Methodologies for Transcript Profiling Using Long-Read Technologies

RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, lon...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in genetics Ročník 11; s. 606
Hlavní autori: Oikonomopoulos, Spyros, Bayega, Anthony, Fahiminiya, Somayyeh, Djambazian, Haig, Berube, Pierre, Ragoussis, Jiannis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 07.07.2020
Predmet:
ISSN:1664-8021, 1664-8021
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.
AbstractList RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information—for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5′ and 3′ UTRs is still in development.
RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.
Author Djambazian, Haig
Ragoussis, Jiannis
Berube, Pierre
Oikonomopoulos, Spyros
Bayega, Anthony
Fahiminiya, Somayyeh
AuthorAffiliation 1 McGill Genome Centre, Department of Human Genetics, McGill University , Montréal, QC , Canada
2 Department of Bioengineering, McGill University , Montréal, QC , Canada
AuthorAffiliation_xml – name: 1 McGill Genome Centre, Department of Human Genetics, McGill University , Montréal, QC , Canada
– name: 2 Department of Bioengineering, McGill University , Montréal, QC , Canada
Author_xml – sequence: 1
  givenname: Spyros
  surname: Oikonomopoulos
  fullname: Oikonomopoulos, Spyros
– sequence: 2
  givenname: Anthony
  surname: Bayega
  fullname: Bayega, Anthony
– sequence: 3
  givenname: Somayyeh
  surname: Fahiminiya
  fullname: Fahiminiya, Somayyeh
– sequence: 4
  givenname: Haig
  surname: Djambazian
  fullname: Djambazian, Haig
– sequence: 5
  givenname: Pierre
  surname: Berube
  fullname: Berube, Pierre
– sequence: 6
  givenname: Jiannis
  surname: Ragoussis
  fullname: Ragoussis, Jiannis
BookMark eNp1kc1rGzEQxUVJaRI39x732Ms6kkarj0uhmH4EXFqKcxaydnatsJZcaV3of99d25SmUB2kYTTvNw_eLbmKKSIhbxhdAmhz3_UYcckpp0tKJZUvyA2TUtSacnb1V31N7kp5otMRBgDEK3INXAE0wG_I6guOu9SmIfUBS9WlXG2yi8XncBirbzl1YQixrx7LfK9T7Ovv6Npqg34XL6rX5GXnhoJ3l3dBHj9-2Kw-1-uvnx5W79e1F2DGGpFxpVTXCuSUTutBtJIaL53XU7uRplGOgW8M48II8CAbaDhu9SQx1MOCPJy5bXJP9pDD3uVfNrlgT42Ue-vyGPyAlovGcak5bzsQTintQXvhYMu2zktwE-vdmXU4bvfYeoxjdsMz6POfGHa2Tz-tgkbP3hfk7QWQ048jltHuQ_E4DC5iOpbJATdKS8H0NErPoz6nUjJ2f9Ywauco7SlKO0dpT1FOEvmPxIfRjSHNZsLwf-FvCmykEw
CitedBy_id crossref_primary_10_3724_abbs_2024211
crossref_primary_10_3389_fbioe_2025_1638957
crossref_primary_10_1242_bio_061721
crossref_primary_10_3389_fmicb_2023_1233178
crossref_primary_10_1016_j_csbj_2022_07_007
crossref_primary_10_3389_fbioe_2022_842299
crossref_primary_10_3389_fpls_2022_841618
crossref_primary_10_1007_s41348_024_00941_x
crossref_primary_10_1038_s41467_023_41207_8
crossref_primary_10_1016_j_jbiotec_2021_08_005
crossref_primary_10_1039_D5FO00451A
crossref_primary_10_1016_j_ygeno_2023_110697
crossref_primary_10_3389_fgene_2022_838534
crossref_primary_10_48130_opr_0025_0029
crossref_primary_10_1016_j_fct_2022_113394
crossref_primary_10_1038_s41598_023_29484_1
crossref_primary_10_1146_annurev_animal_111523_102217
crossref_primary_10_1186_s12983_024_00538_y
crossref_primary_10_1186_s12864_024_10791_4
crossref_primary_10_1186_s12864_023_09442_x
crossref_primary_10_1098_rsob_250200
crossref_primary_10_1038_s41592_023_02046_z
crossref_primary_10_1038_s41467_024_48929_3
crossref_primary_10_1016_j_cell_2023_04_012
crossref_primary_10_1371_journal_pcbi_1011576
crossref_primary_10_3390_ijms222212225
crossref_primary_10_3389_fgene_2022_1031355
crossref_primary_10_1016_j_ymeth_2021_09_010
crossref_primary_10_3390_ani10122236
crossref_primary_10_3390_ani14142058
crossref_primary_10_1371_journal_pone_0265469
crossref_primary_10_1002_wrna_1708
crossref_primary_10_1093_nar_gkab713
crossref_primary_10_3390_life12010030
crossref_primary_10_3390_nu13030763
crossref_primary_10_3389_fpls_2022_911277
crossref_primary_10_1093_nar_gkad810
crossref_primary_10_1016_j_tig_2021_11_003
crossref_primary_10_1007_s11914_022_00726_x
crossref_primary_10_1038_s41597_025_05399_6
crossref_primary_10_1007_s00439_024_02678_x
crossref_primary_10_1016_j_vas_2024_100382
crossref_primary_10_1111_raq_12689
crossref_primary_10_1093_hr_uhae198
crossref_primary_10_3389_fgene_2021_656334
crossref_primary_10_1016_j_fsigen_2024_103156
crossref_primary_10_1093_nar_gkaf240
crossref_primary_10_1186_s12967_023_04653_y
crossref_primary_10_1038_s41592_022_01714_w
crossref_primary_10_1158_0008_5472_CAN_20_1943
crossref_primary_10_1128_spectrum_02234_23
crossref_primary_10_1146_annurev_biodatasci_020722_044021
crossref_primary_10_3389_fmolb_2021_647277
crossref_primary_10_1007_s00425_021_03644_x
crossref_primary_10_3390_ijms252111845
crossref_primary_10_1038_s41588_024_02038_5
crossref_primary_10_1093_hmg_ddac196
crossref_primary_10_3390_mi14020459
crossref_primary_10_1016_j_aquaculture_2024_741908
crossref_primary_10_3389_fgene_2022_997460
crossref_primary_10_1038_s41597_024_02989_8
crossref_primary_10_1101_gr_275133_120
crossref_primary_10_1093_icb_icae009
crossref_primary_10_1186_s12929_021_00775_x
crossref_primary_10_1016_j_cbi_2023_110518
crossref_primary_10_3390_biom14050568
Cites_doi 10.1093/bioinformatics/btx668
10.1073/pnas.1400447111
10.1038/nbt.4259
10.1093/molbev/msx212
10.3389/fimmu.2018.01012
10.1038/srep31584
10.1038/ncomms16027
10.1016/j.ab.2006.10.009
10.1038/nrg2504
10.1371/journal.pone.0085270
10.1101/pdb.prot5559
10.1101/132274
10.1101/094672
10.1093/gigascience/gix024
10.1039/c8lc01239c
10.1007/978-1-4939-7834-2_11
10.1038/s41598-017-18364-0
10.1007/978-1-4939-7834-2_6
10.1016/j.tibs.2010.02.002
10.1186/s13059-019-1676-5
10.1016/j.cell.2016.02.045
10.1038/nbt.3242
10.1038/nmeth.3327
10.1038/nrm.2017.49
10.1093/bfgp/elw043
10.1101/2020.02.19.953307
10.1038/nmeth.2722
10.1186/gb-2014-15-6-r86
10.1021/bi00245a001
10.1186/s12864-018-4491-6
10.1093/dnares/dsy038
10.1038/nbt.2957
10.1371/journal.pone.0157779
10.3389/fgene.2019.00709
10.1038/nmeth.2714
10.1186/s12885-015-1046-y
10.1101/gr.231100.117
10.1038/s41598-017-05503-w
10.1016/j.tibs.2018.02.007
10.1093/nar/gkv536
10.1186/s12859-019-2996-x
10.1038/emboj.2009.283
10.1093/nar/gkp093
10.1186/1472-6750-7-21
10.3390/genes9010043
10.1016/s0092-8674(00)80369-4
10.1038/nbt.2282
10.1186/s13059-018-1462-9
10.1128/jb.184.17.4658-4665.2002
10.1182/blood-2014-05-573485
10.12688/f1000research.10571.2
10.1093/bioinformatics/bty098
10.1038/ncomms11706
10.1146/annurev-genet-120213-092340
10.1101/463463
10.1038/nrg3160
10.1016/j.gpb.2015.08.002
10.1038/s41467-018-05347-6
10.1101/160085
10.1002/bies.20749
10.1007/978-1-59745-033-1_10
10.1016/s0092-8674(00)80270-6
10.1093/nar/gky834
10.1126/science.1162986
10.1113/jphysiol.2006.115568
10.2144/03344st06
10.1186/1477-3155-11-8
10.1186/s12864-017-3528-6
10.1038/nmeth.2639
10.1038/nmeth.4577
10.1038/nbt.3432
10.1093/nar/gkv444
10.1007/978-1-60327-369-5_1
10.1038/nrg2695
10.1101/102905
10.1073/pnas.1806447115
10.1101/459529
10.1038/nature11233
10.1007/s13577-017-0168-8
10.1016/j.ab.2006.06.020
10.1038/nprot.2014.006
10.5808/gi.2019.17.3.e32
10.1093/bioinformatics/bti310
10.1093/nar/29.11.2217
10.1073/pnas.1320101110
10.1186/s13742-016-0140-7
10.1038/srep31602
10.1101/gr.135350.111
10.1038/nmeth.4184
10.1038/celldisc.2017.31
10.1038/nbt.2705
10.1101/gr.230516.117
10.1161/hh2301.100981
10.1101/gr.141705.112
10.1093/nar/27.21.e31-i
10.1126/science.1079700
10.1038/nrg.2017.117
10.1038/s41594-018-0042-8
10.1101/478172
10.1038/s41467-018-05997-6
10.1038/nrm1645
10.1016/j.ygeno.2005.12.013
10.1038/nature08390
10.1101/410282
10.1146/annurev.biochem.72.121801.161720
10.1016/j.celrep.2015.12.050
10.1038/nnano.2017.176
10.1101/gr.237610.118
10.1261/rna.2242610
10.1186/1471-2105-13-238
10.1128/jvi.00669-14
10.1021/bi201075b
10.1101/077750
10.1093/nar/gku118
10.1038/nrg.2016.49
10.1093/nar/gky066
10.1038/nrg3642
10.1038/nmeth.2772
10.1038/s41598-018-26955-8
10.1101/424945
10.1038/nature22401
10.1093/bioinformatics/bty191
ContentType Journal Article
Copyright Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis.
Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis
Copyright_xml – notice: Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis.
– notice: Copyright © 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis. 2020 Oikonomopoulos, Bayega, Fahiminiya, Djambazian, Berube and Ragoussis
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fgene.2020.00606
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_245a26822df34a778c38c4a3b1bac63a
PMC7358353
10_3389_fgene_2020_00606
GrantInformation_xml – fundername: Canada Foundation for Innovation
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c439t-ee12777fd4e20035334d609c6ac877f56957a13c59124943c365352eb8fd490c3
IEDL.DBID DOA
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-8021
IngestDate Fri Oct 03 12:46:02 EDT 2025
Tue Sep 30 15:41:57 EDT 2025
Thu Sep 04 17:13:27 EDT 2025
Sat Nov 29 03:49:28 EST 2025
Tue Nov 18 22:03:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-ee12777fd4e20035334d609c6ac877f56957a13c59124943c365352eb8fd490c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Robert Hitzemann, Oregon Health & Science University, United States; Xuanxuan Xing, The Ohio State University, United States
Edited by: Youri I. Pavlov, University of Nebraska Medical Center, United States
This article was submitted to Genomic Assay Technology, a section of the journal Frontiers in Genetics
OpenAccessLink https://doaj.org/article/245a26822df34a778c38c4a3b1bac63a
PMID 32733532
PQID 2429786418
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_245a26822df34a778c38c4a3b1bac63a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7358353
proquest_miscellaneous_2429786418
crossref_primary_10_3389_fgene_2020_00606
crossref_citationtrail_10_3389_fgene_2020_00606
PublicationCentury 2000
PublicationDate 2020-07-07
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-07
  day: 07
PublicationDecade 2020
PublicationTitle Frontiers in genetics
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zhang (B127) 2017; 34
Owens (B85) 2016; 14
Eid (B33) 2009; 323
Rhoads (B93) 2015; 13
An (B2) 2018; 9
Lu (B70) 2018; 9
Ebhardt (B32) 2009; 37
Tilgner (B116) 2014; 111
Bajak (B7) 2008; 419
Jack (B53) 2015
Steijger (B113) 2013; 10
Sims (B108) 2014; 15
Workman (B123) 2018
Moldovan (B75) 2018; 8
Consortium (B24) 2014; 32
Cavelier (B20) 2015; 15
Keller (B57) 2018; 8
Nattestad (B80) 2018; 28
Shahbabian (B103) 2009; 28
Chen (B22) 2017; 7
Nordgard (B81) 2006; 356
Schoenberg (B101) 2012; 13
Luhtala (B71) 2010; 35
Bayega (B11); 1783
Matlin (B74) 2005; 6
Lahens (B62) 2014; 15
Zajac (B126) 2013; 8
Engstrom (B34) 2013; 10
Hussain (B50) 2018; 43
Jeon (B55) 2019; 17
Krizanovic (B59) 2017
Tan (B115) 2018
Shen (B105) 2016
Novoa (B82) 2017; 18
Volden (B121) 2018; 115
Faria (B35) 2017; 546
Oesterreich (B83) 2016; 165
Brinzevich (B15) 2014; 88
Bayega (B9); 1783
Cocquet (B23) 2006; 88
Freeman (B36) 2013; 1027
Cooper (B25) 2014; 42
Garalde (B38) 2018; 15
Hui (B49) 2014; 48
Larkin (B63) 2017; 12
Krjutskov (B60) 2016; 6
Weirather (B122) 2017; 6
Dougherty (B30) 2018; 28
Schmidt (B100) 1999; 27
Bang (B8) 2001; 89
Ghildiyal (B39) 2009; 10
Zhao (B128) 2015; 43
Cartolano (B18) 2016; 11
Arezi (B4) 2007; 360
Gustincich (B42) 2006; 575
Roy (B94) 2008; 30
Yan (B125) 2018; 9
Abdel-Ghany (B1) 2016; 7
Castro-Wallace (B19) 2017; 7
Bushnell (B16) 2014
Skelley (B110) 2015
Vilfan (B120) 2013; 11
Karlsson (B56) 2017; 18
Drmanac (B31) 2020
Hu (B47) 2017
Islam (B52) 2014; 11
Simpson (B107) 2017; 14
Loomis (B69) 2013; 23
Loman (B68) 2015; 12
Hawkins (B46) 2003; 34
Trotta (B119) 1997; 89
Marinov (B73) 2017; 16
Fu (B37) 2018; 34
Parker (B87) 2014; 124
Stoiber (B114) 2017
Marchet (B72) 2018; 47
Salimullah (B96) 2011; 2011
Boutabout (B14) 2001; 29
Salk (B97) 2018; 19
Li (B66) 2018; 34
Munafo (B76) 2010; 16
Picelli (B89) 2013; 10
Harrow (B45) 2012; 22
Cuchillo (B26) 2011; 50
Rang (B92) 2018; 19
Bayega (B10)
Oikonomopoulos (B84) 2016; 6
Peach (B88) 2015; 43
Wu (B124) 2005; 21
Au (B5) 2013; 110
Dard-Dascot (B27) 2018; 19
Myers (B77) 1991; 30
Gupta (B41) 2018; 36
Jain (B54) 2016; 17
Seki (B102) 2019; 26
Schlecht (B99) 2017; 7
Bagnoli (B6) 2018; 9
Hardwick (B44) 2019; 10
Sahlin (B95) 2018
Sharon (B104) 2013; 31
Huang (B48) 2017; 6
Byrne (B17) 2017; 8
Sidrauski (B106) 1997; 90
Tilgner (B117) 2015; 33
Sorek (B112) 2010; 11
Ibrahim (B51) 2018; 25
Zheng (B129) 2016; 34
Levene (B64) 2003; 299
Salomon (B98) 2019; 19
Ozsolak (B86) 2009; 461
Black (B12) 2003; 72
Ardui (B3) 2018; 46
Kushner (B61) 2002; 184
Krizanovic (B58) 2018; 34
Goodwin (B40) 2016; 17
Li (B65) 2016; 5
Nakano (B78) 2017; 30
Ramskold (B91) 2012; 30
Smith (B111) 2017
Haddad (B43) 2007; 7
Li (B67) 2017; 3
Tilgner (B118) 2018; 28
Boratyn (B13) 2019; 20
Djebali (B29) 2012; 489
Chaisson (B21) 2012; 13
Natarajan (B79) 2019; 20
Picelli (B90) 2014; 9
Singh (B109) 2018
Davidson (B28) 2017
References_xml – volume: 34
  start-page: 748
  year: 2018
  ident: B58
  article-title: Evaluation of tools for long read RNA-seq splice-aware alignment.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx668
– volume: 111
  start-page: 9869
  year: 2014
  ident: B116
  article-title: Defining a personal, allele-specific, and single-molecule long-read transcriptome.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1400447111
– volume: 36
  start-page: 1197
  year: 2018
  ident: B41
  article-title: Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4259
– volume: 34
  start-page: 2453
  year: 2017
  ident: B127
  article-title: Isoform evolution in primates through independent combination of alternative RNA processing events.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx212
– volume: 9
  year: 2018
  ident: B70
  article-title: Immune modulation by human secreted rnases at the extracellular space.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01012
– volume: 6
  year: 2016
  ident: B60
  article-title: Globin mRNA reduction for whole-blood transcriptome sequencing.
  publication-title: Sci. Rep.
  doi: 10.1038/srep31584
– volume: 8
  year: 2017
  ident: B17
  article-title: Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16027
– volume: 360
  start-page: 84
  year: 2007
  ident: B4
  article-title: Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures.
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2006.10.009
– volume: 10
  start-page: 94
  year: 2009
  ident: B39
  article-title: Small silencing RNAs: an expanding universe.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2504
– volume: 8
  year: 2013
  ident: B126
  article-title: Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085270
– volume: 2011
  year: 2011
  ident: B96
  article-title: NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes.
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot5559
– year: 2017
  ident: B111
  article-title: Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing.
  publication-title: bioRxiv
  doi: 10.1101/132274
– year: 2017
  ident: B114
  article-title: De novo identification of DNA modifications enabled by genome-guided nanopore signal processing.
  publication-title: bioRxiv
  doi: 10.1101/094672
– volume: 6
  start-page: 1
  year: 2017
  ident: B48
  article-title: A reference human genome dataset of the BGISEQ-500 sequencer.
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix024
– volume: 19
  start-page: 1706
  year: 2019
  ident: B98
  article-title: Droplet-based single cell RNAseq tools: a practical guide.
  publication-title: Lab Chip
  doi: 10.1039/c8lc01239c
– volume: 1783
  start-page: 209
  ident: B9
  article-title: Current and future methods for mrna analysis: a drive toward single molecule sequencing.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7834-2_11
– volume: 7
  year: 2017
  ident: B19
  article-title: Nanopore DNA sequencing and genome assembly on the international space station.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18364-0
– volume: 1783
  start-page: 121
  ident: B11
  article-title: Transcript profiling using long-read sequencing technologies.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7834-2_6
– volume: 35
  start-page: 253
  year: 2010
  ident: B71
  article-title: T2 Family ribonucleases: ancient enzymes with diverse roles.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.02.002
– volume: 20
  year: 2019
  ident: B79
  article-title: Comparative analysis of sequencing technologies for single-cell transcriptomics.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1676-5
– volume: 165
  start-page: 372
  year: 2016
  ident: B83
  article-title: Splicing of nascent rna coincides with intron exit from RNA Polymerase II.
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.045
– volume: 33
  start-page: 736
  year: 2015
  ident: B117
  article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3242
– volume: 12
  start-page: 303
  year: 2015
  ident: B68
  article-title: Successful test launch for nanopore sequencing.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3327
– volume: 18
  start-page: 339
  year: 2017
  ident: B82
  article-title: Charting the unknown epitranscriptome.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.49
– volume: 16
  start-page: 326
  year: 2017
  ident: B73
  article-title: On the design and prospects of direct RNA sequencing.
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/elw043
– year: 2020
  ident: B31
  article-title: CoolMPS: advanced massively parallel sequencing using antibodies specific to each natural nucleobase.
  publication-title: bioRxiv
  doi: 10.1101/2020.02.19.953307
– volume: 10
  start-page: 1185
  year: 2013
  ident: B34
  article-title: Systematic evaluation of spliced alignment programs for RNA-seq data.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2722
– volume: 15
  year: 2014
  ident: B62
  article-title: IVT-seq reveals extreme bias in RNA sequencing.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-6-r86
– volume: 30
  start-page: 7661
  year: 1991
  ident: B77
  article-title: Reverse transcription and DNA amplification by a thermus thermophilus DNA polymerase.
  publication-title: Biochemistry
  doi: 10.1021/bi00245a001
– volume: 19
  year: 2018
  ident: B27
  article-title: Systematic comparison of small RNA library preparation protocols for next-generation sequencing.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4491-6
– volume: 26
  start-page: 55
  year: 2019
  ident: B102
  article-title: Evaluation and application of RNA-Seq by MinION.
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsy038
– volume: 32
  start-page: 903
  year: 2014
  ident: B24
  article-title: A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2957
– volume: 11
  year: 2016
  ident: B18
  article-title: cDNA library enrichment of full length transcripts for smrt long read sequencing.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157779
– volume: 10
  year: 2019
  ident: B44
  article-title: Getting the entire message: progress in isoform sequencing.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00709
– volume: 10
  start-page: 1177
  year: 2013
  ident: B113
  article-title: Assessment of transcript reconstruction methods for RNA-seq.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2714
– volume: 15
  year: 2015
  ident: B20
  article-title: Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing.
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1046-y
– volume: 28
  start-page: 1126
  year: 2018
  ident: B80
  article-title: Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line.
  publication-title: Genome Res.
  doi: 10.1101/gr.231100.117
– volume: 7
  year: 2017
  ident: B99
  article-title: ConcatSeq: a method for increasing throughput of single molecule sequencing by concatenating short DNA fragments.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05503-w
– volume: 43
  start-page: 225
  year: 2018
  ident: B50
  article-title: Native RNA-sequencing throws its hat into the transcriptomics ring.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.02.007
– volume: 43
  year: 2015
  ident: B88
  article-title: Global analysis of RNA cleavage by 5’-hydroxyl RNA sequencing.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv536
– volume: 20
  year: 2019
  ident: B13
  article-title: Magic-BLAST, an accurate RNA-seq aligner for long and short reads.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2996-x
– volume: 28
  start-page: 3523
  year: 2009
  ident: B103
  article-title: RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.283
– volume: 37
  start-page: 2461
  year: 2009
  ident: B32
  article-title: Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp093
– volume: 7
  year: 2007
  ident: B43
  article-title: Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR.
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-7-21
– volume: 9
  year: 2018
  ident: B2
  article-title: Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes.
  publication-title: Genes
  doi: 10.3390/genes9010043
– volume: 90
  start-page: 1031
  year: 1997
  ident: B106
  article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response.
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80369-4
– volume: 30
  start-page: 777
  year: 2012
  ident: B91
  article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2282
– volume: 19
  year: 2018
  ident: B92
  article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1462-9
– volume: 184
  start-page: 4658
  year: 2002
  ident: B61
  article-title: mRNA decay in Escherichia coli comes of age.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.184.17.4658-4665.2002
– volume: 124
  start-page: 153
  year: 2014
  ident: B87
  article-title: Many BCR-ABL1 compound mutations reported in chronic myeloid leukemia patients may actually be artifacts due to PCR-mediated recombination.
  publication-title: Blood
  doi: 10.1182/blood-2014-05-573485
– volume: 6
  year: 2017
  ident: B122
  article-title: Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.
  publication-title: F1000Res.
  doi: 10.12688/f1000research.10571.2
– volume: 34
  start-page: 2168
  year: 2018
  ident: B37
  article-title: IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty098
– volume: 7
  year: 2016
  ident: B1
  article-title: A survey of the sorghum transcriptome using single-molecule long reads.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11706
– volume: 48
  start-page: 537
  year: 2014
  ident: B49
  article-title: Messenger RNA degradation in bacterial cells.
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120213-092340
– year: 2018
  ident: B95
  article-title: De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm.
  publication-title: bioRxiv
  doi: 10.1101/463463
– volume: 7
  year: 2017
  ident: B22
  article-title: A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.
  publication-title: Sci. Rep.
– volume: 13
  start-page: 246
  year: 2012
  ident: B101
  article-title: Regulation of cytoplasmic mRNA decay.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3160
– volume: 13
  start-page: 278
  year: 2015
  ident: B93
  article-title: PacBio sequencing and its applications.
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2015.08.002
– volume: 9
  year: 2018
  ident: B6
  article-title: Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05347-6
– year: 2016
  ident: B105
  publication-title: Kinetic Exclusion Amplification of Nucleic Acid Libraries.
– year: 2017
  ident: B59
  article-title: RNA transcriptome mapping with graphmap.
  publication-title: bioRxiv
  doi: 10.1101/160085
– volume: 30
  start-page: 601
  year: 2008
  ident: B94
  article-title: When good transcripts go bad: artifactual RT-PCR ‘splicing’ and genome analysis.
  publication-title: Bioessays
  doi: 10.1002/bies.20749
– volume: 419
  start-page: 147
  year: 2008
  ident: B7
  article-title: Efficient 5’ cap-dependent RNA purification : use in identifying and studying subsets of RNA.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-033-1_10
– volume: 89
  start-page: 849
  year: 1997
  ident: B119
  article-title: The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases.
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80270-6
– volume: 47
  year: 2018
  ident: B72
  article-title: De novo clustering of long reads by gene from transcriptomics data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky834
– volume: 323
  start-page: 133
  year: 2009
  ident: B33
  article-title: Real-time DNA sequencing from single polymerase molecules.
  publication-title: Science
  doi: 10.1126/science.1162986
– volume: 8
  year: 2018
  ident: B57
  article-title: Direct RNA sequencing of the coding complete influenza a virus genome.
  publication-title: Sci. Rep.
– volume: 575
  start-page: 321
  year: 2006
  ident: B42
  article-title: The complexity of the mammalian transcriptome.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.115568
– volume: 34
  start-page: 768
  year: 2003
  ident: B46
  article-title: Full-length cDNA synthesis for long-distance RT-PCR of large mRNA transcripts.
  publication-title: Biotechniques
  doi: 10.2144/03344st06
– volume: 11
  year: 2013
  ident: B120
  article-title: Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription.
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-11-8
– year: 2015
  ident: B110
  publication-title: MatchAnnot; GitHub Respository.
– volume: 18
  year: 2017
  ident: B56
  article-title: Single-cell mRNA isoform diversity in the mouse brain.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3528-6
– volume: 10
  start-page: 1096
  year: 2013
  ident: B89
  article-title: Smart-seq2 for sensitive full-length transcriptome profiling in single cells.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2639
– volume: 15
  start-page: 201
  year: 2018
  ident: B38
  article-title: Highly parallel direct RNA sequencing on an array of nanopores.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4577
– volume: 34
  start-page: 303
  year: 2016
  ident: B129
  article-title: Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3432
– volume: 43
  start-page: 5550
  year: 2015
  ident: B128
  article-title: Structural insights into catalysis and dimerization enhanced exonuclease activity of RNase J.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv444
– volume: 1027
  start-page: 3
  year: 2013
  ident: B36
  article-title: Cloning full-length transcripts and transcript variants using 5’ and 3’.
  publication-title: RACE. Methods Mol. Biol.
  doi: 10.1007/978-1-60327-369-5_1
– volume: 11
  start-page: 9
  year: 2010
  ident: B112
  article-title: Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2695
– year: 2017
  ident: B47
  article-title: Interactive analysis of Long-read RNA isoforms with Iso-Seq Browser.
  publication-title: bioRxiv
  doi: 10.1101/102905
– volume: 115
  year: 2018
  ident: B121
  article-title: Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1806447115
– year: 2018
  ident: B123
  article-title: Nanopore native RNA sequencing of a human poly(A) transcriptome.
  publication-title: bioRxiv
  doi: 10.1101/459529
– volume: 489
  start-page: 101
  year: 2012
  ident: B29
  article-title: Landscape of transcription in human cells.
  publication-title: Nature
  doi: 10.1038/nature11233
– volume: 30
  start-page: 149
  year: 2017
  ident: B78
  article-title: Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
  publication-title: Hum. Cell
  doi: 10.1007/s13577-017-0168-8
– volume: 356
  start-page: 182
  year: 2006
  ident: B81
  article-title: Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision.
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2006.06.020
– volume: 9
  start-page: 171
  year: 2014
  ident: B90
  article-title: Full-length RNA-seq from single cells using Smart-seq2.
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 17
  year: 2019
  ident: B55
  article-title: Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing.
  publication-title: Genomics Inform.
  doi: 10.5808/gi.2019.17.3.e32
– volume: 21
  start-page: 1859
  year: 2005
  ident: B124
  article-title: GMAP: a genomic mapping and alignment program for mRNA and EST sequences.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti310
– volume: 29
  start-page: 2217
  year: 2001
  ident: B14
  article-title: DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.11.2217
– year: 2014
  ident: B16
  publication-title: BBMap: A Fast, Accurate, Splice-Aware Aligner.
– volume: 110
  start-page: E4821
  year: 2013
  ident: B5
  article-title: Characterization of the human ESC transcriptome by hybrid sequencing.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1320101110
– volume: 5
  year: 2016
  ident: B65
  article-title: INC-Seq: accurate single molecule reads using nanopore sequencing.
  publication-title: Gigascience
  doi: 10.1186/s13742-016-0140-7
– volume: 6
  year: 2016
  ident: B84
  article-title: Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.
  publication-title: Sci. Rep.
  doi: 10.1038/srep31602
– volume: 22
  start-page: 1760
  year: 2012
  ident: B45
  article-title: GENCODE: the reference human genome annotation for The ENCODE Project.
  publication-title: Genome Res.
  doi: 10.1101/gr.135350.111
– volume: 14
  start-page: 407
  year: 2017
  ident: B107
  article-title: Detecting DNA cytosine methylation using nanopore sequencing.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4184
– volume: 3
  year: 2017
  ident: B67
  article-title: Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis.
  publication-title: Cell Discov.
  doi: 10.1038/celldisc.2017.31
– volume: 31
  start-page: 1009
  year: 2013
  ident: B104
  article-title: A single-molecule long-read survey of the human transcriptome.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2705
– volume: 28
  start-page: 231
  year: 2018
  ident: B118
  article-title: Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome.
  publication-title: Genome Res.
  doi: 10.1101/gr.230516.117
– volume: 89
  start-page: 1065
  year: 2001
  ident: B8
  article-title: The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system.
  publication-title: Circ. Res.
  doi: 10.1161/hh2301.100981
– volume: 23
  start-page: 121
  year: 2013
  ident: B69
  article-title: Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene.
  publication-title: Genome Res.
  doi: 10.1101/gr.141705.112
– volume: 27
  year: 1999
  ident: B100
  article-title: CapSelect: a highly sensitive method for 5’ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.21.e31-i
– volume: 299
  start-page: 682
  year: 2003
  ident: B64
  article-title: Zero-mode waveguides for single-molecule analysis at high concentrations.
  publication-title: Science
  doi: 10.1126/science.1079700
– volume: 19
  start-page: 269
  year: 2018
  ident: B97
  article-title: Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.117
– volume: 25
  start-page: 302
  year: 2018
  ident: B51
  article-title: Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0042-8
– ident: B10
  article-title: Transcriptome landscape of the developing olive fruit fly embryo delineated by Oxford Nanopore long-read RNA-Seq.
  publication-title: bioRxiv
  doi: 10.1101/478172
– volume: 9
  year: 2018
  ident: B125
  article-title: SMRT-Cappable-seq reveals complex operon variants in bacteria.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05997-6
– volume: 6
  start-page: 386
  year: 2005
  ident: B74
  article-title: Understanding alternative splicing: towards a cellular code.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1645
– volume: 88
  start-page: 127
  year: 2006
  ident: B23
  article-title: Reverse transcriptase template switching and false alternative transcripts.
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2005.12.013
– volume: 461
  start-page: 814
  year: 2009
  ident: B86
  article-title: Direct RNA sequencing.
  publication-title: Nature
  doi: 10.1038/nature08390
– year: 2018
  ident: B115
  article-title: A novel method for the capture-based purification of whole viral native RNA genomes.
  publication-title: bioRxiv
  doi: 10.1101/410282
– volume: 72
  start-page: 291
  year: 2003
  ident: B12
  article-title: Mechanisms of alternative pre-messenger RNA splicing.
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161720
– volume: 17
  year: 2016
  ident: B54
  article-title: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community.
  publication-title: Genome Biol.
– volume: 14
  start-page: 632
  year: 2016
  ident: B85
  article-title: Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.050
– volume: 12
  start-page: 1169
  year: 2017
  ident: B63
  article-title: Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing.
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.176
– volume: 28
  start-page: 1566
  year: 2018
  ident: B30
  article-title: Transcriptional fates of human-specific segmental duplications in brain.
  publication-title: Genome Res.
  doi: 10.1101/gr.237610.118
– volume: 16
  start-page: 2537
  year: 2010
  ident: B76
  article-title: Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA.
  publication-title: RNA
  doi: 10.1261/rna.2242610
– volume: 13
  year: 2012
  ident: B21
  article-title: Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-238
– volume: 88
  start-page: 6213
  year: 2014
  ident: B15
  article-title: HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes.
  publication-title: J. Virol.
  doi: 10.1128/jvi.00669-14
– volume: 50
  start-page: 7835
  year: 2011
  ident: B26
  article-title: Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism.
  publication-title: Biochemistry
  doi: 10.1021/bi201075b
– year: 2017
  ident: B28
  article-title: SuperTranscript: a data driven reference for analysis and visualisation of transcriptomes.
  publication-title: bioRxiv
  doi: 10.1101/077750
– volume: 42
  start-page: 5202
  year: 2014
  ident: B25
  article-title: Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku118
– volume: 17
  start-page: 333
  year: 2016
  ident: B40
  article-title: Coming of age: ten years of next-generation sequencing technologies.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.49
– volume: 46
  start-page: 2159
  year: 2018
  ident: B3
  article-title: Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky066
– volume: 15
  start-page: 121
  year: 2014
  ident: B108
  article-title: Sequencing depth and coverage: key considerations in genomic analyses.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3642
– volume: 11
  start-page: 163
  year: 2014
  ident: B52
  article-title: Quantitative single-cell RNA-seq with unique molecular identifiers.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2772
– volume: 8
  year: 2018
  ident: B75
  article-title: Third-generation sequencing reveals extensive polycistronism and transcriptional overlapping in a baculovirus.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26955-8
– year: 2018
  ident: B109
  article-title: High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes.
  publication-title: bioRxiv
  doi: 10.1101/424945
– volume: 546
  start-page: 406
  year: 2017
  ident: B35
  article-title: Establishment and cryptic transmission of Zika virus in Brazil and the Americas.
  publication-title: Nature
  doi: 10.1038/nature22401
– year: 2015
  ident: B53
  publication-title: IsoView; GitHub Respository.
– volume: 34
  start-page: 3094
  year: 2018
  ident: B66
  article-title: Minimap2: pairwise alignment for nucleotide sequences.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
SSID ssj0000493334
Score 2.5089087
SecondaryResourceType review_article
Snippet RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 606
SubjectTerms Genetics
long read
nanopore
next-generation sequencing
PacBio
RNA-Seq
transcriptome
Title Methodologies for Transcript Profiling Using Long-Read Technologies
URI https://www.proquest.com/docview/2429786418
https://pubmed.ncbi.nlm.nih.gov/PMC7358353
https://doaj.org/article/245a26822df34a778c38c4a3b1bac63a
Volume 11
WOSCitedRecordID wos000553411400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T9xAEB4lpyClQRCIYkiQI6VJYZ29u95HSU4gCjhdAdJ11nq8R4giX3QPpDT8dmbHx-ncJA2Ni33I3hl75xvv6PsAvuk6GCG8zKxCSlC0dVktZnmGhnpck3vXIItNmPHYTqdusiP1FWvCOnrgznBDoUovNIWxZiaVN8aitKi8rIvao5YMjQj17CRTvzrcK6VU3bkkZWFuOCN_RFpMwaVcUeBoJw4xXX8PY_YrJHdCzuUB7G-wYnrePeMhvAntB9jr1CP_HsHohtWfefcKy5TQZ8qRh_eBdMJi3BSYUq4KSK_n7X0WS-bT7d90mnUMd5cXt6OrbKOJkCFBh1UWQiGMMbNGBeYypUU2OneoPVpqLrUrjS8kli6qSiuJUkcCl1BbmuJylB9h0M7b8AlS3RQBPVIOkntVBu-C9YR_SmGQ_JbrBIYvFqpwQxgedSt-V5Q4RJtWbNMq2rRimybwfTvjT0eW8Y-xP6LRt-MizTU3kPOrjfOr_zk_ga8vLqvos4hnHb4N8_WSZgrKj7UqbAKm58veHfs97cNPJtg2siRgKk9e4xFP4X1cNFf4ms8wWC3W4Qu8w8fVw3JxBm_N1J7xu0vXm6eLZ2-l9Ks
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodologies+for+Transcript+Profiling+Using+Long-Read+Technologies&rft.jtitle=Frontiers+in+genetics&rft.au=Oikonomopoulos%2C+Spyros&rft.au=Bayega%2C+Anthony&rft.au=Fahiminiya%2C+Somayyeh&rft.au=Djambazian%2C+Haig&rft.date=2020-07-07&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=11&rft_id=info:doi/10.3389%2Ffgene.2020.00606&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2020_00606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon