urban, Jeffrey J.
Li, Rui‐Xia
Guo, Fan
Yang, Sizhuo
Yu, Hongjian
Zhang, Xiao‐Yu
Author_xml – sequence: 1
  givenname: Fan
  surname: Guo
  fullname: Guo, Fan
  email: guofan@yzu.edu.cn
  organization: Nanjing University
– sequence: 2
  givenname: Rui‐Xia
  surname: Li
  fullname: Li, Rui‐Xia
  organization: Yangzhou University
– sequence: 3
  givenname: Sizhuo
  surname: Yang
  fullname: Yang, Sizhuo
  organization: Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Xiao‐Yu
  surname: Zhang
  fullname: Zhang, Xiao‐Yu
  organization: Nanjing University
– sequence: 5
  givenname: Hongjian
  surname: Yu
  fullname: Yu, Hongjian
  organization: Yangzhou University
– sequence: 6
  givenname: Jeffrey J.
  surname: Urban
  fullname: Urban, Jeffrey J.
  organization: Lawrence Berkeley National Laboratory
– sequence: 7
  givenname: Wei‐Yin
  orcidid: 0000-0001-8966-9728
  surname: Sun
  fullname: Sun, Wei‐Yin
  email: sunwy@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36748922$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1963674$$D View this record in Osti.gov
BookMark eNqFkc1u1DAUhSNURH9gyxJZdNNNhsROYmdZTad0pEK7gHXk2DczLonvYDsqw6qPUIk37JPgaEqRKiFWvra-46tzzmGyZ9FCkrzNs1meZfSDtAZmNKM0ryijL5KDvKR5yjhne3EuGEu5KPP95ND7m8gLkVWvkn1W8ULUlB4kP8_Am5U1dkUuIIBDGXB4uLufo8YNaLJ0aMknCLJ_uPt15VZxnyLnTg5wi-4b6dCRa4cDBoNW9uR6jQEd6FFNDwQ7MpeujdOZwR9GAwlIFmG97cHC6-RlJ3sPbx7Po-Tr-eLL_CK9vPq4nJ9epqooMppqWpXQ1aIGxXmuNO1YoWqdKd6qthNQtVCV8a4LIaO9FmTHu1J1VDORM9myo-T97l_0wTRemQBqrdBaUKHJ62oKI0InO2jj8PsIPjSD8Qr6XlrA0TeU84JWohI8osfP0BscXXQ_UUKwQlSsjtS7R2psB9DNxplBum3zJ_oIzHaAcui9g-4JybNm6raZum2euo2C4pkgWpFTzsFJ0_9bVu9kt6aH7X-WNKefl4u_2t_u1rwN
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215623
crossref_primary_10_1016_j_cej_2023_145740
crossref_primary_10_1002_ange_202412090
crossref_primary_10_1016_j_cej_2025_166966
crossref_primary_10_1007_s40242_024_4113_6
crossref_primary_10_1039_D4SC01978D
crossref_primary_10_1002_smll_202309194
crossref_primary_10_1002_sstr_202400384
crossref_primary_10_1002_cssc_202401054
crossref_primary_10_1002_anie_202514206
crossref_primary_10_1039_D5CC00705D
crossref_primary_10_1016_j_seppur_2024_129431
crossref_primary_10_1039_D4EY00287C
crossref_primary_10_1039_D4QM00499J
crossref_primary_10_1002_chem_202502207
crossref_primary_10_46670_JSST_2025_34_2_138
crossref_primary_10_1002_anie_202506072
crossref_primary_10_1016_j_cej_2023_148497
crossref_primary_10_1002_cssc_202400504
crossref_primary_10_1007_s40843_024_3241_5
crossref_primary_10_1021_jacs_3c11446
crossref_primary_10_1007_s40843_024_3035_4
crossref_primary_10_1007_s40843_024_2995_0
crossref_primary_10_1002_ange_202506072
crossref_primary_10_1039_D5CC02196K
crossref_primary_10_1002_ange_202514206
crossref_primary_10_1038_s41467_024_53066_y
crossref_primary_10_1002_cjoc_202300378
crossref_primary_10_1002_smll_202409759
crossref_primary_10_1016_j_cej_2025_162811
crossref_primary_10_1038_s41467_025_56277_z
crossref_primary_10_1002_cssc_202400551
crossref_primary_10_1021_acscatal_4c06456
crossref_primary_10_1039_D3SC06046B
crossref_primary_10_1002_adma_202416283
crossref_primary_10_1039_D4QI00304G
crossref_primary_10_1002_ange_202400965
crossref_primary_10_1016_j_bios_2025_117477
crossref_primary_10_1002_adma_202414994
crossref_primary_10_1002_cssc_202301619
crossref_primary_10_1007_s11426_024_2148_2
crossref_primary_10_1002_anie_202404258
crossref_primary_10_1002_cnma_202300313
crossref_primary_10_1002_ange_202404884
crossref_primary_10_1002_aenm_202402889
crossref_primary_10_1002_anie_202412090
crossref_primary_10_1073_pnas_2318970121
crossref_primary_10_1039_D4RA00812J
crossref_primary_10_1002_advs_202307254
crossref_primary_10_1016_j_cej_2023_148350
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1021_acscatal_4c07797
crossref_primary_10_1016_j_mtchem_2025_102723
crossref_primary_10_1002_adfm_202509337
crossref_primary_10_1007_s40843_023_2698_5
crossref_primary_10_1002_ange_202423471
crossref_primary_10_1002_smll_202310677
crossref_primary_10_1039_D4EE01376J
crossref_primary_10_1002_adsu_202400852
crossref_primary_10_1016_j_ccr_2023_215333
crossref_primary_10_1021_acs_nanolett_5c00791
crossref_primary_10_1002_anie_202423471
crossref_primary_10_1016_j_cej_2024_153100
crossref_primary_10_1002_anie_202404884
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1016_j_seppur_2024_129248
crossref_primary_10_1002_cphc_202300939
crossref_primary_10_1002_ange_202404258
crossref_primary_10_1002_cssc_202301892
crossref_primary_10_1016_j_colsurfa_2025_137304
crossref_primary_10_1016_j_jcis_2024_02_189
crossref_primary_10_1126_science_adq3445
crossref_primary_10_1002_anie_202400965
crossref_primary_10_1002_vjch_70012
crossref_primary_10_1016_j_cej_2023_146560
Cites_doi 10.1002/ange.201700580
10.1002/asia.202200380
10.1039/C4CY01464B
10.1021/acs.chemmater.9b02375
10.1021/acssuschemeng.0c04205
10.1021/acsami.7b14919
10.1002/anie.201904537
10.1038/s41578-022-00433-0
10.1002/adma.201704501
10.1021/jacs.1c00206
10.1002/aenm.202003052
10.1002/ange.202101667
10.1021/acsami.9b12638
10.1002/ange.202108892
10.1021/jacs.1c09508
10.1038/s41560-019-0431-1
10.1002/anie.201907074
10.1016/j.apcatb.2022.122020
10.1021/acscatal.0c05446
10.1002/adfm.202203677
10.1002/adfm.202102511
10.1002/ange.202113932
10.1021/acs.cgd.9b00508
10.1021/cs501169t
10.1021/jacs.1c08050
10.1021/ja302483t
10.1021/acsnano.1c03961
10.1126/science.aam6284
10.1021/acs.chemmater.6b00602
10.1038/s41467-018-05659-7
10.1002/ange.201813967
10.1002/anie.202101667
10.1021/acscatal.0c03034
10.1038/s41929-020-00504-x
10.1002/smtd.201800331
10.1021/jacs.1c10295
10.1021/jacs.8b06407
10.1021/jacs.1c05357
10.1016/j.checat.2022.09.009
10.1039/D0TA08402F
10.1038/s41929-019-0397-1
10.1002/anie.202113932
10.1002/anie.201813967
10.1038/s41467-019-10302-0
10.1038/ncomms13869
10.1038/s41467-021-25068-7
10.1002/ange.202017041
10.1002/anie.201700580
10.1002/aenm.202002783
10.1016/j.cej.2020.126570
10.1021/acscatal.8b03975
10.1021/acscatal.2c02789
10.1021/acscatal.6b02382
10.1002/ange.201904537
10.1002/anie.202108892
10.1039/C7CY02265D
10.1038/s41467-021-22991-7
10.1002/anie.202017041
10.1002/ange.201907074
10.1038/nature23016
10.1021/jacs.0c10369
10.1002/adfm.201601492
10.1021/acscatal.0c00478
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.202216232
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 1963674
36748922
10_1002_anie_202216232
ANIE202216232
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22101246; 22231006; 22171131
– fundername: Green Yang Jinfeng Talent Project of Yangzhou
  funderid: YZLYJF2020PHD057
– fundername: Double Innovation Doctor Program of Jiangsu Province
  funderid: JSSCBS20211022
– fundername: National Natural Science Foundation of China
  grantid: 22101246
– fundername: National Natural Science Foundation of China
  grantid: 22231006
– fundername: Double Innovation Doctor Program of Jiangsu Province
  grantid: JSSCBS20211022
– fundername: National Natural Science Foundation of China
  grantid: 22171131
– fundername: Green Yang Jinfeng Talent Project of Yangzhou
  grantid: YZLYJF2020PHD057
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
ID FETCH-LOGICAL-c4402-d265ef989ec771cd2f34c9d0c7bcbf8e6be659d0d48a880beaf7f5cf2d3813ab3
IEDL.DBID DRFUL
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936765000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Mon Feb 19 05:01:11 EST 2024
Thu Oct 02 12:02:36 EDT 2025
Tue Oct 07 07:22:48 EDT 2025
Wed Feb 19 02:24:59 EST 2025
Tue Nov 18 22:28:55 EST 2025
Sat Nov 29 03:03:44 EST 2025
Wed Jan 22 16:22:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Metal-Organic Frameworks
C2H4
Photocatalysis
CO2 Reduction
Doping
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4402-d265ef989ec771cd2f34c9d0c7bcbf8e6be659d0d48a880beaf7f5cf2d3813ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
AC02-05CH11231
ORCID 0000-0001-8966-9728
0000000189669728
OpenAccessLink https://www.osti.gov/servlets/purl/1963674
PMID 36748922
PQID 2788348639
PQPubID 946352
PageCount 8
ParticipantIDs osti_scitechconnect_1963674
proquest_miscellaneous_2774268687
proquest_journals_2788348639
pubmed_primary_36748922
crossref_primary_10_1002_anie_202216232
crossref_citationtrail_10_1002_anie_202216232
wiley_primary_10_1002_anie_202216232_ANIE202216232
PublicationCentury 2000
PublicationDate March 27, 2023
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: March 27, 2023
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
2019; 9
2019; 4
2019; 3
2015; 5
2018; 140
2019; 31
2019; 11
2019; 10
2023; 321
2021; 404
2019; 19
2021; 143
2020; 10
2017 2017; 56 129
2017; 355
2019 2019; 58 131
2017; 548
2022; 144
2020; 8
2018; 9
2022 2022; 61 134
2016; 7
2018; 8
2021; 15
2020; 3
2021; 31
2014; 4
2021; 12
2012; 134
2021; 11
2022; 7
2022; 12
2021 2021; 60 133
2018; 30
2022; 32
2022; 2
2016; 28
2018; 10
2016; 26
2022; 17
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_71_3
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_63_2
e_1_2_7_42_1
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_63_3
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_72_2
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_55_3
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 134
  start-page: 11060
  year: 2012
  end-page: 11063
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4573
  year: 2019
  end-page: 4581
  publication-title: ACS Catal.
– volume: 60 133
  start-page: 24849 25053
  year: 2021 2021
  end-page: 24853 25057
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 143
  start-page: 2984
  year: 2021
  end-page: 2993
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 4783
  year: 2022
  end-page: 4791
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 11082
  year: 2020
  end-page: 11098
  publication-title: ACS Catal.
– volume: 8
  start-page: 14397
  year: 2020
  end-page: 14406
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 606
  year: 2017
  end-page: 612
  publication-title: ACS Catal.
– volume: 15
  start-page: 14453
  year: 2021
  end-page: 14464
  publication-title: ACS Nano
– volume: 140
  start-page: 11378
  year: 2018
  end-page: 11386
  publication-title: J. Am. Chem. Soc.
– volume: 548
  start-page: 74
  year: 2017
  end-page: 77
  publication-title: Nature
– volume: 10
  start-page: 3912
  year: 2018
  end-page: 3920
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58 131
  start-page: 12175 12303
  year: 2019 2019
  end-page: 12179 12307
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 3353
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 9486
  year: 2022
  end-page: 9493
  publication-title: ACS Catal.
– volume: 7
  start-page: 13869
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 23162
  year: 2020
  end-page: 23186
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 335
  year: 2018
  end-page: 343
  publication-title: Catal. Sci. Technol.
– volume: 60 133
  start-page: 8705 8787
  year: 2021 2021
  end-page: 8709 8791
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 804
  year: 2020
  end-page: 812
  publication-title: Nat. Catal.
– volume: 143
  start-page: 269
  year: 2021
  end-page: 278
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1623
  year: 2015
  end-page: 1628
  publication-title: Catal. Sci. Technol.
– volume: 56 129
  start-page: 3621 3675
  year: 2017 2017
  end-page: 3624 3678
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 5734
  year: 2020
  end-page: 5749
  publication-title: ACS Catal.
– volume: 321
  year: 2023
  publication-title: Appl. Catal. B
– volume: 17
  year: 2022
  publication-title: Chem. Asian J.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 4747
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  start-page: 690
  year: 2019
  end-page: 699
  publication-title: Nat. Energy
– volume: 31
  start-page: 7584
  year: 2019
  end-page: 7589
  publication-title: Chem. Mater.
– volume: 355
  start-page: 126
  year: 2017
  end-page: 129
  publication-title: Science
– volume: 2
  start-page: 2750
  year: 2022
  end-page: 2763
  publication-title: Chem Catal.
– volume: 11
  start-page: 7450
  year: 2021
  end-page: 7459
  publication-title: ACS Catal.
– volume: 143
  start-page: 21511
  year: 2021
  end-page: 21518
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 98
  year: 2020
  end-page: 106
  publication-title: Nat. Catal.
– volume: 60 133
  start-page: 21150 21320
  year: 2021 2021
  end-page: 21172 21342
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 503
  year: 2022
  end-page: 521
  publication-title: Nat. Rev. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 35755
  year: 2019
  end-page: 35763
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2270
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2682
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 5708
  year: 2016
  end-page: 5717
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 259
  year: 2022
  end-page: 269
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 5581
  year: 2019
  end-page: 5591
  publication-title: Cryst. Growth Des.
– volume: 58 131
  start-page: 9491 9591
  year: 2019 2019
  end-page: 9495 9595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 3880 3920
  year: 2019 2019
  end-page: 3884 3924
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 3749
  year: 2016
  end-page: 3761
  publication-title: Chem. Mater.
– volume: 143
  start-page: 19417
  year: 2021
  end-page: 19424
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.201700580
– ident: e_1_2_7_13_2
  doi: 10.1002/asia.202200380
– ident: e_1_2_7_57_1
  doi: 10.1039/C4CY01464B
– ident: e_1_2_7_47_2
  doi: 10.1021/acs.chemmater.9b02375
– ident: e_1_2_7_60_1
  doi: 10.1021/acssuschemeng.0c04205
– ident: e_1_2_7_58_1
  doi: 10.1021/acsami.7b14919
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201904537
– ident: e_1_2_7_28_2
  doi: 10.1038/s41578-022-00433-0
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201704501
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.1c00206
– ident: e_1_2_7_3_2
  doi: 10.1002/aenm.202003052
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.202101667
– ident: e_1_2_7_49_1
  doi: 10.1021/acsami.9b12638
– ident: e_1_2_7_55_3
  doi: 10.1002/ange.202108892
– ident: e_1_2_7_24_2
  doi: 10.1021/jacs.1c09508
– ident: e_1_2_7_33_1
– ident: e_1_2_7_67_2
  doi: 10.1038/s41560-019-0431-1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201907074
– ident: e_1_2_7_56_2
  doi: 10.1016/j.apcatb.2022.122020
– ident: e_1_2_7_44_2
  doi: 10.1021/acscatal.0c05446
– ident: e_1_2_7_15_2
  doi: 10.1002/adfm.202203677
– ident: e_1_2_7_16_1
– ident: e_1_2_7_27_2
  doi: 10.1002/adfm.202102511
– ident: e_1_2_7_29_2
  doi: 10.1002/ange.202113932
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.cgd.9b00508
– ident: e_1_2_7_59_1
  doi: 10.1021/cs501169t
– ident: e_1_2_7_51_2
  doi: 10.1021/jacs.1c08050
– ident: e_1_2_7_34_2
  doi: 10.1021/ja302483t
– ident: e_1_2_7_19_1
– ident: e_1_2_7_46_1
– ident: e_1_2_7_68_1
  doi: 10.1021/acsnano.1c03961
– ident: e_1_2_7_43_1
– ident: e_1_2_7_2_2
  doi: 10.1126/science.aam6284
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.chemmater.6b00602
– ident: e_1_2_7_53_1
  doi: 10.1038/s41467-018-05659-7
– ident: e_1_2_7_64_2
  doi: 10.1002/ange.201813967
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202101667
– ident: e_1_2_7_25_2
  doi: 10.1021/acscatal.0c03034
– ident: e_1_2_7_54_1
– ident: e_1_2_7_11_2
  doi: 10.1038/s41929-020-00504-x
– ident: e_1_2_7_36_1
  doi: 10.1002/smtd.201800331
– ident: e_1_2_7_48_2
  doi: 10.1021/jacs.1c10295
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.8b06407
– ident: e_1_2_7_65_1
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.1c05357
– ident: e_1_2_7_52_2
  doi: 10.1016/j.checat.2022.09.009
– ident: e_1_2_7_70_1
– ident: e_1_2_7_72_2
  doi: 10.1039/D0TA08402F
– ident: e_1_2_7_23_2
  doi: 10.1038/s41929-019-0397-1
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202113932
– ident: e_1_2_7_64_1
  doi: 10.1002/anie.201813967
– ident: e_1_2_7_32_2
  doi: 10.1038/s41467-019-10302-0
– ident: e_1_2_7_31_2
  doi: 10.1038/ncomms13869
– ident: e_1_2_7_66_2
  doi: 10.1038/s41467-021-25068-7
– ident: e_1_2_7_22_1
– ident: e_1_2_7_63_3
  doi: 10.1002/ange.202017041
– ident: e_1_2_7_1_1
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.201700580
– ident: e_1_2_7_21_2
  doi: 10.1002/aenm.202002783
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2020.126570
– ident: e_1_2_7_69_1
  doi: 10.1021/acscatal.8b03975
– ident: e_1_2_7_7_2
  doi: 10.1021/acscatal.2c02789
– ident: e_1_2_7_62_2
  doi: 10.1021/acscatal.6b02382
– ident: e_1_2_7_6_3
  doi: 10.1002/ange.201904537
– ident: e_1_2_7_61_1
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.202108892
– ident: e_1_2_7_50_1
– ident: e_1_2_7_45_2
  doi: 10.1039/C7CY02265D
– ident: e_1_2_7_5_2
  doi: 10.1038/s41467-021-22991-7
– ident: e_1_2_7_63_2
  doi: 10.1002/anie.202017041
– ident: e_1_2_7_42_2
  doi: 10.1002/ange.201907074
– ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_8_2
  doi: 10.1038/nature23016
– ident: e_1_2_7_12_1
– ident: e_1_2_7_10_2
  doi: 10.1021/jacs.0c10369
– ident: e_1_2_7_35_2
  doi: 10.1002/adfm.201601492
– ident: e_1_2_7_20_2
  doi: 10.1021/acscatal.0c00478
SSID ssj0028806
Score 2.6986384
Snippet Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added...
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO 2 to high value‐added...
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO to high value-added C2...
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value-added...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202216232
SubjectTerms Acetic acid
C2H4
Carbon dioxide
Catalysts
CO2 Reduction
Defects
Dimerization
Doping
Electron density
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermediates
Iron
Irradiation
Metal-organic frameworks
Photocatalysis
Photoreduction
Radiation
Solar radiation
Synergistic effect
Title Designing Heteroatom‐Codoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202216232
https://www.ncbi.nlm.nih.gov/pubmed/36748922
https://www.proquest.com/docview/2788348639
https://www.proquest.com/docview/2774268687
https://www.osti.gov/servlets/purl/1963674
Volume 62
WOSCitedRecordID wos000936765000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7oVtAX79rYWkYQfArdnUlmJo9lL7SgyyIW9i0kc8EFzZTdrRSf-hME_2F_iefkpguKoG-5TJIhc86c70vOfAfgtRol3FthYiQ_Nk64G8aFVzLWRqVWemcKo-tiE2o-18tltvhlFX-jD9F_cCPPqOdrcvCi3Bz_FA2lFdjI7zgfYQTHSXiPo_GmA9ibvJ-dv-1JF9pns8JIiJgK0XfCjUN-vHuHncA0COhgvwOduxi2DkKzB__f_YdwvwWg7KSxmEdwy1WP4e64q_v2BL5O6qQODGnslHJlAtLyzzfX38ZIYC-cZWfrULF3DkH7zfX3ZimnYbMux4shCGaLJsePQD5bfAxI60kglg6w4Nm4WJe4NVmFq5V1bBvYFK0Fo597Cuez6YfxadxWaIhNgsQztlymzmc6c0apkbHci8RkdmhUaUqvnSydTHHfJrrAgSgd2oFPjecWgYIoSvEMBlWo3D6wzCNxM6KQMkHSNrRF6qVwjvTsvRxZH0HcDU9uWvlyqqLxKW-El3lObzTv32gEb_r2F41wxx9bHtBo5wg5SDfXUIKR2eY0NUmVRHDYGUHeuvcm50prkWhEdxG86k_jONHflqJy4ZLaKEQ_WmoVwfPGePqO0I11xvHRvLaRv_QwP5mfTfu9F_9y0QHcw21B2XNcHcJgu750L-GO-bJdbdZHcFst9VHrOj8AVR8biw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3batwwEBVlU0hfmvTuJm1VKPTJZFeyJfkx7IVdulmWkkDehK0LWWitsNmU0qd8QiF_mC_JjG9loaVQ-uaLbAtrRnOOPTpDyAc5SJi33MRAfmycMNePcy9FrIxMrfDO5EZVxSbkYqHOz7Nlk02Ia2FqfYjugxt6RjVfo4PjB-mjX6qhuAQbCB5jAwjhMAvvJGBLYOQ7o8-Ts3nHusBA6yVGnMdYib5Vbuyzo-07bEWmXgAP-x3q3AaxVRSa7P2H_u-Txw0Epce1zTwhD1z5lOwO28pvz8iPUZXWAUGNTjFbJgAx_3p383MIFPbSWTpbh5KeOIDtdze39WJOQydtlhcFGEyXdZYfwny6vAhA7FEiFg_Q4OkwXxewNVqF7yvr6CbQMdgLxD_3nJxNxqfDadzUaIhNAtQztkykzmcqc0bKgbHM88Rktm9kYQqvnCicSGHfJiqHkSgcWIJPjWcWoALPC_6C9MpQuleEZh6om-G5EAnQtr7NUy-4c6ho78XA-ojE7fho0wiYYx2NL7qWXmYa36ju3mhEPnbtL2vpjj-2PMDh1gA6UDnXYIqR2WicnIRMInLYWoFuHPxKM6kUTxTgu4i8707DOOH_lrx04RrbSMA_SigZkZe19XQdwRurjMGjWWUkf-mhPl7Mxt3e63-56B3ZnZ6ezPV8tvh0QB7BcY65dEwekt5mfe3ekIfm22Z1tX7beNA9lmoekw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFD5IV9QX75e4q44g-BS2nUlnJo9L27DFtRRxYd-GZC5sQZPS7Yr4tD9B8B_uL_Gc3KSgCOJbLpNkyJwz5_uSM98BeKNGCQ9O2BjJj4sT7odxHpSMtVVjJ4O3udV1sQm1WOizs3TZZhPSWphGH6L_4EaeUc_X5OB-7cLhL9VQWoKNBI_zEYZwnIX3EqokM4C96Yfs9KRnXWigzRIjIWKqRN8pNw754e4ddiLToEIP-x3q3AWxdRTK7v2H_t-Huy0EZUeNzTyAG758CLcnXeW3R_BtWqd1YFBjx5QtUyEx_3x99X2CFHbtHZtvqpK99wjbr69-NIs5Lcu6LC-GMJgtmyw_gvlseV4hsSeJWDrAqsAm-abAremq-rpynm0rNkN7wfjnH8NpNvs4OY7bGg2xTZB6xo7LsQ-pTr1VamQdDyKxqRtaVdgiaC8LL8e47xKd40gUHi0hjG3gDqGCyAvxBAZlVfpnwNKA1M2KXMoEadvQ5eMghfekaB_kyIUI4m58jG0FzKmOxifTSC9zQ2_U9G80grd9-3Uj3fHHlvs03AZBBynnWkoxsltDk5NUSQQHnRWY1sEvDFdai0QjvovgdX8ax4n-t-Slry6pjUL8o6VWETxtrKfvCN1YpxwfzWsj-UsPzdFiPuv3nv_LRa_g1nKamZP54t0-3MHDglLpuDqAwXZz6V_ATftlu7rYvGwd6Cf1VR4O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Heteroatom%E2%80%90Codoped+Iron+Metal%E2%80%93Organic+Framework+for+Promotional+Photoreduction+of+Carbon+Dioxide+to+Ethylene&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Fan&rft.au=Li%2C+Rui%E2%80%90Xia&rft.au=Yang%2C+Sizhuo&rft.au=Zhang%2C+Xiao%E2%80%90Yu&rft.date=2023-03-27&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft_id=info:doi/10.1002%2Fanie.202216232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202216232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon